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PREFACE 
 
 
 
 
 
 
 
 

 
All phenomena in nature are characterized by motion; this is an essential property of 

matter, having infinitely many aspects. Motion can be mechanical, physical, chemical 
or biological, leading to various sciences of nature, mechanics being one of them. 
Mechanics deals with the objective laws of mechanical motion of bodies, the simplest 
form of motion. 

In the study of a science of nature mathematics plays an important rôle. Mechanics is 
the first science of nature which was expressed in terms of mathematics by considering 
various mathematical models, associated to phenomena of the surrounding nature. 
Thus, its development was influenced by the use of a strong mathematical tool; on the 
other hand, we must observe that mechanics also influenced the introduction and the 
development of many mathematical notions. 

In this respect, the guideline of the present book is precisely the mathematical model 
of mechanics. The classical models which we refer to are in fact models based on the 
Newtonian model of mechanics, on the five basic principles, i.e.: the inertia, the forces 
action, the action and reaction, the parallelogram and the initial conditions principle, 
respectively. Other models, e.g. the model of attraction forces between the particles of a 
discrete mechanical system are part of the considered Newtonian model. Kepler’s laws 
brilliantly verify this model in case of velocities much smaller than the light velocity in 
vacuum. The non-classical models are relativistic and quantic. 

Mechanics has as object of study mechanical systems; this notion is emphasized 
throughout the book, no matter the systems we are working with are discrete or 
continuous. We put into evidence the difference between these models, as well as the 
specificity of the corresponding studies; the generality of the proofs and of the 
corresponding computations yields a common form of the obtained mechanical results 
for both discrete and continuous systems. On the other hand, the discrete or continuous 
mechanical systems can be non-deformable (e.g., rigid solids) or deformable 
(deformable particle systems or deformable continuous media); for instance, the 
condition of equilibrium and motion, expressed by means of the “torsor”, are necessary 
and sufficient in case of non-deformable and only necessary in case of deformable 
systems. 

A special accent is put on the solving methodology as well as on the mathematical 
tool used; vectors, tensors and notions of the field theory. Continuous and 
discontinuous phenomena, various mechanical magnitudes are presented in a unitary 
form by means of the theory of distributions. Some appendices give the book an 
autonomy with respect to other works, special previous mathematical knowledge being 
not necessary. 
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Passing by non-significant details, one presents some applications connected to 
important phenomena of nature, and this also gives one the possibility to solve 
problems of interest from the technical, engineering point of view. In this form, the 
book becomes – we dare say – a unique outline of the literature in the field; the author 
wishes to present the most important aspects connected with the study of mechanical 
systems, mechanics being regarded as a science of nature, as well as its links to other 
sciences of nature. Implications in technical sciences are not neglected. 

Starting from the particle (the simplest problem) and finishing with the study of 
dynamical systems (including bifurcation, catastrophes and chaos), the book covers a 
wide number of problems (classical or new ones), as one can see from its contents. It is 
divided in three volumes, i.e.: I. Particle mechanics. II. Mechanics of discrete and 
continuous systems. III. Analytical mechanics. 

The book uses the known literature, as well as the original results of the author and 
his more than fifty years experience as a Professor of Mechanics at the University of 
Bucharest. It is devoted to a large circle of readers: mathematicians (especially those 
involved in applied mathematics), physicists (particularly those interested in mechanics 
and its connections), chemists, biologists, astronomers, engineers of various specialities 
(civil, mechanical engineers etc., who are scientific researchers or designers), students 
in various domains etc. 
 
7 January 2006                                                                                       P.P. Teodorescu 
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Chapter 1 

NEWTONIAN MODEL OF MECHANICS 

The mathematical models of mechanics, the first basic science of nature, are shortly 
presented in this chapter; stress is put on the notion of mechanical system. 
Considerations concerning the units are made and some results concerning the theory of 
homogeneity and similitude are given. Using these introductory notions, one can pass to 
a mathematical study of the mechanical systems. 

1. Mechanics, science of nature. Mechanical systems 
All the phenomena of nature are characterized by motion; this is an essential property 

of matter, having infinity of aspects. For instance, the motion can be mechanical, 
physical, chemical and biological; there correspond various sciences of nature. Among 
them, mechanics studies the objective laws of the mechanical motion of material bodies, 
the simplest form of motion of matter; we will deal with such a study in what follows. 

The scientific study of matter has put in evidence its existence in the form of physical 
systems. The simplest physical system is the substance, which is met in nature in the 
form of material body; we will consider these bodies in their real form, as well as in 
their idealized form of discrete systems of particles (atoms, molecules, usual bodies, 
planets etc.) or of continuous systems (solids, fluids), under the denomination of 
mechanical systems. 

Mathematics plays a very important rôle in the study of a science of nature. 
Mechanics has been the first science of nature which was strongly mathematicized, by 
considering various mathematical models, which have been proved to correspond to the 
surrounding reality. To mechanical systems there correspond thus mathematical models 
of organized matter, having certain properties of structure, form etc. The development 
of mechanics has been thus much influenced by the use of a strong mathematical tool; 
as a matter of fact, we observe that mechanics also played an important rôle in the 
introduction and development of many mathematical notions. 

1.1 Basic notions 
Introducing the notions of system and mathematical model, we consider the main 

systems and models of such kind used in mechanics; we put thus in evidence the 
hypotheses that are introduced and the basic notions which appear. The object of study 
of mechanics is thus emphasized. We must point out that the notions which will be 
introduced are basic notions; these ones cannot be defined with the aid of other notions, 
and they must be described by their various properties, obtaining thus the considered 
mathematical models. 

1 
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1.1.1 Notion of system. Notion of mathematical model 
In the study of a science of nature, more and more the connection between the 

modern methods of the theory of systems and the mathematical modelling of this 
science is put into evidence. One must first of all lighten the notion of system, which 
may be different from that suggested by the usual language; on the other hand, this 
notion must be used always when one has to do with complicated phenomena, the 
search of which is proved to be difficult. At the same time, one must take into 
consideration the possibility of coupling characteristic phenomena from various 
sciences of nature (mechanics, physics, chemistry, biology etc.). 

A system is defined by a set of elements (component parts), which influence 
(condition) each other (which interact), on which external influences (actions, 
denominated input) take place, and the actions of which towards the exterior (towards 
other systems) are denominated output. One obtains thus the schema 

 
 

              Input�����                                                         Output�����   
 
 
Among the most important properties of a system we must mention its change 
(transformation, motion), as well as the possibility to be influenced (conducted) by a 
convenient choice of the inputs (forces). In classical mechanics, the connection between 
the influences (actions) exerted on the system and the changes of the latter one is called 
dynamics of systems. It is understood that these considerations refer first to mechanical 
systems; but, in general, taking into account the connection between various systems, 
dynamics of systems is an interdisciplinary science. 

To study these systems, following problems are put: i) the construction of the 
mathematical model corresponding to a given system; ii) the study of the model thus 
created (putting into evidence the properties of the system); sometimes, because of the 
difficulties of the considered problems, one cannot give a complete solution to the 
problem of motion and one emphasizes only some of its properties or one can give only 
approximate solutions (e.g., by linearizing non-linear phenomena); iii) the choice of the 
main (dominant) inputs, which govern the considered phenomena; iv) the simulation of 
the behaviour of the considered system; one can thus put in evidence the deficiencies of 
the chosen model as well as of the considered inputs, improving then the model and the 
inputs. We will deal particularly with the first two problems in our study, accidentally 
with the third one and less with the fourth one. 

Usually, by model we understand an object or a device artificially created by men, 
which is similar in a certain measure with another one, the latter being an object of 
search or of practical interest. The scientific notion of model constitutes a possibility of 
knowledge of the surrounding reality, consisting in the representation of the 
phenomenon to be studied with the aid of a system artificially created. Hence, the most 
general property of a model is its capacity to reflect, to reproduce things and phenomena 
of the objective world, their necessary order and their structure. 

From the very beginning, the models can be divided in two great classes: technical 
(material) models and ideal (imaginary) models; this classification is made considering 
the construction of the models as well as the possibilities by which the objects to be 
studied may be reproduced. 

Set of elements in 
continuous 
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The technical models are created by man, but they do exist objectively, independent 
of his conscience, being materialized in metal, wood, electromagnetic fields a.s.o. Their 
destination is to reproduce for a cognitive goal the object to be studied, to put in 
evidence its structure or certain of its properties. The model can maintain or not the 
physical nature of the object which is studied or the geometrical similitude to this one. 
If the similitude is maintained, but the model differs by its physical nature, we have to 
do with analogic systems. E.g., electrical models may reproduce processes analogous to 
those encountered in mechanics, qualitatively different, but described by similar 
equations. These models, as others of the same kind, take part in the class of 
mathematical models. 

One can construct such models, for instance, to study the torsion of a cylindrical 
straight bar of arbitrary simply or multiply connected cross section. If the bar is 
isotropic, homogeneous and linear elastic (subjected to infinitesimal deformations), then 
the phenomenon is governed by a Poisson type equation in B. de Saint-Venant’s theory. 
L. Prandtl showed that the same partial differential equation is met in case of a 
membrane which rests on a given contour and is subjected to an interior constant 
pressure; if this contour is similar to the frontier of the plane domain corresponding to 
the cross section of the straight bar, then we obtain a correspondence of the boundary 
conditions, hence the classical membrane analogy (or of the soap film). One uses also 
other analogies for the same problem, i.e.: electrical modelling, modelling by optical 
interference, hydrodynamical modelling a.s.o. 

Another type of technical models used in mechanics corresponds to the intuitive 
notion of model. Various elements of construction are performed partially or in totality 
at a reduced scale, obtaining thus results concerning the maximal stresses and strains 
which appear. These models can be built of the same material as the objects to be 
studied or of other materials, so that quite difficult problems of similitude must be 
solved. 

Generally, the ideal models are not materialized and – sometimes – they neither can 
be. From the viewpoint of their form, they can be of two types. 

The models of first order are built by using intuitive elements, which have a certain 
similitude with the corresponding elements of the real modelled phenomenon; we 
observe that this similitude must not be limited only to space relations, but can be 
extended also to other aspects of the model and of the object (for instance, the character 
of the motion). The intuitiveness of these models is put into evidence first of all by the 
fact that the models themselves, formed by elements sensorial perceptible (plates, 
levers, tubes, fluids, vortices etc.), are intuitive, and – on the other hand – by the fact 
that they are intuitive images of the objects themselves. Sometimes, these models are 
fixed in the form of schemata. 

The models of second order are systems of signs, their elements being special signs; 
logical relations between them form – at the same time – a system, being expressed also 
by special signs. In this case, there is no similitude between the elements of the model 
and the elements of the corresponding objects. These models do not have intuitiveness 
in the sense of a spatial or physical analogy; they have not, by their physical nature, 
nothing in common with the nature of the modelled objects. The models of second order 
reflect the reality on the basis of their isomorphism with this reality; we suppose a one-
to-one correspondence between each element and each relation of the model. These 
models reproduce the objects under study in a simplified form, constituting thus – as all 
models – a certain idealization of the reality. 
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The types of ideal models mentioned above can be considered as limit cases. In fact, 
there exist ideal models that have common features to both types of models which have 
been described; they contain systems of notions and axioms which characterize 
quantitatively and qualitatively the phenomena of nature, for instance representing 
mathematical models. Such models are extremely important and their systematic use 
has led to the great development of mechanics of deformable bodies in the last time. 

The basic dialectical contradiction of the model (the model serves to the knowledge 
of the object just because it is not identical with the latter one) is useful, for instance to 
put into evidence the properties of continuous deformable media. In fact, a model 
contains more information about the object if it is closer to it. But physical reality is 
very complicated; the solving of the contradiction is realized by the use of a sequence of 
models, more and more complete, each one having its contribution to the knowledge of 
the real continuous deformable media. We try to put into evidence just this process of 
continuous improvement of the models in general mechanics as well as in mechanics of 
continuous deformable media, process that constitutes the main tenor of the 
development of mechanical systems. 

In general, after adopting a model, it is absolutely necessary to compare the results 
obtained by theoretical reasoning to physical reality. If these results are not satisfactory 
(sometimes it happens to be between some limits, which can be sufficiently close), then 
it is necessary to make corrections or to improve the chosen model. In fact, on this way, 
mechanics, the theory of mechanical systems developed itself, the word “model” being 
more and more used by researchers dealing with this science of nature. 

1.1.2 Vectorial modelling of mechanical quantities. Vector space 
A great part of the quantities which appear in mechanics are mathematically 

modelled as vector quantities; in fact, the concept of vector appeared together with the 
development of mechanics. We will thus introduce the notion of vector space, a space 
of mechanical quantities, by considering three types of vectors useful in the study of 
mechanical systems, i.e.: free vectors, bound vectors and sliding vectors. 

The free vector is a mathematical entity characterized by direction and modulus 
(magnitude). The direction includes all straight lines parallel one to each other, as well 
as a sign; in case of opposite signs, the directions are opposite. It is denoted by V  
(sometimes 

�
V or V  or V

�
); the modulus of this vector will be �V V , � 0V  (it is 

denoted also by V , and it is called the norm of the vector). 
We fix a right-handed frame of reference, formed by an origin O  and by three 

orthogonal axes �, 1,2, 3,iOx i  in the Euclidean three-dimensional space 3E . We 
mention that by a right-handed frame of reference we understand that one for which an 
observer situated along the axis iOx , in its positive sense, sees the superposition of the 
axis jOx onto the axis kOx , after a rotation of angle /2�  in the positive sense (from 
right to left, the right-hand rule); we admit that 

�( , , ) (1,2, 3)i j k , (1.1.1) 

the indices , ,i j k  taking the distinct values 1,2, 3  in the given order or after a cyclic 
permutation of them. Projecting the free vector V  on the axes (we use the definition 
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that will be given later, in this subsection), we obtain its canonical co-ordinates  
�, 1,2, 3iV i  (Fig.1.1,a); these  co-ordinates have a certain sign, as the direction  of  the  

 
Figure 1.1.  Free (a), bound (b) and sliding (c) vectors. 

projections coincides or not with the direction of the co-ordinate axes (which are 
directed axes), and constitute an ordered triplet of numbers, which entirely characterize 
the free vector. We can write 

�

� �� � � � �	 

� �


1/23
2 2 2 2

1 2 3
1
i i i

i
V V VV V V V , 

 
(1.1.2) 

where we use Einstein’s convention of summation, in conformity with which the double 
existence of an index (called dummy index) in a monomial indicates the summation with 
respect to this index. An index, which appears only once, will be a free index; in the 
frame of the adopted convention, an index cannot appear three times. 

The bound vector is a mathematical entity, characterized by direction, modulus 
(magnitude) and point of application (origin). In the frame of reference 1 2 3Ox x x , the 
point of application P  (the origin of the vector) is given by the position vector 
r 1 2 3( , , )x x x  (which is also a bound vector, the point of application of which is the 
origin O ); the point Q  represents the extremity of the vector (Fig.1.1,b). A bound 

vector �V PQ
����

 is characterized by the bound vector r  and the free vector V , hence 

by two ordered triplets of numbers ( ix and �, 1,2, 3iV i ). Thus, PQ
����

 is a directed 

(oriented) segment; we notice that QP
����

 is the opposite directed segment. 
The sliding vector is a mathematical entity, characterized by direction, modulus 

(magnitude) and support (the vector lies on an axis � , without mentioning the point of 
application, but having the possibility to slide along this axis). From the mathematical 
point of view, a sliding vector will be characterized also by two ordered triplets of 
numbers ( ix  and �, 1,2, 3iV i ), between which there exists a certain relation, hence by 
five independent numbers (a sixth number is necessary to can have the position of the 
point of application P  on the axis � , with respect to an origin chosen on it, to obtain a 
bound vector) (Fig.1.1,c). 

We say that between two vectors V  and W  of the same type there exists a relation 
of equality if they are characterized by the same elements (direction, modulus, point of 
application, support)  or  the  same  canonical  co-ordinates.  For  instance,  for  the  free  
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vectors � �V iV  and � �W iW  we can write 

�V W ,     �i iV W ,    � 1,2, 3i ; (1.1.3) 

for the sliding vectors we must have also the same support, while for the bound vectors 
the same point of application. We mention following properties ( V , W  and U  are 
vectors): 

i) �V V  (reflexivity); 
ii) � � �V W W V  (symmetry); 

iii) �V W , � � �W U V U   (transitivity) 

valid for each type of vector. 
If we bound two equal free vectors to two distinct points of application, then we 

obtain two bound vectors, which are equipollent. 
Let be vectors 1V  and 2V ; the sum 

� �V V V1 2  (1.1.4) 

is a vector for which the direction and modulus are given by the diagonal of the 
parallelogram constructed by means of these vectors, admitting that they are  applied  at 

 
Figure 1.2.  Addition of two vectors (a, b). Addition of n  vectors: 

non-vanishing resultant (c); vanishing resultant (d). 

the same point (Fig.1.2,a). The above given definition corresponds to free vectors, to 
bound vectors (if they have the same point of application), as well as for sliding vectors 
(if their supports are concurrent). The sum can be obtained also by closing a triangle, 
the first two sides of which are 1V  and 2V  (Fig.1.2,b); this observation can be used to 
construct the sum of n  vectors (Fig.1.2,c) 

n� � � �V V V V1 2 ... . (1.1.5) 

We can write also Chasles’ relation 

�� � � �1 1 2 1...n nnPP PP P P P P
����� ���� ����� ��������

. 
 

(1.1.5') 
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The resultant V closes the vectors’ polygon (a skew polygon in 3E ); if this 
polygonal line is closing, then the resultant vanishes (Fig.1.2,d). We mention following 
properties: 

i) � � �V V V V1 2 2 1  (commutativity); 
ii) � � � �� � � � �V V V V V V1 2 3 1 2 3  (associativity). 

The inequalities 

� � � � �V V V V V V1 2 1 2 1 2 ,    1 2�V V  
 

(1.1.6) 

result from Fig.1.2,b. 

 
Figure 1.3.  Projection of a vector on a directed axis. 

Let imV  be the projection of vector iV , � 1,2,...,i n , on an directed axis, of sliding 
vector m , while mV   is the projection of vector V  on the same axis (by projection of a 
bound vector PQ

����
 on a directed axis we understand the length of the directed segment 

' 'P Q
�����

 of this axis, limited by planes normal to the given axis, passing through points P  

and Q ; this length is a positive number if � � �m, /2PQ �
����

�  and negative in the 

contrary case). We observe that (Fig.1.3) 

� � � �1 2 ...m nmm mV V V V ; (1.1.7) 

if the vectors’ polygon is closing, then the sum of the projections on an axis vanishes. 
Thus, for the sum of two vectors one obtains the canonical co-ordinates  

� �1 2i i iV V V ,   � 1,2, 3i . (1.1.8) 

We say that vector V  is equal to zero 

�V 0  (1.1.9) 

if and only if 
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� 0iV , � 1,2, 3i ,   or  � 0V ; (1.1.9') 

in this case, the properties 

� � � �V 0 0 V V  (1.1.9'') 

are verified. 
We  observe that the law of internal composition of vectors (addition of vectors, 

introduced above) is essential to define them; we must complete the definition given in 
this subsection, because there exist quantities which can be represented by directed 
segments, but which do not verify such a law of composition, so that they are not 
vectors in the sense considered above (for instance, the finite rotation of a rigid solid 
about an axis). 

 
Figure 1.4.  The product of a scalar by a vector. 

The scalar is a mathematical entity, characterized by sign and modulus (magnitude); 
hence, it is a number. 

The product of a scalar �  by a vector V is a vector (Fig.1.4,a) 

�W V� , (1.1.10) 

which has the same direction as V  if � 0�  or an opposite direction if � 0� , and the 
modulus 

�W V� . (1.1.10') 

In the particular case � �1� , we obtain the vector �V , which has the same 
modulus as V , but an opposite direction (Fig.1.4,b); this vector verifies relation 

� �� � �V V 0 . (1.1.11) 
 
As a consequence, the subtraction of two vectors is also an addition 

� �� � � �V V V V1 2 1 2 . 
 

(1.1.12) 

We mention following properties: 

i) � � � �� �V V V1 2 2 1 1 2� � � � � �  (associativity); 
ii) � �� � �V V V1 2 1 2� � � �  (distributivity with respect to addition of scalars); 

iii) � �� � �V V V V1 2 1 2� � �  (distributivity with respect to addition of vectors). 
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The product (1.1.10) vanishes � ��V 0� if and only if � 0�  or �V 0 . 
We observe that two vectors V  and W  have the same (or an opposite) direction 

(they are collinear, even if they have not the same support) if and only if they verify a 
relation of the form (1.1.10) or of the form 

� �V W 0� � ,   �, 0� � . (1.1.13) 

Let be a vector V . We denote by v  a vector which has the same direction as V , but 
of modulus equal to unity (Fig.1.4,c); this vector is called the unit vector (versor) of V  
and is denoted by 

�v Vvers . (1.1.14) 

We may write 

versV V� � �V V v V v . (1.1.14') 

The unit vectors of the co-ordinate axes jOx  are denoted by ji , � 1,2, 3j . 
Let be the set of free vectors { }V , for which an operation of internal composition 

(addition of vectors) is defined, so that the sum of two elements of this set is an element 
of the same set; this operation is associative and admits an inverse. 

Vector 0  is the neutral element, which verifies relations (1.1.9''), while vector �V is 
the inverse of V , verifying relation (1.1.11); these vectors belong to set { }V . Hence, 
the set of free vectors { }V  forms an Abelian (commutative) group (the operation of 
internal composition of vectors is commutative). 

Because in the set { }V  was defined also the operation of multiplication of one of its 
elements by a scalar (external composition), this set constitutes a three-dimensional 
vector space (the linear space 3L ). Analogously, one can introduce also the n-
dimensional vector space nL . 

1.1.3 Space. Time 
Space and time are basic notions, which appear in a mathematical model of 

mechanics. To study the mechanical motion, representations of space and time are 
necessary; so, in classical mechanics, the physical space is the three-dimensional 
Euclidean space 3E , while time is assimilated also to a Euclidean space, but to a 
unidimensional one 1E . It was thus admitted that material bodies have three dimensions 
(e.g., length, width and height); but if the bodies to be studied are reduced to two 
dimensions or to only one dimension, so that they may be modelled in such a form, then 
we use a two-dimensional Euclidean space 2E  or a unidimensional one 1E , 
respectively. The geometric models for space and time used in classical mechanics 
reflect thus properties of real space and time, as objective forms of existence of matter. 

In a classical model of mechanics, the space is considered infinite, continuous, 
homogeneous, isotropic and absolute, being independent of matter. Material bodies are 
immersed into space, where they fill a certain position with respect to other objects of 
the material world; they have also a certain extent. One can thus say that the space 
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represents a support of matter. If, after a series of mechanical phenomena (for instance, 
after a succession of motions), material bodies maintain their properties of extent and 
relative situation with respect to other material objects, one considers that they have the 
same position. The physical space is formed by the totality of these positions, having 
thus an absolute character. The properties of homogeneity and isotropy put into 
evidence the fact that local properties of this space are independent of the position and 
of the direction, respectively. 

An observer who perceives mechanical phenomena of the material world from a 
“laboratory” can put in evidence a “relation of order” for them; so appears the notion of 
individual physical time. By synchronization of time scales of two observers one passes 
from the individual physical time to the universal physical time; in this case, the 
transmission of signals has an instantaneous character. Thus, in a classical model of 
mechanics, the time has an absolute character, being the same for all observers who 
study a certain mechanical phenomenon. Any material process has certain duration. We 
say that an elementary material process, which has no duration (is of null duration), is 
an event. If two events take place at the same time, then they are simultaneous; in the 
contrary case, they are successive, one of them taking place before the other one. Thus, 
the set of events is ordered, and the time, characterized by duration, simultaneity and 
succession, is unidimensional. Admitting, in a classical model of mechanics, that time is 
independent of matter, it results that – as in the case of the space – it has no structure; 
hence, the time “flows” uniformly, being homogeneous. We mention also that the time 
is infinite, continuous and irreversible. 

The modelling of the space, as well as the modelling of the time, represents, in 
classical mechanics, an approximation of the material reality; they are valid only in case 
of small distances and small velocities with respect to the velocity of propagation of 
light in vacuum. 

1.1.4 Motion. Rest. Frames of reference 

By mechanical motion we understand the change of position of a material body
 1B  

with respect to another material body 
 2B . In this case, at least a distance from a point 

of the body 
 1B  to a point of the body 

 2B  varies in time; we say that the corresponding 
points undergo certain displacements. This mechanical phenomenon has a relative 
character; indeed, if the body 

 1B  moves with respect to the body 
 2B , then the latter 

one moves also with respect to the first one. 
If we refer the motion (in what follows we leave out the adjective “mechanical”, 

because we have to do only with such motions) of a body B (we omit also the adjective 
“material” in subsequent formulations) to another body R, the latter one will be called 
frame (system) of reference; in what follows, the frame of reference R will be 
considered to be rigid (the distances between any two points of it are constant in time), 
being made up at least of three non-collinear points. If the distances of all the points of 
the body B to the frame R (to three non-collinear points of it) are constant in time, 
then we say that this body is at rest with respect to this frame. 

We cannot speak about absolute motion (only in the sense that matter is in 
continuous motion) because an absolute frame of reference does not exist, but only 
about relative motion; as well, we cannot speak about absolute rest, but only about 
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relative rest. Analogously, we cannot speak about absolute space or about absolute 
time, but only about relative space (referring to a spatial frame), and about relative time 
(referring to a temporal frame). 

 
Figure 1.5.  Orthogonal Cartesian (a), cylindrical (b) and spherical (c) co-ordinates. 

The position of a point P  of a body will be given by the position vector r  with 
respect to the pole (origin) O  of a given frame of reference. We will consider only 
frames the bases of which are positive, using various systems of co-ordinates. In 
general, we use right-handed orthonormed frames (see Chap. 2, Subsec. 1.1.2); for 
instance, in case of a system of orthogonal Cartesian co-ordinates, the position of the 
point P  will be given by the co-ordinates ix , � 1,2, 3i , or by the abscissa x , the 
ordinate y  and the applicate z  (Fig.1.5,a), which are – at the same time – the 
components of the position vector. In cylindrical co-ordinates, we use the polar radius 
r , the polar angle �  and the applicate z  (Fig.1.5,b), while in spherical co-ordinates 
we introduce the polar radius R , the colatitude �  and the azimuth (longitude) �  
(Fig.1.5,c) (the notations do not correspond in the two systems of co-ordinates, but we 
like better to use well known notations); in general, we introduce arbitrary curvilinear 
co-ordinates iq , � 1,2, 3i . 

The distance between two points 1 2 3( , , )P x x x  and 1 2 3( , , )Q x x x  will be given by 

� �r rP Q � � � � � � � �2 2 2
1 1 2 2 3 3( )( ) ( ) ( ) ( )i i i ix y x y x y x y x y , 

 (1.1.15) 
satisfying all the properties of the norm. 

The time will be characterized by a variable t , monotonous increasing, being 
independent of any physical phenomenon and frame (observer). This variable can take 
values on all the time axis � �� �( ( , ))t  or we can admit the existence of an initial 
moment 0t , from which starts the study of the considered phenomenon � �0( [ , ))t t ; 
we can consider also that � �� 1( , ]t t  or that � 0 1[ , ]t t t . We can admit, without 
loosing the generality, that �0 0t  (we choose the initial moment as origin for the time 
axis). 

Long time, the scientists searched an absolute frame of reference in Universe, 
admitting that – with respect to such a frame – the mathematical model of mechanics 
takes its simplest form. So, in the geocentric frame of reference (Ptolemy’s frame) one 
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admits that the origin is placed at the centre of mass of the Earth; usually, the equatorial 
plane is taken as principal plane, one of the axes in this plane being straighten in the 
direction of the vernal equinoctial point (at the intersection of the equatorial plane with 
the ecliptic one, which contains the trajectory described by the Earth), while the third 
axis is normal to this plane (hence, it is the rotation axis of the Earth). Later, one 
considered the heliocentric frame of reference (Copernicus’ frame), in which the origin 
is in the centre of mass of the Sun. In such a frame, the plane of the ellipse described by 
the Earth, hence the ecliptic plane, is taken as principal plane (ecliptic heliocentric 
frame of reference), or a plane parallel to the equatorial plane of the Earth is taken as 
such a plane (equatorial heliocentric frame of reference), the third axis being normal to 
the respective principal plane; in both cases, one of the axes contained in the principal 
plane is along the direction of the vernal point (at the intersection of the ecliptic plane 
with a plane parallel to the equatorial plane of the Earth, passing through the centre of 
mass of the Sun), hence it is parallel to the axis considered in case of the geocentric 
frame. Obviously, this last frame represents a progress with respect to the previous one, 
leading to simpler properties of motion of planets. But the Sun is only one of more than 
two hundred milliards of stars of our Galaxy, having – at this moment – a relatively 
peripheral position in it; all these stars, including the Sun, move with respect to the 
centre of mass of the Galaxy. We are thus led to a frame with the origin at this centre of 
mass (a galactocentric frame of reference); the principal plane is the galactic median 
plane, one of the axes contained in this plane being along its intersection with a plane 
parallel to the equatorial plane of the Earth. In all these cases one uses the so-called 
“fixed stars” (very far stars, the position of which are approximately fixed with respect 
to observations which can be made on the Earth); knowing the positions of these stars 
(their co-ordinates), one can use any of the frames mentioned above. A catalogue of 
approximately 1500 such stars, called basic stars, has been elaborated. Theoretically, 
only four stars are sufficient to identify a frame; practically, one considers a greater 
number of stars, because – in any case – their positions vary in time, so that their 
determination can be erroneous. 

The laws of classical models of mechanics are sufficiently well verified in a 
galactocentric frame of reference. But we observe that the motion of the heliocentric 
frame with respect to the galactocentric one can be considered – with a good 
approximation – to be a uniform and rectilinear translation, even for a relatively long 
interval of time; one can thus use – in many cases – the heliocentric frame, obtaining 
very good results, for instance in the study of motion of objects launched in the cosmic 
space. For usual motions on the surface of the Earth, the geocentric frame of reference 
leads also to very good results; the influence of the rotation and revolution motions of 
the Earth can be introduced subsequently, every time it is necessary. 

The frames of reference with respect to which the basic laws of mechanics can be 
verified are called inertial frames of reference. If, in a classical model of mechanics, its 
laws are verified in a certain frame of reference, then they are verified with respect to 
any other frame in rectilinear and uniform motion with respect to the latter one; thus, 
one obtains a class of inertial frames of reference. An “absolute space” in the sense of 
Newton cannot be identified on the basis of a mechanical experiment. 

The galactocentric frame of reference is an inertial one; as we have seen above, for 
different cases of mechanical motion one can admit that the heliocentric frame of 
reference or even the geocentric frame of reference are inertial frames. On this way, we 
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can construct also other frames of reference (considering a larger region of the universe, 
at a greater scale), which are also inertial; but this  is  not  necessary  from  the  point  of  
view of classical models of mechanics. 

1.1.5 Trajectory. Velocity. Acceleration 
In what follows, let us consider the motion of a body with respect to a frame of 

reference R  which, by convention, is admitted to be “fixed”. The motion of a point P  
of the body with respect to this frame of reference is defined if, for any value of the time 

 
Figure 1.6.  Trajectory, velocity and acceleration of a particle P . 

t  in 1E , we obtain its position in 3E ; the point P  describes thus, in its motion, a 
trajectory C  (the geometric locus of positions occupied by point P ) (Fig.1.6), of 
vector equation 

t�r r( )  
 

(1.1.16) 

or of parametric equations 

� ( )i ix x t ,   � 1,2, 3i . 
 

(1.1.16') 

In cylindrical co-ordinates, these equations are written in the form 

� ( )r r t ,    � ( )t� � ,    � ( )z z t  
 

(1.1.16'') 

and in spherical co-ordinates we have 

� ( )r r t ,    � ( )t� � ,    � ( )t� � ; 
 

(1.1.16''') 

In arbitrary curvilinear co-ordinates, they are given by 

� ( )i iq q t ,   � 1,2, 3i . (1.1.16iv) 

These equations define the law of motion. Eliminating the time t  between equations 
(1.1.16'), one obtains the Cartesian equations (two equations) of the trajectory. The 
knowledge of the trajectory in one of the forms mentioned above does not mean that we 
know how the point P  is moving along this trajectory; to state accurately this motion 
we must define the velocity and the acceleration of the point. 
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The mechanical nature of the phenomenon of motion  imposes  certain  conditions  to 
the vector function (1.1.16). So, it must be continuous (the trajectory is continuous, the 
point cannot occupy simultaneously several positions in space) and bounded in modulus 
for � 0 1[ , ]t t t , where we have put in evidence the definition interval; if the condition of 
boundedness is not fulfilled, then the trajectory has points at infinity. This function must  
be also differentiable (obtaining thus the velocity and the acceleration), exception 
making – eventually – a finite number of moments. If the vector function admits 
everywhere derivatives of second order, then the motion is continuous, otherwise having 
to do with a discontinuous motion (in fact, the denomination refers to the velocity, not 
to the motion). In the last case, one can introduce regular distributions to characterize 
the velocity, as well as regular distributions or singular (if it is necessary) distributions 
to characterize the acceleration. 

If the derivatives of first order of functions (1.1.16') are continuous at any moment t  
in the definition interval, then the trajectory is a rectifiable curve; we can introduce – in 
this case – the curvilinear co-ordinate s , measured from an arbitrary point sO  as origin 
(Fig.1.6). Taking the direction of motion as a positive one to measure arcs s , we can 
establish the correspondence 

� ( )s s t , 
 

(1.1.17) 

which will be called the horary equation of motion; the graphic representation of this 
function in a frame of reference Ots  will be the graph of the motion. From 

=� � �r r r r 22d d (d ) d � � � � � � � �� � � �2 2 22
1 2 3d d d d d di is x x x x x  

 (1.1.18) 
we deduce 

� �
0

0 0; ( ) ( )d
t

i it
s t s s x x� � �� � � � � , 

 

(1.1.18') 

0s  being the length of the trajectory till point 0P , to which corresponds the initial 
moment 0t . In case of a finite number of discontinuity moments of the derivative of 
first order of function (1.1.16), the curve is piecewise rectifiable. 

Let us introduce also the fixed frame of reference �R , rigidly connected with the 
frame of reference R ; the origin O �  of the new frame will be specified by the position 

vector 0 OO ��
�����

r  with respect to the first one. The point P  will be thus given by the 
new position vector 

0( ) ( )t t� � �r r r . 
 

(1.1.19) 

Differentiating successively with respect to time, vector 0r  will be eliminated, and one 
obtains 

� �� �r r ,    � ��� ��r r ,      � ���� ���r r … (1.1.20) 
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Hence, one can affirm that all derivatives of the position vector with respect to time  are 
invariant with respect to a change of a fixed frame of reference. We mention the first 
two invariants 

�v r� ,    �a r�� , (1.1.20') 

which represent the velocity and the acceleration of the point P , respectively, and play 
an important rôle in mathematical modelling of classical mechanics. 

1.1.6 Mass. Momentum 
The mass is a quantity of state (quantity which depends on the actual state of the 

body but not on how one got to this state) which appears in  all  phenomena  of  motion, 
being an important property of matter; it does exist objectively and is independent of 
the place where it is measured, as well as the electric charge in an electromagnetic field. 
Newton introduced the concept of  mass  as  a  measure  of  the  amount  of  matter;  this  
concept has a statical character. But we observe that the mass is present in various 
phenomena of motion too, and can be put in connection especially with the inertia and 
the universal attraction of bodies. 

Inertia is a general tendency of matter to conserve its state of rest or of rectilinear and 
uniform motion; from this point of view, the mass represents a measure of the inertia of 
the body in motion. Let us consider a system formed by two homogeneous spheres 1S  
and 2S , of negligible dimensions, which become in  collision  at  point  O   (Fig.1.7,a); 
they have the velocities 1�v  and 2�v  before collision, and 1��v  and 2��v  after collision. One 
observes that the variations of velocity 1 1�� ��v v  and 2 2�� ��v v  are  vectors  on  the  same 

 
Figure 1.7.  Collision of two small homogeneous spheres (a). 

Variations of velocity (b). 

support but of opposite sign (Fig.1.7,b). �. �i�eica has made such an experiment, using 
two homogeneous small spheres fixed at the same fixed point by two inextensible 
threads of the same length; one obtains thus two simple (mathematical) pendulums. The 
isochronism of small oscillations (they take place in the same interval of time) ensures 
the property of tautochronism (one arrives at the same position in the same time 
interval, independently of the initial position), so that the spheres, starting from different 
points, become in collision in a point corresponding to the vertical of the fixed point; 
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the velocities before and after collision will be proportional to the respective 
amplitudes, so that we can measure them. We may thus write 

� �1 1 12 2 2��� � �� �� � � �v v v v , 
 

(1.1.21) 

where 12�  is a positive scalar; repeating the experiment with the same spheres but other 
velocities 1�v  and 2�v , one observes that this scalar is constant, depending only on the 
chosen spheres (it is a characteristic of their interaction, this fact being put in evidence 
by the two indices). Let us consider now three homogeneous spheres 1S , 2S  and 3S , of 
negligible dimensions; repeating the experiment with these spheres taken two by two, 
we find a relation of the form 

�12 13 32� � � . (1.1.21') 

Supposing now that �12 12 1 2( , )X X� � , where 1X  and 2X  are quantities which 
characterize the spheres 1S  and 2S , respectively, it follows from (1.1.21') that �22 1�  
if the spheres 2S  and 3S  are identical; if the spheres 1S  and 2S  are identical and we 
take into account the previous result, then we can write also �13 311/� � . Relation 
(1.1.21') becomes 

� �
� �

� �32 32 3 2
12

31 31 3 1

,
,

X X
X X

� ��
� �

 
 

and is valid for any sphere; there results that 12�  is the ratio of two scalars, each one 
depending only on quantities characterizing the spheres 1S  and 2S , respectively. We 
can thus write 

� 2
12

1

m
m

� ,    �1 2, 0m m . 
 

(1.1.22) 

In this case, relation (1.1.21) shows that, for the same scalar 2m  and for the same 
variation of velocity 2 2�� ��v v  (in modulus), if the scalar 1m  is greater, then the 
variation 1 1�� ��v v  is smaller; the velocity of the sphere 1S  is subject to a smaller 
variation, its inertia being greater. The inertia of the sphere 1S  increases thus at the 
same time as the scalar 1m ; the latter one can be considered as a measure of the inertia 
of the respective sphere (analogously, 2m  measures the inertia of the sphere 2S ). So, 
one can attach to a homogeneous sphere S  of negligible dimensions an inertial mass 

� 0im . 
In what concerns the universal attraction of bodies, let us consider their falling on the 

surface of the Earth (the action of the terrestrial gravitational field). We can measure the 
attraction, by the Earth, of two homogeneous spheres 1S  and 2S , of negligible 
dimensions (their weight), using a dynamometer (hence, measuring some lengths); the 



www.manaraa.com

Newtonian model of mechanics 17

two gravity forces 1G  and 2G , which are thus put in evidence, have the same direction, 
so that we can write 

�G G1 12 2� ,    �12 0� . (1.1.23) 

Considering three homogeneous spheres 1S , 2S  and 3S , of negligible dimensions, we 
can establish a relation of the form 

�12 13 32� � � ; (1.1.23') 

by a reasoning similar to that above, we attach to the sphere S  a gravitational mass 
� 0gm . This scalar does not depend on the position on the surface of the Earth in 

which the experiment takes place. 
Very fine experiments made by L. Eötvös in 1890 and taken again by Zeeman in 

1917, led to proportionality between the inertial mass and the gravitational one (a body 
is as much inertial as it is heavy). Taking conveniently the units, we may have a 
proportionality coefficient equal to unity, hence the relation 

� � � 0gim m m , (1.1.24) 

which emphasizes the equality between the inertial mass and the gravitational one; in 
what follows, it will no more be necessary to characterize the respective property of the 
mass using the adjectives “inertial ” and “gravitational”. This equality has a quantitative 
(numerical) aspect in classical mechanics; in relativistic mechanics (general relativity), 
its qualitative aspects will also appear.  

We mention an experiment made by W. Pohl, which puts in evidence the aspects of 
inertial and gravitational mass,  respectively.  A  homogeneous sphere is  linked  in  two 

 
Figure 1.8.  W. Pohl’s experiment on inertial and gravitational mass. 

diametral opposite points A  and 'A  by two identical threads AB  and ' 'AB ; the end B  
is connected at a fixed point, while at the end 'B  acts a force F  (Fig.1.8). If the force 
F  acts suddenly (from the very beginning with  its  entire  intensity), then  the  thread  

' 'AB  breaks (because of the inertial aspect of the mass), while if  this  force  has a static 
action (the intensity of the force growth in a short but finite time), then the thread AB  
breaks (the influence of the force F  is added to the weight of the sphere, and the 
gravitational aspect of the mass is emphasized). 

The Newtonian character of mass, i.e. to be a measure of the quantity of matter of a 
body, may be experimentally verified; indeed, the mass of several bodies is equal to the 
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sum of the masses of the bodies, as it can be seen if we put in evidence the gravitational 
aspect of mass (the weights of bodies, measured with the aid of a dynamometer, in a 
certain place of the Earth, can be added). This is a property of additivity. 

Thus, in a mathematical modelling, we associate to each body B a quantity of state 
( )m B  called mass, having the following properties: 
    i)   the mass of the body is a positive scalar ( �( ) 0m B ); 

       ii)   for  each  division  (disjoint parts)   iB , � 1,2,...,i n , of the body we can write 
              (the property of additivity) 

� �
�

�   

1
( )

n

i
i

m mB B . 
 

(1.1.25) 

In a classical model of mechanics we admit also that: 
iii)    the  mass  of  the  body  remains  constant  during   the  motion   �( 0)m� ;  the 
         property is modified in case of a body of variable mass. 

Space, time and mass are independent one of each other in a classical model of 
mechanics. 

Newton has introduced the notion of momentum (which he called quantity of motion, 
denomination of a statical character; it will not be used in what follows) mv , 
representing the product of the mass by the velocity of a point of the body B, as a 
measure of the mechanical motion; we observe that, in a motion of translation, the 
property of additivity takes place for any division 

 iB  of the body. Taking into account 
(1.1.22) in relation (1.1.21), one obtains 

1 1 2 2 1 1 2 2m m m m� � �� ��� � �v v v v ; 
 

(1.1.26) 

that means that the momentum of the two homogeneous spheres of negligible 
dimensions remains constant during the phenomenon of collision. It is thus justified to 
consider the momentum to be a characteristic of mechanical motion, a measure of it. 
One can state also that relation (1.1.26) puts in evidence the capacity of a mechanical 
motion to be transformed into another mechanical motion. 

1.1.7 Mathematical modelling of discontinuous phenomena. Distributions. Stieltjes   
integral 

To study discontinuous phenomena together with continuous ones it is necessary to 
introduce the notion of distribution and Stieltjes integral in distributions; in fact, this 
mathematical modelling is the only one which allows a correct representation of the 
respective phenomenon. In this order of ideas, we will give some basic results and 
formulae to be used in what follows.  

We call functional a mapping of a vector space X  (with respect to 	 ) into 	 . If 	  
is the corpus of real numbers � , then we say that we have to do with a real functional. 
We call distribution a continuous linear functional defined on a topological vector space 
X  (fundamental space). 

By definition, the fundamental space K  is constituted of the functions of real 
variables ( )x�  ( � 1 2( , ,..., )nx x x x  represents a point in n� ), indefinite differentiable 
(of class C� ) and vanishing together with all their derivatives in the exterior of certain 
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bounded domains; these domains, together with their boundaries, determine the 
supports of these functions, called fundamental functions (by support of a function 

( )x�  we mean the smallest closed set which contains the set of points x  for which 
�( ) 0x� ). By an extension of the space K  we reach another class of functions, which 

determine the fundamental space S . The functions belonging to this class have also the 
property to be indefinite differentiable; for � �x  these functions tend to zero 
together with their derivatives of any order, more rapidly that any power of 1/ x . We 
introduce also the space mK , which includes the functions with compact support, 
having continuous derivatives up to and including the mth order (of class mC ). The 
distributions defined on spaces K , S  and mK  are called of infinite order, temperate 
and of finite order �p m , respectively. 

Let ( )f x  be a function defined on the real axis � ; we say that this function is 
absolutely integrable in a closed interval [ , ]a b  of � , if the integral  

( ) d
b

a
f x x � ��  

 

(1.1.27) 

exists. 
If the function ( )f x  is absolutely integrable in any finite interval of � , then we say 

that ( )f x  is a locally integrable function. We mention that an absolutely integrable 
function is also integrable, i.e. the integral 

( )d
b

a
f x x�  

 

(1.1.27') 

exists.  
Locally integrable functions generate an important class of distributions; we  assume  

thus that to any fundamental function ( )x K� �  there corresponds a real number 

� �, ( ) ( )d ( ) ( )d
b

a
f f x x x f x x x� � �� �� ��

, 
 

(1.1.28) 

where ( )f x  is a locally integrable function and [ , ]a b  is the support of ( )x� . It is easy 
to see that the functional thus defined is linear and continuous. The functional defined 
on space K  by means of the locally integrable function ( )f x  represents a distribution 
on this space, which will be denoted also by ( )f x , like the generating function. Such 
distributions are called regular distributions (distributions of function type).    
Analogously, one can define temperate regular distributions on space S .  

The distributions, which are not of function type, are called singular distributions. If 
to any function �( )x K�  we attach its value in the origin (the value (0)� ), then we 
see that the respective functional is linear and continuous, hence it is a distribution 
which is not regular; this is the Dirac distribution, which will be denoted by the symbol 
( )x
 . Symbolically, we write 
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� � �( ), ( ) (0)x x
 � � . 
 

(1.1.29) 

We can define the Dirac distribution also on the space 0K ; it will be called, in this case, 
the Dirac measure. 

If the fundamental functions � K�  are defined in n� , then we have 

� � �1 2 1 2( , ,..., ), ( , ,..., ) (0, 0,..., 0)n nx x x x x x
 � � . 
 

(1.1.29') 

The relation 

� � � �� � �0 0( ), ( ) ( ), ( )f x x x f x x x� � ,    �0, nx x � , 
 

(1.1.30) 

defines a translated distribution � 0( )f x x . In particular, for the Dirac distribution 
� 0( )x x
  we may write 

� �� �0 0( ), ( ) ( )x x x x
 � � ,    �0, nx x � . 
 

(1.1.30') 

For distributions subjected to a homothetic transformation with respect to the 
independent variable, we shall use – by definition – the formula 

� � � �� ���
1( ), ( ) ( ),nf x x f x x� � � �
�

,    � nx � . 
 

(1.1.31) 

For � �1�  we obtain the property of symmetry and we may write 

� � � �� � �( ), ( ) ( ), ( )f x x f x x� � ,    � nx � . 
 

(1.1.32) 

In particular, we observe that � �( ) ( )x x
 
 , hence the Dirac distribution is even with 
respect to the independent variable � nx � . 

The equality of two distributions ( )f x  and ( )g x  is defined by the relation 

� � � ��, ,f g� � ,    � � K� ; (1.1.33) 

hence, we may write 

�f g . (1.1.33') 

A distribution ( )f x  is equal to zero � �� 0f  if, for  any  fundamental  function  ( )x� , 
we have � � �( ), ( ) 0f x x� . If the distributions f  and g  are generated by continuous 
functions ( )f x  and ( )g x , then the equality (1.1.33') occurs in the usual sense, i.e. 
punctual, because – in this case – the distributions f  and g  coincide everywhere with 
the functions f  and g . If the functions f  and g  are locally integrable and coincide 
almost everywhere, then the distributions generated by them will be equal and relation 
(1.1.33') holds. 
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We define the Heaviside function (the unit function)  on the real axis in the form 
(Fig.1.9) 

����  ��!

0,  0,
( )

1,   0;

x
x

x
�  

 
(1.1.34) 

the distribution generated by it will be called the Heaviside distribution. If ( )f x  is a 
function of variable x , defined on the real axis, then we will call its positive part the 
function f+  defined by the relation (Fig.1.10,a) 

            
Figure 1.9.  The Heaviside function.      Figure 1.10.  The positive part of function ( )f x  (a) and 
                                                                                       of function ( )f x x=  (b). 

�

���� �  ��!

0,      0,
( ) ( ) ( )

( ),   0.

x
f x f x x

f x x
�  

 
(1.1.35) 

In particular, for the function �( )f x x  we can introduce the positive part (Fig.1.10,b) 

�

���� �  ��!

0,    0,
( )

,  0; 
x

x x x
x x

�  
 

(1.1.36) 

obviously, to these functions correspond certain distributions of function type. We 
introduce also the distribution generated by the  function �1( ) 1x , � �x �  
(Fig.1.11).  

                                         
         Figure 1.11.  The function 1( ) 1x = .           Figure 1.12.  The characteristic function. 

The characteristic function corresponding to the interval �[ , ]a a  is defined in the form 
(Fig.1.12) 
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����  ��!

0,  ,
( )

1,   ,

x a
h x

x a
     � 0a , 

 
(1.1.37) 

being thus led to a distribution of function type; this distribution may be expressed also 
by the Heaviside distribution 

� � � � � �( ) ( ) ( ) ( )h x x a x a a x� � � ,    �x � . 
 

(1.1.37') 

If ( )x�  is a function of class C� , then we can write the equality  

�( ) ( ) (0) ( )x x x� 
 � 
 ; (1.1.38) 

in particular, for �( ) nx x� , we obtain 

�( ) 0nx x
 , 
 

(1.1.39) 

so that the product of a distribution by a function indefinite differentiable may be equal 
to zero, even if no one of its factors vanishes. Analogously, 

� � �( ) ( ) ( ) ( )x x a a x a� 
 � 
 . 
 

(1.1.38') 
 

We mention also the decomposition formula of a distribution   

� � " #� � � � �2 2 1 ( ) ( )
2

x a x a x a
x


 
 
 ,     � 0a ; 
 

(1.1.40) 

using formula (1.1.38'), we may write 

� �� � � � �2 2( ) ( ) 2x a x a a x a
 
 
 ,     � 0a . (1.1.40') 

We also have 

" #� � � � � � �( ) ( ) ( )( )x a x b a b x a x b
 
 
 . 
 

(1.1.41) 

In 2�  we obtain 

� � � � � �"� � � � � � � �2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2

1 2

1, , ,
4

x a x a x a x a x a x a
a a


 
 
  

� � � � #� � � � � �1 1 2 2 1 1 2 2, ,x a x a x a x a
 
 ,    �, 0a b . (1.1.42) 

We mention also formula (in 3� ) 

� � � �$ %� � � � � � �& '
22 0 0 0 0 0 0

1 1 1 2 2 3 3 1 1 2 2 3 32 , , , ,x x x x x x x x x x x x x
 
  

� �� � � �0 0 0
1 1 2 2 3 3, ,x x x x x x
 . (1.1.43) 
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We call support of the distribution f  ( supp f ) the complement of the union of open 
sets on which this distribution vanishes; therefore, the support of a distribution is a 
closed set. If the support of a distribution is contained in a set A , then we say that the 
distribution is concentrated on the set A . Thus, we may say that the Dirac distribution 
( )x
  is concentrated at a point (the origin). Analogously, one can define distributions 

concentrated on curves or surfaces, in general distributions concentrated on a manifold 
of a space n� . 

 
Figure 1.13.  A 
 representative sequence. 

We say that a sequence of functions � �1 2, ,...,n mf x x x  is a 
 representative 
sequence if, in the sense of the topology of K �  (K �  is the topological dual of K , 
containing the distributions defined on  this  fundamental  space) we  have (in Fig.1.13 
is given a 
  representative sequence for � 1m ) 

� � � �
��

�1 2 1 2lim , ,..., , ,...,n m m
n
f x x x x x x
 ; 

 

(1.1.44) 

obviously, this condition is equivalent to  

� � � �� � � �
��

�1 2 1 2lim , ,..., , , ,..., 0, 0,..., 0n m m
n

f x x x x x x� � . 
 

(1.1.44') 

From the very beginning, we mention that the distributions admit derivatives of any 
order, which is a great advantage with respect to usual functions. Let ( )f x  be a 
function of class 1C  and ( )x�  a fundamental function belonging to the fundamental 
space K ; considering the corresponding distribution of function type, we obtain the 
rule of differentiation in the form 

� � � �, ,f f� �� �� � . 
 

(1.1.45) 

In particular, we have 

( ) ( )x x� 
� � . 
 

(1.1.46) 
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In case of a distribution of several variables � �1 2, ,..., nf x x x , we can write 

� � � �(� �
	 
(� �1 2 1 2, ,..., , , ,...,n n

i
f x x x x x x

x
�  

� � � �(� �� � 	 
(� �1 2 1 2, ,..., , , ,...,n n
i

f x x x x x x
x
� ,     � 1,2,...,i n ; 

 
(1.1.47) 

one obtains also the property 

( (
�

( ( ( (

2 2

i j j i

f f
x x x x

,     �, 1,2,...,i j n , 
 

(1.1.48) 

which shows that, in case of distributions, the derivatives do not depend on the order of 
differentiation.  

Let ( )f x  be a function of class 1C  everywhere, excepting at the point 0x , where the 
function has a discontinuity of the first species, the corresponding jump being given by 

� � � �0 0 0( 0) ( 0)s f x f x . 
 

(1.1.49) 

We denote by ( )f x�  the derivative of the distribution ( )f x  (in the sense of the theory 
of distributions) and by ( )f x��  the distribution corresponding to the derivative of the 
function, which generated the distribution, in the usual sense, wherever this derivative 
exists; we obtain the relation 

0 0( ) ( ) ( )f x f x s x x
� �� � �� . 
 

(1.1.50) 

It is worth to note that if the function ( )f x  is continuous at the point 0x , then the jump 
0s  vanishes, and formula (1.1.50) becomes 

( ) ( )f x f x� �� � ; 
 

(1.1.50') 

i.e., the derivative in the sense of the theory of distributions coincides with the 
derivative in the usual sense.  

If the function ( )f x  is of class 1C  everywhere excepting the points ix , 
� 1,2,...,i n ,  where it has discontinuities of the first species and if we denote by is  

the jump of the function at the point ix , then, by a similar procedure, we obtain a more 
general formula, namely 

1
( ) ( ) ( )

n

i i
i

f x f x s x x

�

� �� � �� . 
 

(1.1.51) 

A last property, which is worth to be revealed, is the following: If the derivative of a 
distribution is equal to zero, then the distribution is a constant. 
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Let ( )f x  be a continuous function on [ , ]a b , and ( )g x  a function with an integrable 
derivative on the same interval; one can show that, in this case, the Stieltjes integral 

( )d ( )
b

a
f x g x�  exists, its computation being reduced to the computation of a Riemann 

integral 

'  ( ) ( )d ( ) ( ) ( ) ( )d
b b

a a
S f x g x R f x g x x�� � . 

 

(1.1.52) 

It is important to mention that, in general, the symbol d ( )g x  which appears in the 
Stieltjes integral does not represent the differential of the function ( )g x ; the fact that the 
function ( )g x  has an integrable derivative in the conditions mentioned above allows us 
to admit that d ( )g x  is the differential of ( )g x  in the formula (1.1.52), hence one can 
pass easily from the Stieltjes integral to the Riemann one. If ( )f x  and ( )g x  are 
distributions and the Stieltjes integral does exist, then the symbol d ( )g x  can be also 
considered as a differential in the sense of the theory of distributions; in this case, if 

( )f x  is a continuous function on [ , ]a b , excepting a finite number of points 
0 1 2 ... ma c c c c b� � � � � � , where there are discontinuities of the first species, 

then there exists the Stieltjes integral and the relation  

" #  ( ) ( )d ( ) ( ) ( ) ( )d ( ) ( 0) ( )
b b

a a
S f x g x R f x g x x f a g a g a�� � � �� �  

" # " #
�

�
� � � � � � �

1

1
( ) ( 0) ( 0) ( ) ( ) ( 0)

m

k k k
k
f c g c g c f b g b g b  

 
(1.1.53) 

holds. 
Analogously, if 1 2( , )f x x  is a continuous function in a two-dimensional interval   

and if the function 1 2( , )g x x  is a non-decreasing function with respect to each variable 
and has the property 

) � � � � � � �2 1 2 1 1 2 2 1 1 2 1 2 2( , ) ( , ) ( , ) ( , )g x x g x h x h g x h x g x x h  

1 2( , ) 0g x x� � ,     � �1 2, 0h h , (1.1.54) 

then the double Stieltjes integral 1 2 2 1 2( , )D ( , )f x x g x x
��  exists. If the function 

1 2( , )g x x  admits second order continuous partial derivatives, then the computation of 
the double Stieltjes integral reduces to the computation of a double Riemann integral 

  1 2 2 1 2 1 2( ) ( , )D ( , ) ( ) ( , )S f x x g x x R f x x
 

��� �� ��1 2 1 2 1 2( , )d dx xg x x x x ; 
 

(1.1.55) 

this  result   remains   valid   if,  instead   of   the   continuity  of   the  mixed  derivative 
��1 2 1 2( , )x xg x x , its integrability only is asked. On the basis of this theorem, one can pass 

from the double Stieltjes integral to the double Riemann integral directly if, instead of 
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the symbol 2 1 2D ( , )g x x  one considers the expression ��1 2 1 2 1 2( , )d dx xg x x x x . In fact, the 
symbol 2 1 2D ( , )g x x  represents a differential operator specific to the double Stieltjes 
integral, which is nothing else than the two-dimensional differential of the function 

1 2( , )g x x ; we mention also that ��1 2 1 2( , )x xg x x  represents the two-dimensional 
derivative of this function. We can write 

��� 1 22 1 2 1 2 1 2D ( , ) ( , )d dx xg x x g x x x x . 
 

(1.1.56) 

If the function 1 2( , )f x x  defined on   is continuous, then we have  

 
0 0 0 0

1 2 2 1 1 2 2 1 2( ) ( , )D ( , ) ( , )S f x x x x x x f x x


� � � ��� . 
 

(1.1.57) 

Let be the function 1 2( , )g x x  of the form 

� �
�

� � � � ( ) ( )
1 2 1 2 1 21 2

1
( , ) ( , ) ,

n
k k

k
k

g x x g x x g x x x x�� , 
 

(1.1.58) 

where kg  are constants and 1 2( , )g x x�  is the continuous part of the function 1 2( , )g x x  
on ) ; taking into account the relations (1.1.55), (1.1.57) as well as the property of 
additivity of the Stieltjes integral, we get  

  1 2 2 1 2 1 2( ) ( , )D ( , ) ( ) ( , )S f x x g x x R f x x
 

��� �� 1 2 1 2 1 2( , )d dx xg x x x x���  

� �
�

� ( ) ( )
1 2

1
,

n
k k

k
k
g f x x . 

 
(1.1.59) 

We may write also the relation 

� �
�

� � � � ( ) ( )
2 1 2 2 1 2 2 1 21 2

1
D ( , ) D ( , ) D ,

n
k k

k
k

g x x g x x g x x x x��  (1.1.60) 

or the relation 

� � � � �
�

� � ) � � ( ) ( )
22 1 2 1 2 1 2 1 21 2

1
D ( , ) D ( , ) , d d

n
k k

k
k

g x x g x x g x x x x x x
 , 
 

(1.1.61) 

where 2 1 2D ( , )g x x  and �2 1 2D ( , )g x x  represent the  two-dimensional  differentials  in  
the sense of the theory of distributions and in the usual sense, respectively, while 

� � � � � �( ) ( ) ( ) ( )
1 2 1 20, 0 0, 0k k k k

kg g x x g x x) � � � � � �
 

� � � �( ) ( ) ( ) ( )
1 2 1 20, 0 0, 0k k k kg x x g x x� � � � � �  

 
 

(1.1.61') 
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is the two-dimensional jump of the function 1 2( , )g x x  at the point of discontinuity 

� �( ) ( )
1 2,k kx x , � 1,2,...,k n . 
Let 1 2 3( , , )g x x x  be a non-decreasing function with respect to each variable, defined 

on a three-dimensional interval  , and which verifies the inequality 

� � � � � �) � � � � � � �3 1 2 3 1 1 2 2 3 3 1 2 2 3 3, , , , , ,g x x x g x h x h x h g x x h x h  
� � � � � �� � � � � � � �1 1 2 3 3 1 1 2 2 3 1 1 2 3, , , , , ,g x h x x h g x h x h x g x h x x  

� � � � � �� � � � � �1 2 2 3 1 2 3 3 1 2 3, , , , , , 0g x x h x g x x x h g x x x ,  � �1 2 3, , 0h h h ; 
 (1.1.62) 

if 1 2 3( , , )f x x x  is a continuous function on  , then the triple Stieltjes integral 
� � � ���� 1 2 3 3 1 2 3, , D , ,f x x x g x x x


 does exist. If the function 1 2 3( , , )g x x x  admits 

continuous partial derivatives of third order, then the triple Stieltjes integral is reduced 
to a triple Riemann integral 

� � � � 1 2 3 3 1 2 3( ) , , D , ,S f x x x g x x x
���   

� � 1 2 3( ) , ,R f x x x


� ��� � ����1 2 3 1 2 3 1 2 3, , d d dx x xg x x x x x x . 
 

(1.1.63) 

Hence, in the above-mentioned conditions, one may pass directly from the Stieltjes 
integral to the Riemann one, admitting the relation 

� � � ����� 1 2 33 1 2 3 1 2 3 1 2 3D , , , , d d dx x xg x x x g x x x x x x ; 
 

(1.1.64) 

� �3 1 2 3D , ,g x x x  represents here the three-dimensional differential of the function 
� �1 2 3, ,g x x x , while � ����1 2 3 1 2 3, ,x x xg x x x  is the three-dimensional derivative of this 

function. As in the case of the one- or two-dimensional Stieltjes integral, if 
� �1 2 3, ,f x x x  and � �1 2 3, ,g x x x  are distributions for which the product � �1 2 3, ,f x x x  

� �� 3 1 2 3D , ,g x x x  makes sense, then this interpretation is always possible. Introducing 
the Heaviside function, one can show that  

� � � � � � 
0 0 0 0 0 0

1 2 3 3 1 1 2 2 3 3 1 2 3( ) , , D , , , ,S f x x x x x x x x x f x x x


� � � � ���� , 
 

(1.1.65) 

where � �1 2 3, ,f x x x  is a continuous function on  . Let be now the function 

� � � � � �
�

� � � � � ( ) ( ) ( )
1 2 3 1 2 3 1 2 31 2 3

1
, , , , , ,

n
k k k

k
k

g x x x g x x x g x x x x x x�� , 
 

(1.1.66) 

where kg  are constants, while � �1 2 3, ,g x x x�  is the continuous part of this function; one 
may show that 
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� � � � 1 2 3 3 1 2 3( ) , , D , ,S f x x x g x x x
���   

� � 1 2 3( ) , ,R f x x x


� ��� � ����1 2 3 1 2 3 1 2 3, , d d dx x xg x x x x x x � �
�

� ( ) ( ) ( )
1 2 3

1
, ,

n
k k k

k
k
g f x x x . 

 (1.1.67) 
It results 

� � � � � �
�

� � � � � ( ) ( ) ( )
3 1 2 3 3 1 2 3 3 1 2 31 2 3

1
D , , D , , D , ,

n
k k k

k
k

g x x x g x x x g x x x x x x�� ; 

 (1.1.68) 
we can also write 

� � � � �� 33 1 2 3 1 2 3D , , D , ,g x x x g x x x   

� � � �
�

� ) � � � ( ) ( ) ( )
1 2 3 1 2 31 2 3

1
, , d d d

n
k k k

k
k

g x x x x x x x x x
 , 
 

(1.1.69) 

where we have put in evidence the three-dimensional differentials in the sense of the 
theory of distributions and in the usual sense, respectively, as well as the three-
dimensional jumps ( )) kg  of the function � �1 2 3, ,g x x x  at the points of discontinuity 

� �( ) ( )
1 2

( )
3, ,k k kx x x , � 1,2,...,k n . 

1.1.8 Mechanical systems 
The mathematical models of bodies have frequently ideal characteristics; one may 

thus consider material points (without dimension), material lines (one-dimensional 
manifolds), or material surfaces (two-dimensional manifolds) in the space 3E . For 
example, a body whose dimensions are negligible with respect to the dimensions which 
appear in the considered problem (a planet with respect to the dimensions of the solar 
system, an electron with respect to the dimensions of the atom, or the homogeneous 
spheres considered in Subsec. 1.1.6) and for which the motion of rotation is immaterial 
admits as mathematical model a material point; the mechanical materialization of the 
abstract concept of material point is called also particle, denomination which we will 
use pre-eminently above all in what follows. 

Hence, a particle (material point) is a geometric point to which we attach a finite 
mass � 0m . The mass of this point is indivisible, as well as its support. 

Frequently, a thread can be considered to be a material line (a one-dimensional 
continuous medium); a membrane will also be modelled by a material surface (a two-
dimensional continuous medium). The material line and the material surface represent a 
geometric line and a geometric surface, respectively, to which we attach a positive mass 
that may depend on one variable or on two variables, respectively. 

In general, a continuous medium (a continuous material) will be a mathematical 
model of a body, formed by a domain (one-, two- or three-dimensional) to which we 
attach a positive mass (which can depend on one, two or three variables); all the 
quantities in connection with such a medium will be represented by continuous 
functions. The particle is a limit case of a continuous medium (the case in which the 
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domain is reduced to a geometric point). In a computation, it is customary to refer to a 
point of a continuous medium, but this one is not a particle and has not a finite mass. 

By a mechanical system S  we mean a set of bodies, modelled as continuous media 
or as particles; hence, a mechanical system is formed, in the most general case, by a 
finite number of continuous media and a finite number of particles. Usually, we will 
consider discrete mechanical systems of particles (formed by a finite number of 
particles) or continuous mechanical systems. The main mechanical results which are 
obtained for a mechanical system have the same form either the system is discrete or 
continuous; hence, the demonstrations which we will give, as well as the computations 
we will make will refer to any mechanical systems. Various particular results will be put 
in evidence if they have a certain importance. In general, a mechanical system is in 
mechanical interaction with other mechanical systems; otherwise, we have to do with an 
isolated mechanical system. 

Let �  be the geometric support of a mechanical system S ; in case of a discrete 
system of particles, this support will be formed by a finite number of geometric points, 
while in the case of a continuous mechanical system this support will be a domain in 
which the body is immersed. Taking into account the property of additivity (1.1.25) and 
the definition of the integral, we may express the total mass (usually we will say only 
mass) of the mechanical system in the form 

dM m
�

� � ; 
 

(1.1.70) 

the integral is a Stieltjes integral and the mass � r( )m m  is a distribution.  
Differentiating in the sense of the theory of distributions, the unit mass (the mass of a 

unite volume, the density) is given by relation 

�d dm V� , (1.1.71) 

where the element of volume to  which  the  corresponding  mass  is  related  can  be  an  

 
Figure 1.14.  Element of volume. 

element of line or of area; as well,  dm   may  be  the  three-,  two-  or  one-dimensional 
differential considered in the previous subsection. In general (Fig.1.14) 

� � � �� � r; ;P t t� � � , (1.1.71') 

where the variation in time of the density is also put in evidence.  Returning  to  formula  
(1.1.51), we may write 
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� � �
�

� � �r r r r
1

( ) ( )
n

i i
i
m� � 
 , 

 
(1.1.71'') 

where the sign “tilde” corresponds to the differentiation in the usual  sense, ��   is  the  
density corresponding to a continuous system, im  are the masses of n  particles of 
position vectors ir , � 1,2,...,i n , while 
  is the Dirac distribution. 

The density of a particle of mass m  and position vector 0r  is thus given by 

� �� �r r r0( ) m� 
 ; (1.1.72) 

in the case of a discrete mechanical system we have 

� �
�

� �r r r
1

( )
n

i i
i
m� 
 , 

 
(1.1.72') 

while for a continuous mechanical system we obtain 

� �r d( )
d
m
V

� . 
 

(1.1.72'') 

The function �r( ) 0�  is continuous at least partially; in general, if no confusion is 
possible, then we omit the sign tilde. Obviously, we can introduce also the notion of 
mean density 

)
�

)
rmean ( ) m

V
� , 

 

(1.1.72''') 

where )m  is the mass of a finite volume element )V  (Fig.1.14); there results 

) �
�r rmean

0
( ) lim ( )

V
� � . 

 

(1.1.72iv) 

The mass is given by  

dM V
�
�� �  

 

(1.1.73) 

for an arbitrary mechanical system, the integral being a Stieltjes integral; in case of a 
discrete mechanical system, we have 

�
� 

1

n

i
i

M m , 
 

(1.1.73') 

while for a continuous mechanical system we may write 

( )d
V

M V�� � r , 
 

(1.1.73'') 
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the integral being a Riemann integral �� ��� � . 
In this last case, the density varies from one point to another one, and the  continuous  

mechanical system is non-homogeneous; in the case in  which the density �  is the same 
for all the points of the continuous medium, this one is homogeneous (besides, in this 
case all its mechanical and physical properties are the same in any points) and we may 
write 

�M V� . (1.1.73''') 

We remark that, in general, the results obtained for a discrete mechanical system may 
be enounced also for a continuous mechanical system by replacing the sign   by the 
sign � . Thus, two types of mathematical models of mechanics have been put in 
evidence, i.e. the discrete model and the continuous model. We mention that one can 
construct also other more sophisticated mathematical models, for example quasi-
continuous models (continuous models which take in consideration the discrete 
structure of matter); the above general considerations remain valid also in this case. One 
can study also mathematical models which start from the discrete character of material 
bodies; with the aid of a sufficient great number of particles, they introduce statistical 
methods of computation, using aleatory variables. 

1.1.9 The principle of mass conservation 
The geometric support of a continuous mechanical system can vary in time 

� �� ( )V V t . The formula (1.1.73'') is of the form 

� �1 2 3( )
, , ; d

V t
M x x x t V�� � , 

 

(1.1.74) 

where � ( )j jx x t , � 1,2, 3j , and � 1 2 3d d d dV x x x . By a change of variables of the 
form 

� �� 0 0 0
1 2 3, , ;i ix x x x x t ,    � 1,2, 3i , 

 

(1.1.75) 

the Jacobian J  of the transformation being different from zero 

� �
� �

1 2 3
0 0 0 0
1 2 3

, ,
det det 0

, ,
i

j

x x x x
J

x x x x
$ % $ %( (

� � �* + * +( (& '& '
, 

 
(1.1.75') 

it follows that 

0
0d

V
M J V�� � , 

 

(1.1.74') 

where �0
0( )j jx x t , � 1,2, 3j , �0 0( )V V t , � 0 0 0

0 1 2 3d d d dV x x x  correspond to the 
initial moment 0t . If we write the formula (1.1.74) for � 0t t , and if we take into 
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account (1.1.74'), admitting that the function under the integral sign  is  continuous and 
choosing the domain 0V  arbitrarily, then the principle of mass conservation leads to 

� 0J� � , (1.1.76) 

where � ( )t� �  and �0 0( )t� � . This is d’Alembert’s condition  of  mass continuity. 
One observes from (1.1.76) that �  is a relative scalar, i.e. a scalar density, the 
denomination given to such a quantity being thus justified.  

If at any moment we have a relation of the form � 1J  or � 0� � , then the motion 
is incompressible (or the body is incompressible).  

One may also put the condition of mass conservation (invariance), equating to zero 
the derivative of the mass (1.1.74') with respect to time; one obtains 

� � � �
0 0

0 0
dd d d

d d
d d d dV V

M J
J V J V

t t t t
�� �� � �� � . 

We notice that we may write (see Chap. 2, Subsec. 1.2.3) 

$ % $ %( ((
� �* + * +(( (& ' & '

0 0
d d
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d d
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j j
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0 0 0
1
6

ji k
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0 0 0 0 0 0 0 0 0
1
6
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ijk lmn
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x x x x x x x x x

( ( (( ( (( ( (� �
� � � � �	 
( ( ( ( ( ( ( ( (� �

, 

where we used the formula (2.1.36''), corresponding to the development of a 
determinant; if we interchange indices i  and j  and indices l  and m  with each other, 
respectively, in the second sum, and indices i  and k , and indices l  and m  with each 
other, respectively, in the third sum, and if we take into consideration the properties of 
Ricci’s tensor, then we obtain 

0 0 0 0 0 0
d 1 1
d 2 2

j p ji k i k
ijk lmn ijk lmn

pm n m nl l

x xx xxv vJ
t xx x x x x x

( (( ((( (
� � � � � �

(( ( ( ( ( (
, 

where we expressed the components of the velocity of a point of the mechanical system 
as functions of the co-ordinates jx , � 1,2, 3j . Taking now into account the relation 
(2.1.37'), it follows that 

( (
� �
( (

d
d

i i
ip

p i

v vJ J J
t x x


 , 

where we have introduced the velocity components of a point of the mechanical system 
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(
� � �

(
d
d
j j

j j
x x

v x
t t

� ,    � 1,2, 3j ; 
 

(1.1.77) 

we obtain thus Euler’s formula (here and in what follows, see App., §2) 

� vd div
d
J J
t

, (1.1.78) 

which is verified in any point of a continuous mechanical system and by any particle in 
motion; this relation may be written also in the form 

� vd ln div
d

J
t

. 
 

(1.1.78') 

Returning to the derivative of the mass M  with respect to time, which we equate to 
zero, we can write 

� �
0

0
dd

div  d 0
d dV

M
J V

t t
� �� � �� v , 

 

where the volume 0V  is arbitrary. If the function under the integral sign is continuous, 
then we may write the condition of mass continuity in Euler’s form 

� �vd
div 0

dt
� � . 

 
(1.1.79) 

Observing that   

( (
� � � � � �

( (
r vd dgrad grad

d dt t t t
� � �� � , 

 

� � � � �v v vdiv div grad� � � ,  

we obtain the condition (1.1.79) also in the form 

� �
(

� �
(

vdiv 0
t
� � . 

 
(1.1.79') 

If the density is constant at any time, we obtain 

�vdiv 0 , (1.1.78'') 

hence, the field of velocities is  solenoidal  (the  velocities  form  a  field  of  curls).  The 
relation (1.1.79) can be expressed also in the form 

� �vd ln div 0
dt

� . 
 

(1.1.79'') 
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The relations (1.1.78') and (1.1.79'') lead to 

� � �
d ln 0
d

J
t

� ; 
 

hence, the product J�  is constant at any moment, being equal to 0�  (corresponding to 
the initial state). We return thus to the condition of mass continuity given by 
d’Alembert. The forms in which the principle of mass conservation may be expressed 
are thus obtained.  

The transformation relation (1.1.75) puts in evidence the position vector 
� �r 0 0 0

0 1 2 3, ,x x x , corresponding to the initial position � 0t t , and the position vector 
� �r 1 2 3, ,x x x , corresponding to the actual position (an arbitrary moment t ); this 

relation may be written in the vector form 

� ��r r r0 ;t . (1.1.75'') 

If the continuous mechanical system S  is immersed into the domain D  of the volume 
V  in the actual state, then we admit that one may pass continuously from 0D  to D , by 
means of the geometric transformation (1.1.75); we admit also that the inverses of these 
functions 

� ��0 0
1 2 3, ,i ix x x x x ,   � 1,2, 3i , (1.1.75''') 

are univocally determined (in particular, � �0 0 0 0
01 2 3, , ;i ix x x x x t� ). The functions 

(1.1.75''') are univocally determined, at least in a neighbourhood of the considered point, 
if and only if the functions (1.1.75) are of class 1( )C D  and the Jacobian (1.1.75') does 
not vanish in this domain. This hypothesis is known as the continuity axiom, which 
expresses the indestructibility of matter. A domain to which corresponds a finite 
positive volume cannot be transformed in a domain of zero or infinite volume; this 
implies also the impenetrability of matter. The motion (1.1.75) or (1.1.75''') transforms 
each domain in a domain, each surface in a surface and each curve in a curve. We admit 
that the domain 0D  is limited by a sufficiently regular surface 0S , which verifies, for 
instance, conditions of the Lyapunov type. The equations (1.1.75) lead to the surface S , 
which is the frontier of the domain D  and the image of 0S  by this transformation; this 
surface also verifies conditions of Lyapunov’s type. 

We admit that the variables 0
ix , � 1,2, 3i , corresponding to the domain 0D  (in the 

initial state), are independent variables, and call them Lagrange co-ordinates (or 
material co-ordinates); this denomination was given because, in the phenomenon to 
study, a point of the continuous mechanical system is followed in its motion. They are 
referential co-ordinates; indeed, they give the position of the point with respect to the 
initial state, considered as a frame of reference. In such a formulation, the co-ordinates 
of the domain D  (the material continuum in the actual state) are the unknown functions 
of the problem, which must be determined. As well, we may consider variables ix , 
� 1,2, 3i , as  independent  variables,  calling  them  Euler  co-ordinates (or  spatial 
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co-ordinates); one has given this denomination because, at a point in space, there are 
observed points of the continuous mechanical system which pass through this spatial 
position in their motion. The unknown functions can be, for instance, the components of 
the velocity at this point. 

1.1.10 Classification of bodies 
We have seen at Subsec. 1.1.8 that bodies can be modelled as mechanical systems 

(discrete or continuous). In the case in which the mutual distances of all pairs of points 
of a mechanical system remain invariant in time, we say that we have to do with a non-
deformable mechanical system (in particular, a rigid solid, which is a non-deformable 
continuous medium); otherwise, we have to do with a deformable mechanical system (in 
particular, a deformable continuous medium). 

The deformable continuous media may be deformable solids (which change little 
their form under external loads, for instance under the action of forces) or fluids (which 
change very much their form, taking the form of the surrounding bodies, under the 
action of external loads). The fluids may be liquids (which change little their volume) or 
gases (which change very much their volume, being expansive). The boundaries of 
these classical types of continuous deformable media cannot be perfectly settled (as one 
could expect from the definitions given above), because there exist media which have 
simultaneously, for instance, properties of a solid body as well as properties of a liquid 
one (in the same physical conditions). 

 
Figure 1.15.  Curved bar (a). Thin walled bar (b). Thread (c). 

In what concerns  the  deformable  solids, one  can  put  in  evidence  the  properties  
of elasticity (if the causes which have led to the deformation of the solid cease their 
action, then this one returns to its initial form; the deformation is reversible), plasticity 
(if, after moving off the causes which have led to the phenomenon of deformation, one 
obtains a permanent deformation) and viscosity (variation of the deformation as a 
function of time); we mention thus elastic solids, elastoplastic solids, viscoelastic solids, 
elastoviscoplastic solids a.s.o. The fluids can have also properties of elasticity and 
viscosity, justifying thus the affirmation made above concerning bodies which can have 
simultaneously properties corresponding to the two states of aggregation.  

We mention also that a fourth state of aggregation of matter has been put in evidence:  
the   plasma.  This  is   a  state  of   the  matter  at   high   temperature;   it   is   piecewise  
electroconductive and in average neutral. Matter is thus a mixture of particles (some of 
them have a positive or negative electric charge, and other ones are neutral), which are 
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directed along the force lines of a magnetic field. The plasma is thus a deformable and 
electroconductive continuous (or discrete)  medium  (for  instance,  a  gas  piecewise  or  
totally ionized).             

If the body does not change its volume during the motion, then we say that it is 
incompressible; this is an approximation of the physical reality. In general, the bodies 
are compressible. We make now a classification (a modelling) of the deformable solids 
according to their dimensions. 

Thus, the bodies which have a dimension (the length) much more longer than the 
other two dimensions (corresponding to the cross section) are called bars. We will give 
a constructive definition of this notion. Let be a curve 	  (the axis of the bar) of finite 
length l . In the plane normal to 	  at the point �P 	 , let us consider a closed curve 
C , bounding a plane domain D  (the cross section of the bar); we suppose that the 
centre of gravity of the domain D  is at the point P . If the point P  describes the curve 
	 , then the curve C , which may be deformable, generates a surface, the boundary of a 
three-dimensional domain, support of a body called bar (Fig.1.15,a). Corresponding to 
its axis, a bar may be straight or curved; the last one can be a three-dimensional curved 
bar or a plane curved bar. The two (mean) dimensions a  and b  of the cross-section are 
considered of the same order of magnitude, with the condition ,a b l� . If all three 
dimensions are of different order of magnitude � �a b l� � , we have to do with thin 
walled bars (Fig.1.15,b). Finally, if the two dimensions of the cross-section are 
completely negligible with respect to the length of the bar, so that this one be perfectly 
flexible and torsionable (without opposition to bending or torsion), then we obtain a 
thread (Fig.1.15,c). 

 
Figure 1.16.  Plate (a). Thin plate (b). Plate of mean thickness (or thick plate) (c). Membrane (d). 

The body, a dimension (the thickness) of which is much smaller than the other two 
dimensions (corresponding to the middle surface) is called a plate. Let be given an 
arbitrary surface S  (the middle surface of the plate) of finite area. Along the normal to 
S  at a point �P S , let us consider a segment of length h  (the thickness of the plate), 
the middle of which is on S , at the same point P . If the point P  describes the surface 
S , then the extremities of this segment, which may be of variable length, generate two 
surfaces, boundary of a three-dimensional domain, support of  a  body  called  plate  
(Fig.1.16,a). Corresponding to the form of the middle surface, the plates may be plane 
(denominated simply plates) or curved (denominated shells). The ratio between the 
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(mean) dimensions a  and b  of the middle surface and the thickness h  of the plate 
leads to:  thin plates  (for ,h a b� ) (Fig.1.16,b),  plates  of  mean  thickness  and  thick  

 
Figure 1.17.  Block. 

plates (for which � ,h a b ) (Fig.1.16,c). We observe that one cannot make a very  good 
delimitation between these categories of plates; they depend on the possibilities of 
computation of the states of stress and strain, and can be different from case to case. 
Finally, if the thickness h  is completely negligible with respect to the other two 
dimensions, so that the plate is perfect flexible, then we obtain a membrane (Fig.1.16,d). 

The bodies for which all three dimensions a , b  and c  are of the same order of 
magnitude are called blocks (Fig.1.17). 

Generally, the real bodies have as supports finite three-dimensional domains. But we 
will consider also infinite domains, the study of which present a special interest; indeed, 
such domains are ideal models for real cases which one may often encounter in practice 
or may be used as intermediary steps in solving problems for other domains. 

1.1.11 Force. Field. Classification and representation of forces. Internal forces 
Another element appearing in the mathematical modelling of a mechanical 

phenomenon is the cause which yields the mechanical motion, being mentioned in 
previous subsections. From a mechanical point of view, bodies are acting one on the 
other and often it is difficult to put in evidence the physical nature of such an action; in 
general, it received the name of force. This denomination, resulting from the action of 
the human being on the external world, gets a special meaning in mechanics; it is a 
measure for the transmission of motion. The origin of forces is not always of 
mechanical nature, but the goal of mechanics is not to determine their nature; mechanics 
admits that forces are given. 

Taking into account the property of inertia of a material point, its natural state is the 
state of rest or uniform rectilinear motion; the force is the cause which is changing this 
state. It appears thus the connection between the force and the variation of the velocity 
(or of the momentum). We have seen in Subsec. 1.1.6 that the momentum is a measure 
of the mechanical motion, remaining constant if the mechanical system is not acted 
upon by another mechanical system (e.g., the case represented by relation (1.1.26)); if 
the mechanical system is subjected to such an action, then appears a variation of the 
momentum, hence a variation of the velocity (an acceleration). Thus, the force F  
applied to a point of the mechanical system is a vector quantity (as well as the variation 
of the momentum to which it  corresponds). From  the  experiments, it  follows  that – in 
the most general case – the force may be modelled by a bound vector of the form 
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� ��F F r v; ;t , (1.1.80) 

where r  is the position vector of the point of application (belonging to the mechanical 
system), while v  is its velocity; in components, we have 

� �� 1 2 3 1 2 3, , , , , ,;i iF F x x x v v v t ,    � 1,2, 3i . (1.1.80') 

The force corresponds to the interaction of bodies and is emphasized in various 
manners; thus, we distinguish between contact actions and actions at distance. The 
action of a homogeneous sphere, which is in collision with another homogeneous sphere 
(case considered in Subsec. 1.1.6), is a contact action. The force by which the Earth acts 
upon material bodies, in such a way that they fall on it, represents an action at distance. 

Such an action at distance is called a field. In general, a field is a domain D  of the 
space, which constitutes a zone of influence of a mechanical system S  or of a certain 
mechanical phenomenon; in the presence of S , the domain D  acquires a special state, 
so that the evolution of any other mechanical system, which has properties permitting to 
be influenced by D  and passing through D , is changed. For instance, by its property 
of mass or of electrical charge, a body generates a gravitational or an electric field, 
respectively; any other body, which passes through such a field, is influenced in its 
motion. In a continuous model of mechanics, the action of such a field upon a 
mechanical system is characterized by a force; it is supposed that this action is 
instantaneously propagated (otherwise, one must introduce a factor of delay in the 
mathematical modelling of the phenomenon). So, we do not introduce in computation 
the real action, which took place with a time lag. In a non-classical model, the 
hypothesis of propagation step by step is used; indeed, the experience shows that no 
action is propagated instantaneously. In fact, the hypothesis of the instantaneous 
propagation corresponds to the hypothesis of the universal (absolute) time. 

Modelling the force by a bound vector (1.1.80) (it is characterized by direction, 
intensity (modulus) and point of application, properties corresponding to an intrinsic 
definition of such a mathematical entity), this one will enjoy all the properties of bound 
vectors (for instance, the summation of vectors). So, the action of two forces applied at 
a point of the mechanical system S  can be replaced by the action of only one force 
applied at the same point, along the diagonal of the parallelogram formed by the 
mentioned forces; the reciprocal of this affirmation is, obviously, true: the action of a 
force at a point can be replaced by the action, at the very same point, of two forces 
representing the sides of the parallelogram, the diagonal of which is the given force. 

Attaching to each point (of position vector r ) of a domain D  a vector F , at any 
moment, we obtain a field of forces of the form (1.1.80). If F  does not depend 
explicitly on t � �( ( � �F F 0/ t � , then the field of forces is called stationary. In fact, 
for any field and any mechanical phenomenon, which have this property, the same 
denomination is used. 

Because the forces are modelled by bound vectors, we may consider also systems of 
forces (discrete systems) in action upon a mechanical system (discrete or continuous), 
which will be modelled by systems of bound vectors; obviously, all the results obtained 
for these systems of vectors may be used for the corresponding systems of forces. Let 

, -� �F , 1,2,...,i i nF  be such a system of forces; it corresponds rigorously to a 
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discrete mechanical system. In the case of a continuous mechanical system, the support 
of which is the domain D , the system F  represents only an approximate modelling of 
the physical reality. If the subdomain . DD , to which the load is transmitted, has 
negligible dimensions with respect to the dimensions of the domain D , its localization 
can be punctual; in this case, the load is called concentrated (or punctual). If at least one 
of the dimensions of the subdomain D cannot be neglected, the load is called 
distributed (or continuous); one considers that it is transmitted continuously to the 
respective subdomain. We may thus define linear, superficial or volume loads, the 
intensity of which is proportional to the elements of line, area or volume, respectively. 
A distributed load constitutes a vector field, the geometric support of which is the 
subdomain to which the load is transmitted. 

The forces acting upon a mechanical system may be external forces, which can 
represent the action of other systems on the given one (eventually the action of systems 
of non-mechanical nature, e.g., temperature fields, electromagnetic fields, fields of 
radiation etc.), or internal forces, which represent the action of certain points of the 
given system upon other points of the same system (these forces can also be of non -
mechanical nature). Let be the points iP  and jP  of the given system; the force ijF  will 
represent the action of the point jP  upon the point iP , having the support i jPP  

( �Fij i jP P�
�����

, �  scalar). We introduce also the internal force jiF , defined analogously; 
these forces appear always as a pair  and  are  linked  axiomatically  by  the  relation 
(Fig.1.18) 

 
Figure 1.18.  Internal forces ij ji= �F F . 

� �F F 0ij ji . (1.1.81) 

1.1.12 Conservative forces 
Upon a mechanical system (discrete or continuous) can act a field of forces, which 

may be conservative or non-conservative. The conservative forces (which derive from a 
potential) are modelled by conservative vectors, expressed in the form 

� � / �F i,grad j jU U U ,    � ,j jF U , (1.1.82) 

where � �� �r 1 2 3( ) , ,U U U x x x  is the force function (potential function or  
potential). One can have � � � �� �r 1 2 3; , , ;U U t U x x x t  in the representation (1.1.82); 
the function is called quasi-potential, and the forces are quasi-conservative in this case. 
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A field of conservative forces is stationary, while a field of quasi-conservative forces is 
non-stationary. We observe that 

�F 0curl ,     (1.1.82') 

so that a field of conservative or quasi-conservative forces is irrotational. As an 
example of conservative field of forces we may consider the terrestrial gravitational 
field of the form 

� �� � � �G g 3grad constm mgx ,     (1.1.83) 

where m  and G  are the mass and the weight of a particle, respectively, while g  is the 
gravity acceleration; the axis 3Ox  is along the gravity acceleration, but in the opposite 
direction of it. Galileo proved experimentally that, in the same place on the Earth, all 
the bodies have the same acceleration g  by a free falling in vacuum; but this 
acceleration depends on the place in which this measurement is made (the latitude), 
taking into account the fact that this place can be closer (at the poles) or further away (at 
the equator) from the centre of the Earth (the vector g  is considered approximately 
directed towards this centre, but – in reality – it is directed along the vertical of the 
place; the greatest deviation is given by an angle of approximate six minutes with 
respect to this vertical at the 450 parallel). The magnitude (modulus) of this acceleration 
is 1 29,781 /g m s  at the equator and 1 29, 831 /g m s  at the poles, at the sea table; 
experimentally, at the University of Bucharest it was obtained 1 29, 806 /g m s , 
corresponding approximately to the 450  parallel. 

The formula (1.1.72iv) allows us to introduce the mean unit weight and the unit 
weight, respectively, in the form 

�mean meang� � ,    
) �

� �mean
0

lim
V

g� � � , 
 

(1.1.83') 

and we may use all the considerations of Subsec. 1.1.8. 
Another important example is given by the field of Newtonian attraction forces; 

Newton admitted that two particles iP  and jP  of masses im  and jm , respectively, are 
acted upon by an attraction force 

� � � � � � �F F F r r2 3vers i j i j
ji ij ij ij

ij ij

m m m m
f f
r r

 

� �
� �	 


� �
grad consti j

ij

m m
f
r

, 
 

(1.1.84) 

where �rij i jP P
�����

; ijF  and jiF  are internal forces, which verify the relation (1.1.81). 

Observing that � �r r rij j i , it is obvious that � ��F F rji ji j  and � ��F F rij ij i  (the 
second position vector ir  or jr , respectively, playing the rôle of a parameter) in the 
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calculus of the gradient in (1.1.84); if �iP O  (the corresponding particle having the 
mass M ), and � �r r rij j  (the particle �jP P  being of mass m ), we may write 

� �� � � � � �F r r2 3vers grad const
mM mM mM
f f f

rr r
, 

 

(1.1.84') 

and the force F  is applied at the point P . The coefficient � 0f  is a universal constant 
(sometimes denoted by G ), which can be obtained experimentally in a particular case; 
such a determination has been made for the first time by Henry Cavendish in 1798, 
using the balance of torsion of Coulomb. In the CGS system, 

8 26.673 10  cm/g sf �1 � � . This is a very small value; the Newtonian attraction force 
is not practically perceptible for bodies on the Earth surface (their masses are relative 
small); this force has an intensity, which must be taken into consideration in case of 
bodies with great masses (the case of cosmic bodies). As well, this force has an intensity 
which cannot be neglected in case of a gravitational field, if one of the masses is great; 
thus, the terrestrial gravitational field can be considered as been generated by the 
Newtonian attraction forces, between bodies on the Earth  surface  and  the  Earth  itself. 
Formulae (1.1.83) and (1.1.84') lead to  

� �
� � � �

�
G r r2 vers  vers mMf mg

R r
, 

where G  is the weight of a material body of mass m , at the distance r  from the Earth 
surface (along the vertical of the place, neglecting the deviation mentioned above), 
while R  is the distance from the Earth surface to the centre (we admit that the Earth is 
approximately spherical, its radius being R ) of the Earth, the mass of which is M ; we 
may thus write 

� � � �$ %� � � � �* +& '

2 2
2 21 1 2

r r r
fM gR gR

R R R
. 

But r R� , so that we may neglect the ratio /r R  with respect to unity; finally, we 
obtain 

1 2fM gR .  (1.1.85) 

The forces which arise between two electric charges iq  and jq  (attraction if they are 
of contrary sign and repulsion in case of the same sign) have the same structure as the 
forces (1.1.84) (Coulomb’s law) 

� � � � �F F F r r2 3vers i j i j
ji ij ij ij

ij ij

q q q q
k k
r r

� �
� � �	 


� �
grad consti j

ij

q q
k
r

, 

(1.1.84'') 
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where � 0/ 4k ��� , 0�  being the electric permittivity of vacuum and �  the 
rationalization factor ( � 1�  in rationalized units, in the SI system (see Subsec. 2.1.3), 
while � 4��  in non-rationalized units). 

In general, any force (we use formula (A.2.16)) 

0
( )vers grad ( )d

r

r
F r F � �� � �F r , 

 

(1.1.86) 

exerted by a pole O  upon a particle P  and the intensity of which depends only on the 
distance r  is conservative; such forces are encountered, for instance, in the kinetic 
theory of gases. The forces of the form (1.1.86) are called central forces, because their 
supports pass through the pole O  (in fact, it is a particular case of central forces; an 
arbitrary central force, for which � ( , )F F r � , in polar co-ordinates, because in such a 
case the trajectory of the particle is a plane curve, is – in general – no more a 
conservative force). The force is attractive or repulsive as we have 0F � ; the 
Newtonian attraction force (1.1.84') represents a particular case. Another particular case 
is obtained for  � �F r r( ) k , � 0k . One obtains  thus an attractive elastic force of the 
form 

� �� � � � �F r 21grad const
2

k kr ,    � 0k ; 
 

(1.1.87) 

if we take the sign plus ( �F rk , � 0k ), then we have a repulsive elastic force. Such 
forces appear in case of a linear elastic spring and are used for the modelling of a linear 
elastic continuous medium; as well, they can lead to linear oscillations, which allow the 
construction of the simplest models of atoms. 

The constants in the formulae (1.1.83), (1.1.84) – (1.1.84''), (1.1.87) and the constant 
0r  in the formula (1.1.86) are determined by a given value of the potential U  (which 

may – eventually – be equal to zero) at a given point. 
Besides the forces given by (1.1.82), we may consider also quasi-conservative or 

conservative forces, the components of which are expressed in the form 

(� �
� � 	 
(� �

,
d
dj j

j

U
F U

t x�
,    � 1,2, 3j ; (1.1.88) 

in this case, the function � �� 1 2 3 1 2 3, , , , , ;U U x x x x x x t� � �  is called a generalized quasi-
potential or a generalized potential, as it depends or not explicitly on time. Such forces 
appear in the motion of the electron in an electromagnetic field (Lorentz’s forces). 
Supposing that the force F  does not depend explicitly on the acceleration ��r , as it will 
be seen in Subsec. 1.2.1, it follows that the generalized quasi-potential U  must have a 
linear dependence with respect to the components of the velocity 

� � 0j jU U x U� ,   � �� 1 2 3, , ;j jU U x x x t ,    � 1,2, 3j , 
� ��0 0 1 2 3, , ;U U x x x t . (1.1.88') 
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Unlike the generalized potential (quasi-potential), a potential (quasi-potential) is 
called also a simple potential or a simple quasi-potential. A system of forces 
(corresponding – for instance – to a field of forces) which admits a simple potential 
(quasi-potential) or a generalized potential (quasi-potential) is called also a natural 
system. The forces which are not conservative are called non-conservative forces. 

1.1.13 Elementary particle interactions 

If a mechanical system S  is subjected only to the action of internal forces (e.g., the 
solar system, considered as independent of the other systems of the Galaxy, or a system 
of elementary particles), then the respective system is closed (neither inputs, nor outputs 
take place). The physical phenomena which occur in nature can be, in general, described 
by interactions between particles (we consider, in what follows, the elementary 
particles, which are basic constituents of the matter). 

Corresponding to the experimental data, till now only four basic (elementary) 
interactions (which, in fact, are forces) have been encountered, i.e.: the gravitational 
interaction, the weak interaction, the electromagnetic interaction and the strong 
(nuclear) interaction, which determine all the forces known in the Universe. An 
interaction is characterized by its intensity (expressed by a number) with respect to one 
of them taken as unit, and determined by the properties of the particles which they 
transport. 

The gravitational interaction maintains the Earth as a whole, as well as the Sun and 
the planets in the solar system, and connects the stars in the frame of the Galaxy; the 
intensity of this interaction is 2 39/ 10GM c �1	 , where �G f  is the universal 
gravitational constant, M  is the mass of the nuclear particle, c  is the velocity of light 
in vacuum, and /2h ��	 , h  being Planck’s constant. This interaction is the weakest 
of all interactions; it acts between all particles and is exerted at any distances (small, 
great or very great, theoretically infinite), being susceptible to be propagated by a 
quantum of vanishing mass, called graviton. The corresponding forces are the only 
attraction forces between particles at great distances. 

The weak interaction is an interaction of contact (at a small distance of approximate 
�1510  cm, smaller than the nuclear dimensions which are of approximate �1310  cm), its 

intensity being �910  (its intensity in an elementary disintegration volume is of 
approximate 910  times smaller that the intensity of the strong interaction). The vector 
bosons are carrying agents of those interactions, which are exerted between leptons and 
quarks, the corresponding forces between identical particles being repulsive; thus, the 
weak interaction cannot form stable states. In the absence of a conservation law of 
barions (heavy particles), the weak interaction could lead to the decay as electrons and 
neutrons of matter in the Universe, in an interval of time less than �310  s. 

The electromagnetic interaction is an interaction at distance between all particles 
with electric charge or/and magnetic moment. It ensures the existence of atoms, 
molecules and crystalline systems as stable systems. The intensity of this interaction is 
given by the constant of fine structure 2

0/ 4e c� ��� 	 , where e  is the elementary 
charge and 0�  is the dielectric constant of vacuum; we have �1 � 37.297351 10�  
1 11/137.030602 1/137 , its intensity being �210 . The photons, which can be 
coupled with any charged particle, are carrying agents of those interactions, the 
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corresponding forces between identical particles being repulsive; as the gravity forces, 
these ones have a large radius of action and may be studied in the frame of quantum 
electrodynamics. 

The strong (nuclear) interaction leads to the building of all elements, by linking the 
nuclear particles, and is acting at a small distance upon quarks, the carrying agent being 
the gluons. It corresponds a repulsive force, the intensity of which is – conventionally – 
taken equal to unity, with respect to the intensity of the other forces (the interactions 
have been presented in order of growth of their intensities). 

The idea of unifying the four basic interactions, so that to use a single set of 
equations to predict all their characteristics, is old and, at present, it is not known 
whether such a theory can be developed. However, the most successful attempt in this 
direction is the electroweak theory (the Weinberg-Salam model) proposed during the 
late 1960s by Steven Weinberg, Abdus Salam, Samuel Glashow (Nobel prize, 1979). 
The carrying agents are the vector bosons, with electric charge 2W , and the neutral 
vector boson 0Z . In the frame of this model, the masses � 2(82 2.4)Wm  GeV and 

� 75Zm  GeV (Gigaelectronvolts) have been theoretically calculated. In December 
1982, the mass of the vector boson has been determined experimentally, its value being 

� 2(85 5)Wm  GeV, in excellent agreement with the theoretical prediction of the 
Weinberg-Salam model. The measures have been effected at CERN (Switzerland) and 
represent the greatest discovery of this important European centre of research in the area 
of physics. In June 1983, the existence of the third vector boson 0Z  has been confirmed 
experimentally. Recent experimental values of the masses of vector bosons are 

� 2(80.423 0.0039)Wm  GeV and � 2(91.1876 0.0021)Zm  GeV. 
The electroweak theory is a unified theory of electromagnetic and weak interactions, 

based on the SU(2)3U(1) symmetry. It regards the weak force and the electromagnetic 
force as different manifestations of a new fundamental force (electroweak), similarly to 
electricity and magnetism that appear as different aspects of the electromagnetic force. 
We mention that the electroweak theory is – in essence – a gauge theory. 

We may infer that there are only three fundamental interactions in Nature: 
gravitational, electroweak and strong (nuclear). Further, one tries to unify these three 
interactions in the frame of a unitary theory, reducing – eventually in a first stage – their 
number to two; in this order of ideas, theories which try to link the electroweak 
interaction to the strong one (e.g., Giorgi’s theory) have been developed. As well, the 
supergravitation describes gravitational phenomena in the frame of a quantum theory of 
field; the problem is very difficult also because the gravitational interaction, which 
plays the most important rôle in the study of mechanical systems, is the only interaction 
which leads only to forces of attraction (described, e.g., by the Newtonian model). 
Certain researchers assume the existence of a fifth type of basic interaction too. 

Now, the theory of electroweak interactions is a component of the Standard Model, 
that includes also the theory of strong interactions; but it seems that the current models 
of strong interactions need to be revised. 

However, the recent discovery of exotic quark systems suggests that the Nature is 
much more complicated; thus, in July 2003, nuclear physicists in Japan, Russia and the 
USA have discovered the pentaquark, and in November 2003, a new subatomic particle 
has been discovered, while Daniel Gross, David Politzer and Frank Wilczek have been 
awarded Nobel prize, 2004. 
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In conclusion, stress is put to set up new models for unifying the three remaining 
basic interactions. 

1.2 Mathematical model of mechanics 
By means of the fundamental notions introduced above, one can formulate – in a new 

form – Newton’s principles, which constitute the basis of the mathematical model of 
mechanics. The object of study of this science of nature may be thus emphasized. A 
short history is also given. 

1.2.1 Newton’s principles 
Continuing the results obtained by his predecessors, especially those of Galileo 

Galilei (who intuits the principle of inertia and the principle of the initial conditions), 
Sir Isaac Newton enounced, in his famous work “Philosophiae Naturalis Principia 
Mathematica” (the first fascicle appeared in London at 5th of July 1686),  the three laws  
which form the basis of classical models of mechanics. 

Lex I. Corpus omne perseverare in statu suo quiscendi vel movendi uniformiter in 
directum, nisi quantenus illud a viribus impressis cogitur statum suum mutare (Any 
body preserves its state of rest or of uniform rectilinear motion if it is not constrained by 
induced forces to change its state) (after the last enunciation of Newton, in the third 
edition (1726) of his treatise). 

Lex II. Mutationem motus proportionalem esse vi motrici impresse et fieri secundum 
lineam rectam, qua vis illa imprimitur (The variation of motion (of the quantity of 
motion) is proportional to the induced moving force and is directed along the straight 
line, which is the support of this induced force). 

Lex III. Actioni contrariam semper et aequalem esse reactionem, sive corporum 
duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi (The 
reaction is always opposite and equal to the action or the reciprocal actions of two 
bodies are always equal and directed in contrary directions). 

In Newton’s laws (principles) (called sometimes the Galileo-Newton principles, 
because of the important contribution of Galileo to the building of the classical model of 
mechanics) by body we understand a particle (material point). As well, we admit the 
existence of an inertial frame of reference with respect to which these principles are 
verified and the motion is described. In these conditions, we may enounce the principles 
of classical mechanics in the following new form: 

i) Principle of inertia. A particle, which is not subjected to the action of any 
force, is in a uniform and rectilinear motion or is in rest. 

The motion or the rest are considered with respect to the inertial frame of reference, 
whose existence, independent of the particle, was postulated. Practically, we cannot take 
out a body of the influence of other bodies in the Universe. But we can reduce this 
influence, observing that it is diminished if one moves away the other bodies from that 
on which we focus our attention or that one can annul an action by another one; other 
actions (for instance, friction, resistance of the medium etc.) may be sensibly reduced 
by certain technical means. We may thus imagine some experiments (reducing friction, 
experiments in vacuum etc.) leading closer to the ideal conditions of this principle; this 
one is thus verified with a good approximation. It follows that there can exist a motion 
(an inertial motion) even in the absence of a given force; we observe that the 
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acceleration of a particle, which is not in interaction with other particles, vanishes. 
Hence, not the motion (not the velocity), but the variation of the motion (variation of the 
velocity, that is of the momentum) must be put in connection with the force, as we have 
seen in Subsec. 1.1.11. 

ii) Principle of action of forces. Between a force acting upon a particle and 
the acceleration induced by it takes place a relation of the form 

� �a r Fm m�� , (1.1.89) 

where m  is the mass of the particle. 
This constitutes the basic law of mechanics, discovered by Newton, observing 

various phenomena of mechanical nature: the falling of bodies (phenomenon of 
gravitational nature), the oscillation of the pendulum, simple devices (studied 
previously by Galileo and Huygens), motion of the Moon around the Earth etc. Tullio 
Levi-Civita admits that dv  is along the force F , dv  being proportional to F  and to 
dt  and in inverse proportion to the weight � GG  of the particle; hence 

�v Fd dk t
G

. 

We suppose that k  is a constant, which does not depend on the force F , but only on 
the considered particle (affirmation corresponding also to the principle of equivalence 
enounced by Albert Einstein). In case of a free falling in vacuum, we see that 

�g Gk
G

, 

where G  is the gravity force; it follows that �k g  ( g  is the gravity acceleration), 
hence 

� �
v a Fd

d
g

t G
. 

Observing that the ratio 

� � 0g m
G

 

is constant anywhere on the Earth, no matter where G  and g  are measured, m  being – 
in fact – the mass of the particle, we obtain the law (1.1.89). In case of gravity forces 
(taking into account the equality between the gravitational and the inertial mass), we 
may write this law in the form  

�g Gm . 
 

(1.1.89') 

The mass of the bodies on the Earth is determined with the aid of the balance; for 
cosmic bodies we use the law (1.1.89) and the principle of universal attraction, which 
leads to the Newtonian attraction forces (1.1.84). It is interesting to notice that, in fact, 
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Newton enounced the second law in the form (he intended by mv  the quantity of 
motion) 

d ( )
d
m
t

�v F , 
 

(1.1.89'') 

relation equivalent to (1.1.89) if � constm ; this conception is the more valuable as a 
relation of the form (1.1.89'') is maintained also in relativistic mechanics. If �F 0 , 
then the relation (1.1.89) leads to �a 0 , hence to a uniform and rectilinear motion with 
respect to an inertial frame of reference; that does not mean that the principle i) is a 
particular case of the principle ii). Indeed, the principle of inertia can lead to the right 
solution if the solution of the differential equation (1.1.89) is not unique. 

We will consider an example given by Jean Chazy in 1941, that is a particle of mass 
m , acted upon by a force � 1/3( ) 6F x mx  along the Ox -axis; the differential equation 
of motion is 

� 1/36x x�� , 
 

(1.1.90) 

with three possible solutions 

� 0x ,     � � 3x t ,      � 3x t , (1.1.90') 

which verify the initial conditions 

� 0x ,     � 0x�   for  � 0t . (1.1.90'') 

Hence, the problem has an infinity of continuous solutions of class 2C  for � [0, ]t T , 
� 0T , i.e. 

� �  

1

3
1 1

0               for 0 ,
( )

      for ,

 t t
x t

t t t t

� ����  
2 � ��!

 
 

(1.1.91) 

where � �10 t T . 
Using the principle of inertia, Victor Vâlcovici solves, in 1951, the problem. Indeed, 

this principle leads to the solution � 0x , which verifies the conditions (1.1.90''); for 
any t , the particle remains in the initial position of rest. For 1t T� , any other solution 
(1.1.91) is eliminated by the first principle of mechanics, so that � 0x  for � [0, ]t T ; 
hence, this principle must be considered as an independent one. 

iii) Principle of action and reaction. To any action of a particle towards 
another particle, there corresponds a reaction of the second particle 
towards the first one, having the same support and magnitude, but opposite 
direction. 

If we denote by 12F  the action of a particle 2P  upon a particle 1P  and by 21F  the 
reaction of the particle 1P  upon the particle 2P  (an action can be a reaction or 
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inversely, the denominations being relative), then the relation (these actions are, in fact, 
forces) 

� �F F 012 21 ,     � 2F21 21 1 2vers F P P
�����

,     � �12 21 0F F , 
 

(1.1.92) 

where we take the sign + or – as the forces are repulsive or attractive, holds; we notice 
that these forces are of the nature of internal forces and enjoy the properties put in 
evidence in Subsec. 1.1.11. The action and the reaction are applied to two different 
particles, so that we cannot say that they are in equilibrium. Let us consider, for 
instance, an agent exerting a force F  on a particle P , inducing a certain motion of it; 
writing the equation (1.1.89) in the form � �F a 0m  and taking into account the 
principle of action and reaction (formula 1.1.92)), we can introduce a reaction � am  
applied on the considered agent. The force � am  is called force of inertia and is due to 
the inertia of the particle. This principle may be extended passing from a particle acting 
upon another particle to a mechanical system acting upon another mechanical system; 
obviously, in this case, the action as well as the reaction are systems of forces. 

iv) Principle of the parallelogram of forces. If a particle is acted upon 
separately by the forces 1F  and 2F , which induce the accelerations 1a  and 

2a , respectively, and then it is acted upon simultaneously by the two forces, 
then the latter ones can be summed vectorially (using the parallelogram 
rule, � �F F F1 2 ), the acceleration induced being obtained analogously 
( � �a a a1 2 ). 

Indeed, starting from 

�F a1 1m ,     �F a2 2m ,  (1.1.93) 

we may write 

� �� � � � �F F F a a a1 2 1 2m m ,  
 

(1.1.93') 

the independence of the action of forces being thus put into evidence; this principle may 
be easily verified experimentally and, together with the principle iii), allows – for 
instance – to consider simultaneously the discrete mechanical systems in the Universe. 
The principle iv) was presented by Newton as a corollary to the second law. We must 
notice also that this principle is applied admitting that the particle is in the same initial 
state (position, velocity, physical or chemical state etc.) if it is acted upon either by the 
force 1F  or by the force 2F . This principle allows us to affirm that the force and the 
acceleration are vector quantities. 

v) Principle of initial conditions. The initial state (initial position and 
velocity) of a particle determines entirely its motion at an arbitrary given 
moment (if one uses the first four principles). 

In fact, it is not necessary to know the initial state (at time � 0t t ); it is sufficient to 
know the state of a particle at a given moment. This observation is due to Galileo, who 
showed that the initial position is not sufficient to determine the motion of the particle, 
but it is necessary to know also its initial velocity; indeed, we can write the 
development 
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� � � � � 2
0 0 0 0

1( ) ( ) ( ) ( ) ( ) ( )
2i i i ix t x t t t x t t t x t� �� ,     0 0( )t t t t�� � � , 

(0,1)� � ,    � 1,2, 3i , (1.1.94) 

for the components of the position vector r . Hence, we see that – the initial state being 
given – it is necessary to calculate also the acceleration of the particle for the 
determination of its motion. This principle may be enounced also in another form, 
equivalent to that given above. 

v')  If two particles are isolated from the rest of the Universe, then the forces in 
interaction at a given moment are determined in direction (including 
support) and modulus if at this very moment the positions and the relative 
velocities are known. 

In this form, the principle of initial conditions shows that the given forces F  depend 
only on time, position vector and velocity, hence 

� ��F F r r, ;t� . (1.1.95) 

In this context, we may admit that the basic law (1.1.89) of mechanics constitutes the 
representation in a normal form (in which we express the acceleration ��r , that is the 
derivative of highest order as a function of the position r , the velocity �r  and time t ) of 
a law of the form 

� � �r r r 0f , , ;t� �� ; (1.1.95') 

hence, in the Newtonian model of mechanics do not intervene accelerations of higher 
order, as it is experimentally confirmed by all mechanical phenomena thus modelled. 

In conclusion, from a philosophical point of view, one can state that the classical 
model of mechanics is a deterministic one. 

1.2.2 Mathematical models of mechanics 
Once the basic notions of mechanics (space, time, mass, motion, force) introduced, 

the classical (Newtonian) model of this science of nature is born, adopting the principles 
discussed in the previous subsection. This model was verified in practice in case of 
bodies moving with velocities v  relatively small (negligible with respect to the velocity 
c of light in vacuum). 

But the Newtonian model of classical mechanics was only a step in the process of 
knowledge; indeed, it was proved (by the famous experiments of Albert Abraham 
Michelson in 1881, as well as together with Edward William Morley in 1887 and of E. 
W. Morley and Dayton Clarence Miller in 1904, who showed the inexistence of the 
ether) that, at greater velocities (comparable with the velocity of light in vacuum), the 
principles of Newton must be changed or completed. To describe more exactly the 
properties of the real space, non-Euclidean geometries are introduced. As well, the 
Newtonian concept of the universal time must be replaced by the relativistic 
representation, which takes into account the individual physical time, the fact that time 
depends on the motion itself. The mass is also no more constant, depending on the 
velocity and, implicitly, on time. Thus, following the papers of Albert Einstein of 1905 
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and 1916, appear the Special and the General Relativity, respectively, which constitute 
new steps in the process of knowledge of the motion of mechanical systems. 

We notice that these new models (which tried to maintain the principles of classical 
mechanics and to adapt them, (for instance, the principle of inertia) have been verified 
by many important experiments (the crucial experiments in General Relativity). But 
there exist still some contradictions (for instance, the horologes’ paradox in Special 
Relativity), so that it arises the necessity of some improved models. It is also possible 
that the actual theory of relativity do correspond to velocities comparable to the velocity 
of light in vacuum, but not to velocities close to this superior limit velocity; it is possible 
that at such velocities more complex models be necessary. There have been conceived 
also models in which the velocities are always greater than the velocity of light in 
vacuum, which is thus an inferior limit velocity. We notice that for velocities v  
negligible with respect to the velocity c  of light in vacuum (v c� ), the results of 
relativistic mechanics tend to the classical ones; there exists thus a matching of the two 
mathematical models of mechanics, which is necessary for the viability of the improved 
model (the relativistic model). 

We mention also that there have been created mathematical models, leading to 
quantum mechanics (non-relativistic and relativistic models) to describe other 
mechanical phenomena, connected to bodies with “microscopic” character (elementary 
particles a.s.o.), in opposition to those connected to bodies with “macroscopic” 
character, with which we have to do usually. As a matter of fact, relativistic and 
quantum mechanics are the two basic non-classical models of mechanics. Other 
mathematical models led to undulatory mechanics, statistical mechanics, invariantive 
mechanics, nanomechanics a.s.o. 

As we have seen above, the usefulness of the notion of mathematical model has been 
put into evidence, as well as the great variety of such models, constructed to can study 
mechanical phenomena, which – in general – are enough complex. We notice also the 
so-called generalized models of deformable continuous media. 

1.2.3 Division of classical mechanics 
Synthetizing the above exposure, we may state the object of study of mechanics. 
Mechanics deals with the study of the equivalence of systems of forces and with the 

study of motion of mechanical systems subjected to the action of these forces. 
Methodically and conventionally, and taking into account its historical development 

too, we may admit that classical mechanics has three great divisions. 
Statics deals with the study of equivalence of systems of forces (in particular, the 

equivalence to zero) acting upon a mechanical system. Statics studies a particular case 
of motion, that case in which a mechanical system, subjected to the action of certain 
forces, remains in rest (or has a uniform and rectilinear motion) with respect to a given 
frame of reference (considered as an inertial one). 

Kinematics considers the motion of mechanical systems without taking into account 
the forces which act upon them; hence, the object of study of kinematics is the geometry 
of motion. Sometimes, kinematics is called also the geometry of mechanics 
(phoronomy). 

Dynamics deals with the motion of mechanical systems subjected to the action of 
given forces; in fact, this is the object of study of mechanics. 



www.manaraa.com

Newtonian model of mechanics 51

These divisions of classical mechanics allow a systematization of our study; in the 
frame of those divisions, the problems of mechanical vibrations, of stability of 
equilibrium and of motion, of optimal trajectories etc. did develop very quickly. 
Chronologically, first appeared statics (in antiquity), then dynamics (at the same time as 
the Italian Renaissance); kinematics arises only in the XIXth century. 

From a methodical point of view, it is more convenient to consider separately 
classical models (Newtonian) and non-classical models (relativistic, quantum (the last 
one can be non-relativistic or relativistic), undulatory, statistical, invariantive etc.) of 
mechanics. For deformable continuous media (in opposition to what – usually – is 
called general mechanics, containing classical models of mechanics) it is necessary a 
separate study; the mathematical models of such mechanical systems must be completed 
either they are classical models or non-classical ones. In this case too one can put into 
evidence statics, kinematics and dynamics. 

Actually, the searching in the frame of classical and non-classical models of 
mechanics or in the domain of mechanics of deformable media is developing very 
much, in multiple directions, comprising new methods of computation, analytical and 
numerical ones. One of the tendencies of today is represented by the extension and the 
generalization of the models of mechanics. We mention thus the search in the direction 
of axiomatization of classical mechanics. A particular impetus takes the theory of 
continuous deformable mechanical systems, either by solving boundary value problems 
or by coupling the corresponding problems to other non-mechanical phenomena (a 
thermal field, an electromagnetic field etc.). 

1.2.4 Short history 
From the earliest time A.C., man has been put in connection with mechanical 

phenomena; empirical knowledge allowed him to set up tools and mechanical devices, 
as it can be seen also from the drawings and the basso-rilievos of Assyria and ancient 
Egypt. 

The beginnings of mechanics in the ancient eve date from VI-Vth centuries A.C., 
together with the oldest notings. Mo Tsy, in ancient China, gives in his writings some 
notions of mechanics, concerning time, motion and force. By Anaximander (610-546 
A.C.), Anaximenes (585-525 A.C.), Heraclit of Efes (540-470 A.C.), as well as by 
Pythagoras’ school (571-477 A.C.) we meet referrings about matter in motion. Thales at 
Miletus (640-546 A.C.) took much interest in astronomy and Herodotus (484-425 A.C.) 
tells us that he has even succeeded in predicting an eclipse. Anaxagoras of Clazomenae 
(499-427 A.C.) admits that there are some forces, which do not allow celestial bodies to 
fall one upon the other. The arguments about motion (Achilles and the tortoise, the 
arrow, the stadium, the dichotomy), which are the paradoxes of Zeno of Elea (490-430 
A.C.), contribute to the stimulation of studies about space, time, problems of continuity 
and discontinuity a.s.o. Œnopides of Chios (b. 465 A.C.) was one of the leading 
astronomers of his time; he is thought to have learned the science of the stars and the 
obliquity of the ecliptic from the priests and temple astronomers of Egypt. He is said to 
have invented the cycle of 59 years for the return of the coincidence of the solar and 
lunar years, giving the length of the solar year as 365 days and somewhat less than 9 
hours. Parmenides of Elea (b. 460 A.C.) taught at Athens in the middle of the 5th 
century A.C., and among his theories on the Universe was the one that the Earth is a 
sphere; Meton, Phaeinus and Euctemon dealt with mathematical astronomy in the same 
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century. Archytas of Tarentum (430-360 A.C.) discovers the pulley, the screw as well as 
some mechanical tools to set up curves; he applied mathematics in any noteworthy way 
to mechanics. The first written works about mechanics are assigned to him. It is said 
that Eudoxus of Cnidus (408-355 A.C.), at one time a pupil of Plato (430-349 A.C.), 
introduced the study of spherics (mathematical astronomy) into Greece and made 
known the length of the year as he had found it given in Egypt, from where he brought 
also the theory of motion of the planets; he found that the diameter of the Sun is nine 
times that of the Earth. Aristotle of Stageira (384-322 A.C.) wrote a voluminous work 
on mechanical problems; he puts in evidence the relative character of motion and intuits 
the principle of virtual displacements in the study of equilibrium of levers. To him we 
owe the first known definition of continuity: “A thing is continuous when of any two 
successive parts the limits at which they touch are one and the same and are, as the 
word implies, held together”. Democritus of Abdera (460-370 A.C.) is considered to be 
the founder of the atomic theory of the ancient philosophy, which asserted: “the original 
characteristics of matter are functions of quantity instead of quality, the primal elements 
being particles homogeneous in quality, but heterogeneous in form”. Other atomists 
have been Epicur (341-270 A.C.) and Carus Lucretius (99-55 A.C.); they gave incipient 
results concerning the falling of bodies and the structure of matter. 

The greatest mathematical centre of ancient times was  neither  Crotona  nor  Athens, 
but Alexandria; here it was, on the site of the ancient town of Rhacotis, in the Nile 
Delta, that Alexander the Great (356-323 A.C.) founded a city worthy to bear his name. 
Under Ptolemy’s Soter (Ptolemy the Preserver) benevolent reign (323-283 A.C.), 
Alexandria became the centre not only of the world’s commerce but also of its literary 
and scientific activity; here was established the greatest of the world’s ancient libraries 
and its first international university. Of all the great names connected with Alexandria, 
that of Euclid (320-270 A.C.) is the best known; he was the most successful textbook 
writer that the world has ever known, over one thousand editions of his geometry 
having in print since 1482. Euclid’s greatest work is known as the “Elements”, and 
represents the basis of the geometry bearing his name. We notice the interesting 
contributions of Euclid to statics; he wrote also “Phoenomena”, dealing with the 
celestial sphere and containing twenty-five geometric propositions. Eratosthenes of 
Cyrene (274-194 A.C.) dealt with the measurement of the diameter of the Earth and 
found 7850 miles, that is 50 miles less than the polar diameter, as we know it; he 
considered also the problem of distances in the solar system, i.e., the distances from the 
Earth to the Moon and to the Sun, respectively. Archimedes (287-212 A.C.) was born 
and died at Syracuse in Sicily; he may be considered as to be the founder of statics. 
Archimedes discovers various simple devices and defines the centre of gravity. 
Archimedes is the most important researcher of ancient mechanics; his work “On the 
equilibrium of plane surfaces and on centres of gravity” is comparable to Euclid’s 
“Elements”. After Ctesibios (approx. 200 or 180 A.C.), Hypsicles of Alexandria 
(approx. 180 A.C.), Hypparchus of Rhodes (190-120 A.C.), Filon of Byzantium (second 
half of IInd century A.C.) and Poseidonius of Rhodes (135-84 A.C.), the most important 
name is that of Heron of Alexandria (first century A.C.); he invented the pneumatic 
device, commonly known as Heron’s fountain, a simple form of the steam engine, and 
wrote on pneumatics and mechanisms. Of the Romans, no one is more prominent than 
Marcus Vitruvius Pollio, commonly known as Vitruvius (50 A.C.-20 A.D.), who 
published the textbook “De architectura”. 
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At the beginning of Christian era (from now on, all data are A.D.), Ptolemy 
(Claudius Ptolemaeus) (70-147) did for astronomy what Euclid did for plane geometry, 
Apollonius Pergaeus (Pamphylia) (approx. 225 A.C.) for conics and Nicomachus of 
Gerasa (approx. 100 A.C.) for arithmetic; his greatest work, commonly known as the 
“Almagest” (with the Arabic “al” (the)) contains much information about the history of 
ancient astronomy as well as his concept on the geometric stellar system. Ma Kim (IIIrd 
century) created in China mechanisms with geared wheels. Pappus of Alexandria 
(approx. beginning of IVth century) gives a synthesis of known results in mathematics, 
astronomy and mechanics in his great work “Mathematical Collections”; we find here 
the famous theorems concerning centres of gravity of bodies of revolution (taken over 
by the Swiss Paul (original first name Habakuk) Guldin (1577-1643)). To Proclus of 
Byzantium (412-485) (surnamed the Successor, because he was looked upon as the 
successor of Plato in the field of philosophy) are due many comments on mechanics. 
Joannes Philiponus of Alexandria (known also as Joannes Grammaticus) (VIth century) 
develops the notion of impetus (because of which the motion continues without any 
external action). The Arabic science is that which takes again and amplifies these results 
till the XIIth century; we mention thus Mohammed ibn Mohammed ibn Tarkhan ibn 
Auzlag, Abu Nasr al Farrabi (of Farab, in Turkestan) (870-951), who wrote “About the 
eternal motion of the celestial sphere”, Al-Hosein ibn Abdallah ibn al-Hosein (or 
Hasan) ibn Ali Abu Ali al-Sheich al-Rais (known in Christian Europe as Avicenna) 
(980-1037), born in Safar, not far from Bokhara (Uzbekistan), philosopher and 
physician, which considered the motion of matter as fundamental, Mohammed ibn 
Ahmed ibn Mohammed ibn Roshd Abu Velid (commonly called Averroes in the Middle 
Age) (1126-1198) of Cordova, to whom we due interesting comments on Aristotle, and 
Nured-din al-Betruji Abu Abdallah (called Alpetragius by the Christians) (XIIth 
century) simplified the cosmic system of Ptolemy and applies the “impetus” to the 
motion of celestial bodies. Rabbi Moses ben Maimum (called also Maimonides) (1135-
1204), a Jewish writer native of Cordova, physician to the sultan, is an astronomer of 
prominence, and to him is due a Jewish calendar. 

Beginning with the XIIIth century, appear the great European schools, where are 
translated the most important works of the Antiquity and of the Middle Age; the ideas 
of the time are thus developed. The scholasticism accommodates many of these ideas to 
the needs of the Catholic Church. A critical interpretation of Aristotle is made, among 
others, by Siger of Brabant (1235-1281), Thomas d’Aquino (1226-1274) and Richard of 
Middletown (beginning of the XIVth century). The nominalist current reflects certain 
liberties of thinking and position with respect to the church, initiating methods of 
research based on experiments; we mention thus, Pierre Abélard (Petrus Abaelardus) 
(1079-1142), Roger Bacon (1214-1294), the most prominent scholar in England, a man 
of erudition and of prophetic vision, and – especially – Jordan of Namur (Jordanus de 
Saxonia, Jordanus Nemorarius) (XIIIth century), who studies the motion of heavy 
bodies along a curve and leads a true school of mechanics. Beginning with the end of 
the XIIIth century till the XVth century appear the antischolastics; among them we 
mention Jean Buridan (1300-1360), Nicolas Oresme (1323-1382), Thomas Bradwardine 
(1290-1349), representative of the school of mechanics of Oxford, Filippo Bruneleschi 
(1377-1446), Florentine sculptor  and  architect, Biagio Pelacani (Blasius  of  Parma) (d. 
1416) and the German cardinal Nikolaus Krebs (Nicolaus Cusanus) (1401-1464). 

The XVth century represents the beginning of the Renaissance; research is made on 
experimental basis and statics becomes a complete discipline. Niklas Koppernigk 
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(Nicholaus Copernicus of Thorn on the Vistula) (1473-1543) published his heliocentric 
concept on the world “De revolutionibus orbium coelestium” (Nürnberg, 1543) (The 
orbits of the planets are circles, the Sun being in the centre); other works are published 
by Leone Battista Alberti (1404-1472) and by Giorgio Valla (1447-1500). The most 
prominent figure of this epoch is Leonardo da Vinci (1452-1519), who said that 
“mechanics is the paradise of mathematical knowledge, because – through the agency of 
it – one bears the fruits of mathematics”; he studies the laws of the free falling and of 
friction, introduces the notion of moment and applies the principle of virtual 
displacements. To the progress of mechanics in this period contributed also Jules César 
Scaliger (1484-1558), who adopts the denomination of motion for impetus, Girolamo 
Cardan (1501-1576), Nicolo Fontana (Tartaglia) (1499- or 1501-1557), Frederico 
Commandin di Urbino (1509-1575) and Giovanni Battista Benedetti (1530-1590). The 
XVIth and XVIIth centuries bring a new raising of mechanics; the technologies in 
various branches of production bear a particular development and bring into life the 
premises of the great industry in the future. The Academies of Sciences do appear 
(Accademia dei Lincei in Rome (1590), Accademia del Cimento in Florence (1651), 
Royal Society in London (1622-1663), Académie des Sciences in Paris (1666) etc.), 
contributing to the promotion of theoretical and experimental research. The 
mathematical model of classical mechanics is completed in the XVIIth century. Simon 
Stevin (1548-1620), Flemish mathematician and physicist, solves the problem of the 
inclined plane and enounces the rule of composition of forces, Giordano Bruno (1548-
1600) brings arguments against Aristotle, while Luca Valerio (1552-1618) determines a 
great number of centres of gravity. Galileo Galilei (1564-1642) is one of the founders of 
the modern dynamics. To him are due the principle of inertia and the principle of initial 
conditions, the formulation of which represents a revolutionary step in the development 
of mechanics, and thus is put an end to Aristotelic conceptions; he states the so-called 
“golden rule of mechanics”, that is: how much is won in force is lost in velocity, and 
studies the motion of a projectile in vacuum. His most important ideas are contained in 
“Dialogo di Galileo Galilei delle due massimi sistemi del mondo, il Tolemaico e il 
Copernicano” (1632) and in “Discorsi e dimonstrazioni mathematiche intorno a due 
nuove scienze attenanti alla meccanica e i movimenti locali” (Leyda, 1638). Francis 
Bacon (1561-1626) considers the motion as a property of the matter and criticizes the 
scholastic conceptions in “Novum organum” (1620). Evangelista Torricelli (1608-
1647), disciple of Galileo, develops the theory of motion of heavy bodies and of the 
stability of equilibrium. Johannes Kepler (1571-1630) starts from observations of Tycho 
Brahe (1546-1601) on Mars and in “De revolutionibus orbium coelestium” enounces his 
three famous laws, which replace the Copernican motion of planets, supposed to be 
circular and uniform, by a motion on an ellipse. Other contributions to the construction 
of the mathematical model of mechanics are due to Tomaso Campanella (1568-1639), 
to Paul (Habakuk) Guldin (1577-1643), who founds again the theorems of Pappus, to 
Marin Mersenne (1588-1648), who introduces Galileo’s work in Paris, to René 
Descartes (1596-1650), who studies the collision of bodies and enounces the theorem of 
conservation of momentum, and is the first to put into evidence the infinitesimal 
character of virtual displacements, to Pierre Fermat (1601-1665), to whom belongs the 
“theorem of minimum time”, to Gilles Personne de Roberval (1602-1675), who dealt 
with levers and balances and research in statics and kinematics, to Giovanni Alfonso 
Borelli (1608-1679), a monk who laid the bases of biomechanics, to John Wallis (1616-
1703), who dealt with the collision of inelastic bodies, to Jacques Rohault (1620-1675), 
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to Pierre Varignon (1654-1722), who develops the theory of moments, to Christian 
Huygens (1629-1695), who studies the physical pendulum, discovers the isochronism of 
the cycloidal pendulum and invents the clock with pendulum, to Cristoph Wren (1652-
1723), to Nicole Malbranche (1638-1715) and to Gottfried Wilhelm Leibniz (1646-
1716), who considers the “vis viva” to be the basic mechanical characteristic of motion. 

But the scientist who attached his name to the first mathematical model of 
mechanics, the model of classical mechanics, has been Sir Isaac Newton (1642-1727), 
illustrious English mathematician, physicist and astronomer. He defined the notion of 
mass, generalized the notion of force and formulated mechanics’ laws in “Philosophiae 
Naturalis Principia Mathematica” (London, 1686-87), published under pressure from his 
good friend Edmund Halley (1656-1742), the astronomer, fighting for priority with 
Robert Hooke (1635-1703); Newton discovered the law of universal attraction, 
verifying thus the laws of motion of planets around the Sun, given by J. Kepler. But 
Newton sketched also an ample plane for the development of the science thus created; 
today, classical mechanics is developing in the large frame of the three fundamental 
laws as a theoretical and experimental science, which must permanently introduce new 
concepts and confront theoretical constructions to reality. 

The XVIIIth century represents the beginning of the industrial revolution, leading to 
an intensive development of classical mechanics; the first superior technical schools are 
founded, for instance “l’École Polytechnique” of Paris (1794), which – due to the 
activity of Gaspard Monge (1746-1818) and Louis Poinsot (1777-1859) – played an 
important rôle in the development of mechanics. Jacques (Jacob) Bernoulli (1654-1705) 
dealt with dynamics of mechanical systems subjected to constraints and gave the 
solution to the problem of the oscillation centre; some corrections are brought by 
Guillaume François de l’Hospital (1661-1704). Jean (Johannes) Bernoulli (1667-1748) 
gives a correct formulation to the principle of virtual displacements, while his son 
Daniel Bernoulli (1700-1782) studies the conservation of the “vis viva” principle. Jacob 
Hermann (1678-1733) studies the dynamics of constrained systems, Colin Mclaurin 
(1698-1746) is the first to enounce, in 1742, the second law of Newton in the form 
(1.1.89), while Pierre Louis Moreau de Maupertuis (1698-1759) enounces in 1744 the 
principle of least action. A special contribution is due to Leonhard Euler (1707-1783), 
one of the most prominent scientists in mathematics and mechanics of the century, who 
introduced the notions of material point, moment of inertia and moment of “amount of 
motion” (moment of momentum); he studies the motion of the rigid solid, gives the 
differential equations of motion of the rigid with a fixed point and integrates them in a 
particular case. He also enounces, in 1748, the second law of Newton in the form 
(1.1.89). Mikhail Vasilievich Lomonosov (1711-1765) extends the “principle of 
conservation of matter” to the “conservation of motion”. Samuel Koenig (1712-1757) 
polemizes with Maupertuis about the priority on the principle of least action; Euler and 
François Marie Arouet (Voltaire) (1694-1778) are also participants to this dispute. 
Alexis Claude Clairaut (1713-1765) deals with the relative motion and with the motion 
of the Moon. Jean le Rond d’Alembert (1717-1783) states in his “Traité de dynamique” 
(Paris, 1743) a general method to study the discrete mechanical systems (d’Alembert’s 
principle). Paul d’Arcy (1725-1779) enounces the theorem of conservation of the 
kinetic moment for a conservative system (1747), Charles-Augustin de Coulomb (1736-
1806) does important research on sliding and rolling friction and Pierre Simon de 
Laplace (1749-1827) publishes his famous “Traité de mécanique celeste” (Paris, 1799-
1825), in five volumes, where important cosmogonic hypotheses are made. “La 
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mécanique analytique” (Paris, 1788) by Joseph-Louis Lagrange (1736-1813) had a great 
influence for the subsequent directions of development of mechanics; in this volume, 
which contains the famous equations bearing Lagrange’s name, are studied discrete 
mechanical systems, without figures, using only methods of mathematical analysis. He 
deals with the study of small motions of a mechanical system around a stable position of 
equilibrium; we notice also his results on “ideal constraints” and the introduction of the 
so-called Lagrange’s multipliers. Fundamental contributions to the development of 
analytical methods in mechanics are brought by Wiliam Rowan Hamilton (1805-1865), 
who finds the canonical equations of analytical mechanics bearing his name and 
enounces the most important variational principle of mechanics and by E.J. Routh 
(1831-1907), the equations of which are a generalization of Lagrange’s and Hamilton’s 
ones. Carl Gustav Jacob Jacobi (1809-1882), Siméon-Denis Poisson (1781-1840) and 
Joseph Liouville (1809-1882) have valuable contributions concerning the integration of 
the canonical system; Peter Gustav Lejeune-Dirichlet (1805-1859), Jules Henry 
Poincaré (1854-1912), Adolf Hurwitz (1859-1919) and Aleksandr Mikhailovich 
Lyapunov (1857-1918) deal with the problem of stability of motion. Gustav Gaspard 
Coriolis (1792-1843) discovers the complementary acceleration, used by Jean Bernard 
Léon Foucault (1819-1868), who puts in evidence the motion of rotation of the Earth, 
by means of the pendulum bearing his name. George Atwood (1746-1807) verifies the 
laws of the bodies’ falling, using the device to which was given his name, and Lazare 
Nicolas Carnot (1753-1823) gave the first analytical formulation of the principle of 
virtual displacements and enounced the theorem of dissipation of energy in case of 
collision. Carl Friedrich Gauss (1777-1855) elaborates a method to calculate the 
elliptical orbits of planets. Jacques Philippe Marie Binet (1786-1856) deals with the 
action of central forces and Mikhail Vasilievich Ostrogradski� (1801-1862) enounces a 
generalization of Hamilton’s principle, independently of him, and develops the 
mechanics of systems with unilateral constraints. André Marie Ampère (1775-1836) 
studies many problems of kinematics, introducing this denomination. Jean Baptiste 
Joseph Fourier (1768-1830) tries to give a general demonstration to the principle of 
virtual work. Jean Victor Poncelet (1788-1867) connects the notion of work to that of 
energy. Rodrigues B. Olinde (1794-1851) deals with the principle of least action, Jacob 
Steiner (1796-1863) studies moments of inertia, while Nicolas Léonard Sadi Carnot 
(1796-1832) calculates the mechanical equivalent of heat. Eugen Dühring (1833-1921), 
Felix Klein (1849-1925) and Ernst Mach (1839-1916) contribute to a criticism of 
classical mechanics, and Vladimir Ilich Ulyanov (Lenin) (1870-1924) is against them. 
Ivan Vsevolod Meshcherski� (1895-1935), Konstantin Eduardovich Tsiolkovski� (1857-
1935) and Tullio Levi-Civita (1873-1941) elaborate basic works concerning the 
mechanics of bodies of variable mass. To William-John Macquorn Rankine (1820-
1872) is due the exact expression of kinetic energy, eliminating the notion of “vis viva”. 
Hermann Ludwig Ferdinand von Helmholtz (1821-1894) generalizes the principle of 
least action to non-mechanical phenomena. Sonya Krukowsky (Sophia Kovalevsky) 
(1850-1891) deals with the motion of a rigid solid with a fixed point. Valuable 
contributions are due to James Clerk Maxwell (1831-1879), William Thomson (lord 
Kelvin) (1842-1907), Eötvös Loránd (1848-1919), Isaac Todhunter (1820-1884), Karl 
Pearson (1857-1936), Paul Émile Appel (1855-1930), Heinrich Rudolph Hertz (1857-
1894), Paul Painlevé (1863-1933), Sergei Alekseevich Chaplygin (1869-1942) and 
Georg Hamel (1877-1955). Gheorghe Vr�nceanu (1900-1979) constructs non-
holonomic geometries, suitable to the study of non-holonomic mechanical systems. 
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Max Karl Ernst Ludwig Planck (1858-1947) gets up in 1900 to the conclusion that 
the change of energy between radiation and substance (the radiation problem of the 
black body) is discontinuous, in quanta, and quantum theory is thus born. Erwin 
Schrödinger (1887-1961), Paul Adrien Maurice Dirac (1902-1984) and Werner Karl 
Heisenberg (1901-1976) worked (in 1925-26) to the bases of quantum mechanics. 
Starting from the experiments of Albert Abraham Michelson (1852-1931) and Edward 
Williams Morley (1838-1923), and from the interpretations of Hendrick Anton Lorentz 
(1853-1928) and of others, Albert Einstein (1879-1955) puts, by his paper “Zur 
Elektrodynamik der bewegter Körper” (Annalen der Physik, 1905), the bases of the 
Special Relativity, and, by the paper “Die Grundlagen der allgemeinen 
Relativitätstheorie” (Annalen der Physik, 1916), the bases of the General Relativity; 
Hermann Minkovski (1864-1909), H. Poincaré and M. Planck contribute to the 
development of these theories. Josiah Dixon Willard Gibbs (1839-1903) and Ludwig 
Eduard Boltzmann (1844-1906) put, by their studies, the bases of statistical mechanics. 
To Louis Victor Pierre Raymond prince de Broglie (1892-1987) is due the birth of 
undulatory mechanics. The name of Octav Onicescu (1892-1983) states for the 
invariantive mechanics. 

Nowadays, research in the frame of classical and non-classical models of mechanics 
or in the frame of continuous deformable media is very much developed, in many 
directions.  One  of  the  actual  tendencies  is  represented  by  the  extension  and 
generalization of  mechanical  models.  Efforts  have  been  made  by  Clifford  
Ambrose Truesdell (1919-2000), Walter Noll (b. 1925) and Bernard Coleman for the 
axiomatization of classical mechanics. In the so-called frame of general mechanics rise 
studies in vibration, stability, dynamical systems and optimal control. A particular 
development is noticed in the theory of continuous mechanical systems, by solving 
many boundary value problems, as well as by coupling the respective mechanical 
phenomena with other non-mechanical ones (corresponding to a thermic or 
electromagnetic field etc.). Due to this enormous development, it is very difficult to 
review, even summarily, the most important researchers dealing with these problems. 
So that we preferred to mention only scientists who became classic and to mention only 
research till the first decades of the XXth century. 

2. Dimensional analysis. Units. Homogeneity. Similitude 
Dimensional analysis deals with the study of relations which describe mechanical, 

physical, chemical phenomena a.s.o.; this study is based on the property of dimensional 
homogeneity, which must be verified by all relations obtained on a rational or empiric 
way. To do this, we will put into evidence the physical quantities which appear in the 
study of mechanical systems, as well as the corresponding units. We consider also the 
properties of homogeneity and similitude and the possibility of using them. 

2.1 Physical quantities. Units 
In what follows, we introduce the notion of physical quantity (in particular, the 

notion of mechanical quantity), as well as the basic and derived quantities and units. We 
may thus define the systems of units. 
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2.1.1 Physical quantities 
Considering a set of physical objects of the same nature from the point of view of a 

certain property, we reach the notion of physical quantity. A process of abstraction 
defines this notion by: i) the statement of an equivalence relation, which allows to 
distribute the respective objects in equivalence classes; ii) the statement of a relation of 
order between these equivalence classes, to can appreciate if the objects belonging to 
one class are “greater” or “smaller” than the objects belonging to another class, from the 
point of view of the considered property; iii) the statement of a criterion of comparison 
by which one can estimate “how many times” an object of a class is greater or smaller 
than an object belonging to another class, from the point of view of the same property. 
A physical quantity M , which appears in the study of a mechanical system (the 
velocity of a particle, the intensity of a force etc.), is a mechanical quantity. 

The direction of a force, considered as a physical object, does not represent a 
property to allow the introduction of the notion of physical quantity; indeed, one can 
obtain classes of parallel forces, but one cannot state a relation of order. But the 
property of intensity of a force permits the introduction of a physical quantity; the 
corresponding property can be put into evidence with the aid of a dynamometer. 

By the comparison criterion, to any class of equivalence is attached a real number. 
The function f , which states the correspondence between the classes of equivalence 
and the set 
  of real numbers, must be strictly increasing, while the ratio between two 
quantities of the same nature must remain the same; it follows that the function f  must 
be linear, hence of the form 

� �( ) (0)f x kx f ,     � 0k . 
 

(1.2.1) 

One can assign arbitrary numbers (corresponding to the arbitrary constants k  and (0)f ) 
only to two equivalence classes; for the other classes, the numbers, which must be 
attached, result from (1.2.1). These arbitrary constants may correspond to a 
conventional unit equal to zero and to a conventional intensity equal to unity. In physics 
(in particular, in mechanics) the zero convention is made for a same class of 
equivalence, which is naturally imposed. For instance, if upon a dynamometer does not 
act any force, then its deformation is equal to zero; we can say that a force of null 
intensity is acting. Conventionally, one considers also the class to which the number one 
is assigned; a physical object of this class is called a unit U  of the respective physical 
quantity. The real number attached to a class of equivalence is an abstract (non-
dimensional) number, called the numerical value n  of the physical quantity M  
considered; this value, obtained by an operation of measurement (on an experimental 
way, with a certain degree of approximation), will be given by the basic equation of 
measurement 

�M nU . (1.2.2) 

2.1.2 Quantities and basic units. Quantities and derived units 
The unit U , corresponding to a certain physical quantity, must be really reproduced 

with the best precision possible (depending on the technical possibilities at a certain 
moment), in the form of a gauge. For certain quantities (length, mass, time) one can 
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easily construct units (metre, kilogram, second); these quantities can be measured 
directly. For other quantities (velocity, acceleration etc.) one cannot easily realize units, 
a direct measurement being difficult to do. In the last case, a quantity M  is measured 
indirectly, measuring directly quantities of a different nature with numerical values 

1 2, ,...n n ; a relation of the form 

� �� 1 2, ,...M f n n  (1.2.3) 

takes place. We must judiciously choose the units, so that coefficients depending on 
these units do not appear. 

The numerical values 1n , 2n  of two physical quantities 1 2,M M  of the same nature 
can be added only if they proceed  from  measurements with the  same  units U ; in  this  
case 

� � � � �1 2 1 2M nU M M nU n U ,     � �1 2n n n . 
 

(1.2.4) 

Also  

�1 1

2 2

M n
M n

. 
 

(1.2.4') 

If we measure the same physical quantity M  with different units 1U  and 2U , then 
the corresponding numerical values 1n  and 2n  are linked by the relation 

� �1 1 2 2M n U n U ,     �1 2

2 1

n U
n U

. 
 

(1.2.5) 

Certain relations take place between the physical quantities which appear in nature. 
We may thus choose a relatively restrained number of independent physical quantities, 
so that the other quantities be expressed by certain relations depending on the first ones; 
thus, using the above relations, one can express the units of all physical quantities with 
the aid of a restrained number of units. The physical quantities thus chosen are called 
basic (primitive) quantities, the corresponding units being basic (primitive) units. All 
the other quantities and units are derived quantities or units, respectively. 

Usually, one takes as basic quantities the physical ones which naturally appear, that 
is quantities corresponding to space, mass and time, for instance, in case of mechanical 
systems; such quantities are called also primary quantities, the other ones being 
secondary quantities. But one can choose as basic quantities also other quantities than 
the primary ones. For instance, the force can be also a basic quantity, useful in case of 
mechanical systems. 

We notice that a relation describing a physical phenomenon in which appear 
quantities the units of which are fixed (basic and derived units) contains a 
proportionality coefficient, and any other relation deriving from it will contain the same 
coefficient. 
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2.1.3 Systems of units 
The basic and derived units form a system of units. Two systems of units may differ 

by the chosen basic quantities and by the units corresponding to these quantities. We 
mention thus the physical systems in which the basic quantities are the length (of unit 
L ), the mass (of unit M ) and the time (of unit T ), and the technical systems to which 
correspond the length, the force (of unit F ) and the time. Unlike the physical systems 
of units, independent of the point in which we are on the surface of the Earth 
(independent of the presence of a gravitational field), the technical systems of units 
depend on the latitude of the place (depend on the presence of a gravitational field). 

Among the physical systems we mention the CGS system, in which the units are the 
centimetre, cm, the gram, g and the second, s, and the international system, SI, which 
uses the metre, m, the kilogram, kg and the second; in the latter physical system one 
introduces also, as basic quantities: the intensity of the electric current (ampere, A), the 
thermodynamical temperature (kelvin, K), the quantity of substance (mol, mol) and the 
light intensity (candle, cd). The SI system was adopted at the XIth International 
Conference of Measures and Weights (Paris, 1960). The most used technical system is 
the MKfS system, where one introduces the metre, the kilogram force, kgf and the 
second. We notice that in the SI system the unit of force is the newton, N (the necessary 
force to induce to a mass of 1 kg an acceleration of 21 m/s  in vacuum; 1 kgf 1 10 N). 

One uses the decimal system for space and mass, while for time remains the classical 
sexagesimal system. Theoretically, the metre is defined as 1/40 000 000 of the length 
of the Paris meridian. Practically, the metre is equal to 1 650 763.73  wave lengths of 
the radiation which corresponds to the transition of the atom of krypton 86 between the 
energy levels 2p10 and 5d5 in vacuum (Paris, 1960); the centimetre is the hundredth part 
of the metre defined above. Before 1960, the metre was defined as the length, at a 
temperature of 00C, of the international prototype in irradiate platinum, sanctioned by 
the General Conference of Measures and Weights in 1889, preserved at the International 
Bureau of Measures and Weights, at the pavilion of Breteuil (Sèvres, France). The 
kilogram represents the mass of the international prototype in irradiate platinum 
sanctioned at the same time and preserved in the same place as the metric prototype; the 
gram is the thousandth part of the kilogram defined above. The mass of the mentioned 
prototype represents theoretically the mass of a decimetre cube of distilled water at 4ºC, 
at a pressure of an atmosphere; the weight of this prototype at 45º boreal latitude, at the 

sea level, represents a kilogram force. Till 1960, the second was defined as the 86400th 
part of the mean solar day, considered constant and defined with respect to the tropical 
year (the mean interval between two consecutive passages of the Sun at the spring mean 
equinox), admitted to be also constant. Observing that the latter one is not constant (it is 
expressed by a polynomial formula with respect to time), after 1960 the tropical year, 
which has 365.242 198 79 solar days or 31 556 925.974 7 seconds, corresponding to 
1900, has been taken into consideration; the second thus defined is the ephemerides’ 
second. In the international system SI the second is defined with the aid of atomic 
horologes; thus, a second is an interval of time equal to 9 192 631 770  oscillation 
periods of radiations emitted by the transition between two hyperfine energy levels 
(F=4, MF=0; F=3, MF=0) of the basic state (2S1/2) of the atom of caesium 133, in the 
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absence of perturbations of a magnetic field. The standard hour (implicitly the second) 
is conserved by the International Bureau of the Hour in Paris. 

The units of geometrical and mechanical quantities encountered in the physical 
systems CGS and SI and in the technical system MKfS are given in Table 1.1. As well, 
in Table 1.2 are given the decimal multiples and submultiples of these units, exception 
the time, which has other units (second, minute, hour, day, year a.s.o). We notice that in 
the SI the unit for pressure is the pascal ( 21 Pa 1 N/m� ); as well, dyn, rad, Hz, erg, J, 
W, are used for dyne, radian, hertz, erg, joule and watt, respectively. 
 

Table 1.1 
Dimensions in the 

system 
Units in the system  

Quantity 
 

Symbol 
LMT LFT CGS SI MKfS 

Length l L L cm m m 
Mass m M L-1FT2 g kg kgf�s2/m 
Time t T T s s s 
Force F LMT-2 F dyn N kgf 
Area A L2 L2 cm2 m2 m2 
Volume V L3 L3 cm3 m3 m3 
Plane angle 4,5,…,6 1 1 rad rad rad 
Period T T T s s s 
Frequency f T-1 T-1 Hz Hz Hz 
Pulsation (circular 
frequency) 

 
7,p 

 
T-1 

 
T-1 

 
s-1 

 
s-1 

 
s-1 

Angular velocity 7 T-1 T-1 rad/s rad/s rad/s 
Angular acceleration 8 T-2 T-2 rad/s2 rad/s2 rad/s2 
Velocity v  LT-1 LT-1 cm/s m/s m/s 
Acceleration a LT-2 LT-2 cm/s2 m/s2 m/s2 
Unit mass (density) 9 L-3M L-1FT2 g/cm3 kg/m3 kgf�s2/m4 

Unit weight : L2MT-2 L-3F dyn/cm3 N/m3 kgf/m3 
Moment of inertia 
of the mass 

 
I 

 
L2M 

 
LFT2 

 
g�cm2 

 
kg�m2 

 
m�kgf�s2 

Pressure p L-1MT-2 L-2F dyn/cm2 N/m2 kgf/m2 
Percussion (impulse 
of the force) 

P, � dF t   
LMT-1 

 
FT 

 
dyn�s 

 
N�s 

 
kgf�s 

Moment of a force 
(couple) 

 
M 

 
L2MT-2 

 
LF 

 
dyn�cm 

 
N�m 

 
kgf�m 

Impulse of the 
moment of a force � dM t   

L2MT-1 
 

LFT 
 

dyn�cm�s 
 

N�m�s 
 

kgf�m�s 
Momentum (linear 
momentum) 

 
H 

 
LMT-1 

 
FT 

 
g�cm/s 

 
kg�m/s 

 
kgf�s 

Moment of 

momentum (angular 
momentum) 

 
K 

 
L2MT-1 

 
LFT 

 
g�cm2/s 

 
kg�m2/s 

 
kgf�m�s 

Work L L2MT-2 LF erg J kgf�m 
Energy (mechanical) E,T,V L2MT-2 LF erg J kgf�m 
Power (mechanical) P L2MT-3 LFT-1 erg/s W kgf�m/s 
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The force is a derived quantity in case of a physical system of units; it is determined 
by the basic law of mechanics (1.1.89), as well as by the law of universal (Newtonian) 
attraction (1.1.84). The universal constant f  has a value which depends univocally on 
the arbitrary magnitude of the basic units; if we wish that the relation (1.1.84) be written 
so as to have � 1f , then the mass must no more be considered as a basic quantity, 
being defined by means of length and acceleration. Hence, the unit of mass becomes a 
derived unit, and can be expressed with the aid of units of length and time, the latter 
ones remaining arbitrary, thus, the number of basic units is reduced with a unity (from 
three to two). To reduce the number of basic units with a unity more, one must take into 
consideration a relation between length and time, containing a universal constant (for 
instance the velocity of light in vacuum); if in the considered system of units the second 
remains the basic unit for time, then one obtains approximately 300 Mm as unit for 
length. The unit of length becomes thus a derived unit. If we take, for instance, Planck’s 
constant h  equal to unity, then we obtain a system of units without any basic unit. One 
may imagine also other systems of units having this property. 
 

Table 1.2 
Submultiples Multiples 

Prefix Symbol Multiplicative 
factor 

Prefix Symbol Multiplicative 
factor 

deci d 10-1 deca da 101 

centi c 10-2 hecto h 102 
mili m 10-3 kilo k 103 

micro 9 10-6 mega M 106 
nano n 10-9 giga G 109 
pico p 10-12 tera T 1012 

femto f 10-15 peta P 1015 
atto a 10-18 exa E 1018 

2.2 Homogeneity 
In what follows, after some general considerations and the introduction of 

dimensional equations, we enounce the basic theorem (the theorem ;) of dimensional 
analysis; some important applications of the property of homogeneity will be also given. 

2.2.1 General considerations 
The laws of nature establish certain relations between various physical quantities, 

i.e., between the numerical values 1 2, ,...n n  respectively; such a relation can be written 
in the implicit form 

� � �1 2, ,... 0f n n  
 

(1.2.6) 

or in the explicit form (emphasizing a numerical value) 

� �� 1 2, ,...n n n� . 
 

(1.2.6') 

Obviously, instead to write  such  relations  between  numerical  values,  we  may  write  
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analogous relations between the corresponding physical magnitudes. The above 
relations represent an objective truth. We may thus affirm that the laws of physical 
phenomena are invariant to any change of units; in other words, if � �1 2, ,...n n  are new 
numerical values of the same magnitudes, then we can write 

� �� � �1 2, ,... 0f n n . 

This condition is fulfilled if an only if  

� � � �� � �1 2 1 2, ,... , ,...f n n Cf n n , 

where C  is a constant which depends only on the ratios between the new and the old 
basic quantities; but the above condition is verified only if relations of the form (1.2.6) 
or (1.2.6') are homogeneous. Thus, the property of homogeneity appears to be an 
essential property in the dimensional analysis.  

By a variation of the basic units takes place also a variation  of  the  derived  physical  
unit; but one must express the variation of the numerical value of the derived physical 
quantity as a function of the variation of the units used. A relation which expresses the 
derived unit as a function of the basic units is called by Maxwell the dimensional 
equation of the considered physical quantity. Birkhoff, Charcosset and others show that 
the derived unit is expressed as a function of basic units by a relation of monomial type, 
fact considered also by Maxwell. Indeed, let be an arbitrary derived dimensional 
quantity; let us suppose also that y  is a geometric quantity depending only on the 
lengths 1 2, ,..., nx x x  ( � �� 1 2, ,..., ny f x x x ). Let us denote by y �  the quantity 
corresponding to the arguments � � �1 2, ,..., nx x x . The numerical values of y  and y � , 
respectively, depend on the unit of the considered length. Let us make now the unit �  
times smaller; in this case, the ratio 

� �
� �

� �
� �

1 2 1 2

1 2 1 2

, ,..., , ,...,
, ,..., , ,...,

n n

n n

f x x x f x x xy
y f x x x f x x x

� � �
� � �

� � � � � ��
� �  

must not depend on the chosen scale for the basic units. It follows 

� �
� �

� �
� �
� � �

�
� � �

1 2 1 2

1 2 1 2

, ,..., , ,...,
, ,..., , ,...,

n n

n n

f x x x f x x x
f x x x f x x x
� � � � � �

 

or 

� �
� �

� �
� �
�

� �
�

( )
1 1

y y
y y
� � � � ; 

hence, the ratio of numerical values of a derived geometric quantity, measured by 
distinct units of length, depends only on their ratio. Noting that  

� �
� �

�1
1( )

1
y
y
� � � ,      

� �
� �

�2
2( )

1
y
y
� � � , 
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we obtain 

� �
� �

� �� 	 

� �

1 1

2 2

� � ��
� � �

, 

because for � �1 2 1x x� , � �2 2 2x x� ,…, � � 2n nx x�  we have 

� �
� � � �

� �� 	 

� � � �� � 	 
� � �

1

1 2 1

2 21

y
y
y y

�
� � ��
� �

; 

differentiating with respect to 1�  and taking � �1 2� � � , we get 

� � � �
�

� �
1

dd1 1
( ) d d

m
�

� �� �
� � � � ��

, 

where m  is an integer or a rational number. It follows 

�( ) m� � � , (1.2.7) 

where a multiplicative constant is taken equal to unity, because �(1) 1� . One obtains 
thus the result enounced above. 

2.2.2 Dimensional equations 

If to a �  times variation of a basic unit does correspond a m�  times variation of the 
derived unit, then we say that the derived unit has the dimension m  with respect to the 
basic unit which caused the considered variation; thus, in a physical system, the 
dimension [ ]U  of the derived unit U  is given by the dimensional equation 

" # � L M TU � � � , 
 

(1.2.8) 

where � , �  and �  are the dimensions corresponding to the basic units L, M and T. 
We notice that, in such a way, one cannot determine the physical nature of a physical 
quantity, but only the form in which the latter one depends on the basic units. Hence, 
the dimensional equation of a physical quantity A  in the LMT system will be of the 
form 

" # � L M TA � � � ; 
 

(1.2.9) 

such an equation is established on the basis of the equation of definition of the 
considered quantity and of the relation connecting the given quantity to the chosen basic 
quantities. If the numerical value of the quantity A  is equal to the product or to the 
quotient of two quantities B  and C  ( �A BC  or � /A B C ) of dimensional 
equations 
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" # � 1 1 1L M TB � � � ,     " # � 2 2 2L M TC � � � , 

then one obtains 

� 21 2� � � ,     � 21 2� � � ,      � 21 2� � � ; 

if the numerical value of the quantity A  is a power n  of the numerical value of the 
quantity B , then 

� 1n� � ,     � 1n� � ,      � 1n� � . 

In general, any physical quantity, which appears in mechanics, can be expressed by 
derived units, given by relations of the form (1.2.8). In some practical problems one has 
to do also with the quantity of heat, the temperature etc.; as unit of the quantity of heat 
one uses the calorie, while the temperature is measured in Celsius (eventually Réaumur 
or Fahrenheit) degrees. 

The measurement of various physical quantities must be made with the aid of the 
most convenient units. There arises the problem of changing the units in the frame of a 
chosen system of units; starting from the dimension [ ]U  of the unit of a derived 
quantity, given by (1.2.8), we pass to the dimension 

" # � � � � � �� � L M TU �� �� � � ,  

where � ,� , �  are numbers (non-dimensional), of the same derived quantity, which will  
be thus given by 

" # " #� �U U� � �� � � . 
 

(1.2.8') 

For example, 1 km/h = (103)1 (3600)-1 m/s = (1/3.6) m/s. 
A more general problem is that of changing the system of units; thus, a quantity A  is 

expressed in the system LMT in the form (1.2.9), and in a new system XYZ, given by 

" # � 1 1 1L M TX � � � ,     " # � 2 2 2L M TY � � � ,     " # � 3 3 3L M TZ � � � , 

in the form " # � X Y Za b cA . Observing that, in both systems of units, the dimension of 
the quantity A  is the same ( �L M T X Y Za b c� � � ), and taking into account the 
properties mentioned above for the dimensional equations, we obtain the general 
equations of transformation of the units in the form 

� � �1 2 3a b c� � � � ,  
� � �1 2 3a b c� � � � , (1.2.10) 
� � �1 2 3a b c� � � � .  

The new system of units is correctly chosen if the determinant 
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� �
1 2 3

1 2 3

1 2 3

0

� � �

 � � �
� � �

; 

 

 
(1.2.11) 

for instance, if we pass from the system LMT to the system LFT for which [F] = LMT-2, 
then we have ( � 1 ) 

� �a � � ,    �b � ,    � �2c � � . 
 

(1.2.12) 

Let be a relation of the form 

� � �1 2, ,..., 0nf A A A  
 

(1.2.13) 

between n  physical quantities � i i iL M TiA � � � , � 1,2,...,i n ; the matrix 

$ %
* +
* +
* +
& '

1 2

1 2

1 2

...

 ...
 ...

n

n

n

� � �

� � �
� � �

 

 
 

(1.2.14) 

is called the dimensional matrix of the considered relation. For instance, in case of the 
above change of units, the dimensional matrix is 

$ %�
* +

�* +
* +�* +& '

1 2 3

1 2 3

1 2 3

0 0

0 0

0 0

� � � �

� � � �
� � � �

. 

 
 

(1.2.15) 

This matrix allows the study of the structure of the functional connections which can 
take place between various physical quantities. 

2.2.3 The ; theorem 
The physical laws, obtained on theoretical or experimental way, represent certain 

functional relations between various quantities, which characterize the phenomenon to 
study; the system of units used has an influence on the numerical values of these 
quantities, but it is not connected to the corresponding phenomenon. It follows that the 
mentioned functional relations must have a certain particular structure. Let be a 
dimensional quantity A  of the form 

� ��� 1 2 1f , ,..., , ,..., nk kA A A A A A , 
 

(1.2.16) 

where 1 2, ,..., nA A A  are variable or constant independent dimensional quantities. We 
suppose that the first k  quantities ( �k n ) are dimensional independent (the 
dimensional equation corresponding to such a quantity cannot be expressed as a 
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monomial with the aid of the dimensions of the other quantities); the index k  is less or 
at the most equal to the number of basic units. In this case, the dimensional equations of 
the quantities � �1 2, , ,..., nk kA A A A  are written with the aid of the dimensions of the 
quantities 1 2, ,..., kA A A , in the form 

" # " # " # " #� 1 2
1 2 ... kmm m

kA A A A ,      " # " # " # " #� � 1 2
1 21 ... kpp p

k kA A A A ,… 
" # " # " # " #� 1 2

1 2 ... kqq q
n kA A A A . 

Let us vary the units of the first k  quantities 1 2, ,..., k� � �  times, respectively; the new 
numerical values, in the new units, will be  

� �1 1 1A A� ,   � �2 2 2A A� ,…, � �k k kA A� ,   � � 1 2
1 2 ... kmm m

kA A� � � , 

� �� � 1 2
1 11 2 ... kpp p

k kkA A� � � ,…, � � 1 2
1 2 ... kqq q

n nkA A� � � . 

It follows that  

� �� � 1 2
1 21 2 ... , ,...,kmm m

nkA f a a a� � �  

� ��� 1 2 1 2
1 1 11 2 1 2,..., , ... ,..., ...k kp qp p q q

nk k kk kf a a a a� � � � � � � � . 

The function f  is thus homogeneous with respect to the arbitrary scales 1 2, ,..., k� � � ; 
to reduce the number of the arguments in the function f , we choose �1 11/a� , 

�2 21/a� ,…, � 1/k ka� , supposing that the first k  quantities do not vanish or do 
not tend to infinity (the results may be applied also in these cases if the function f  is 
continuous for these values of the arguments). Noting that, by hypothesis, relation 
(1.2.16) does not depend on the chosen units, one chooses a system of units with respect 
to which the first k  physical quantities considered have constant numerical values, 
equal to unity. The values 1 2, , ,..., n k�; ; ; ;  of the quantities � �1 2, , ,..., nk kA A A A  in 
the new units, will be given by  

; �
1 2

1 2 ... kmm m
k

a
a a a

,    �
<; �

1 2

1

1 2 ... k

k
pp p
k

a
a a a

,…,     �; �
1 2

1 2 ... k

n
n k qq q

k

a
a a a

, 
 

(1.2.17) 

where 1 2, , ,..., na a a a  are the numerical values of the corresponding quantities in the 
old units. We notice that the numerical values 1 2, , ,..., n k�; ; ; ;  do not depend on the 
initial chosen system of units; hence, they can be considered to be non-dimensional 
quantities. In the new system of units, the relation (1.2.16) becomes 

� ��; � ; ;11,1,...,1, ,..., n kf . 
 

(1.2.18) 

Using the results given by Vaschy, Buckingham, Federman, Ryabouchinsky, Ehrenfest, 
Afanasjeva, Bridgman etc., one may state 
Theorem 1.2.1 (theorem ;). A relation of the form (1.2.16) between 1n �  dimensional 
physical quantities 1 2, , ,..., nA A A A , which is independent of the chosen units, may be 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 68

expressed as a relation of the form (1.2.18) between 1n k� �  quantities 
1 2, ,  ,..., n k�; ; ; ; , which are non-dimensional combinations of the 1n �  

dimensional quantities. 
This theorem, often denominated as the Buckingham theorem, is known as the 

theorem of powers’ product (explaining thus the denomination of the theorem), and is 
the basic theorem of the dimensional analysis. We notice that the number 1n k� �  of 
the non-dimensional products, which appear in relation (1.2.18), is equal to the 
difference between the number 1n �  of the physical quantities and the rank k  of the 
dimensional matrix of the considered relation. We can replace the system of non-
dimensional parameters 1 2, ,..., n k�; ; ;  by another system of non-dimensional 
parameters 1 2, ,..., n k�� � �; ; ; , depending on the first n k�  parameters, the form of 
function f  changing in relation (1.2.18); but one cannot form more than n k�  
combinations of independent powers. 

It is  thus  seen  that  any  physical  relation  between  dimensional  quantities  can  be  
formulated as a relation between non-dimensional quantities; the necessity to apply the 
dimensional analysis to problems of mechanical systems is put into evidence. If the 
number of parameters characterizing the quantity A  is small, then the functional 
dependence is much more simple. If k n� , that is if all the quantities 1 2, ,..., nA A A  
are independent from a dimensional point of view, then  

1 2
1 2 ... nm m m

nA CA A A� , 
 

(1.2.19) 

where C   is  an  non-dimensional  constant,  which  is  determined  on  a  theoretical  or 
experimental way. 

We know that one can choose the number of basic units in an arbitrary manner, but 
their increasing number entails the introduction of supplementary physical constants, 
while the number 1n k� �  of the non-dimensional parameters remains constant; one 
must judge, from case to case, if the enrichment of the number of information brought 
by the increase of the number of units is useful or not. 

2.2.4 Applications 
The property of homogeneity, which must be verified by a physical law, leads to a 

great number of applications. Thus, a non-homogeneous relation between physical 
quantities cannot be correct; for instance, a relation of the form s at� , where s  is a 
length, a  is an acceleration while t  is the time, cannot take place. On the other hand, 
the relation 22A R�� , where A  is the area of a circle of radius R  is homogeneous, 
but it is not correct from the point of view of the multiplicative numerical coefficient; 
indeed, the condition of homogeneity is only a necessary condition for the correctness 
of a relation. 

The property of homogeneity allows also to determine the nature of some physical 
quantities. Let be, for instance, a relation of the form 

2
0 0

1
2

s at v t s� � � , 
 

(1.2.20) 
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where s  is a length, while t  is the time; noting that we must have " #2
0/2at v t�$ %& '  

" #0 Ls� � , it follows that a  is an acceleration, 0v  is a velocity, and 0s  is a length.  

 
Figure 1.19.  Mathematical pendulum. 

As well, with the aid of the property of homogeneity and of the ; theorem, we can 
establish some formulae, abstraction making of certain multiplicative constants. Let be, 
for instance, the case of the mathematical pendulum (the motion on a circle, in a vertical 
plane, of a heavy particle of mass m , at the end of a thread of length l , fixed at the 
fixed point O  (Fig.1.19)); we denote by �  the angle indicating the position of the 
particle at the moment t  and by R  the constraint force in the thread, the modulus of 
which we suppose to be proportional to the modulus of the weight mg  of the particle. 
We can choose as characteristic parameters the quantities 0, , , ,t l m g � , the last one 
corresponding to the  initial  position  of  the particle. Hence, we write  

� �0, , , ,t l m g� � �� ,      � �0, , , ,R mgf t l m g �� , 
 

(1.2.21) 

where �  and f  are non-dimensional functions, which do not depend on the units; these 
functions can be determined starting from the equations of the problem and from the 
corresponding initial conditions. 

Observing that , ,t l m  are independent physical quantities from the dimensional 
point of view, we can apply the ; theorem, in which  intervene  5 3 2� �   non-
dimensional products, for instance 01 �; �  and 2 /t g l; � ; it follows that 

� �0 , gt
l

� � �� ,      � �0 , gR mgf t
l

�� , 
 

(1.2.21') 

where �; � , and /R mg; � , respectively. The formulae (1.2.21') show that the 
position of the particle does not depend on the mass m , while the tension in the thread 
(the constraint force) is directly proportional to m . 

If T  is a characteristic interval of time, for instance the oscillation period, we may 
write 

� �0, , ,
l

T l m g
g
� �� , 

 
(1.2.22) 
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where �  is an non-dimensional function; applying once again the ; theorem ( , ,l m g  
are independent dimensional quantities), we obtain 

� �0
l

T
g
� �� . 

 
(1.2.22') 

The function � �0� �  can be determined only theoretically (by solving the 
corresponding mechanical problem) or experimentally. We notice that one can obtain 
the formula (1.2.22') also starting from the first formula (1.2.21'). By considerations of 
symmetry, one has � � � �0 0� � � �� � , the function �  being an even one; we may thus 
admit a development of the form (valid for large oscillations) 

� � 2 4
0 0 01 2 3 ...c c c� � � �� � � � . 

In case of small oscillations, there results 

1
l

T c
g

� , 
 

(1.2.23) 

the period T  being thus determined, abstraction making of a multiplicative constant; 
the study of this problem leads to 1 2c �� . Admitting initially that T  depends on 
, ,l g m , but does not depend on 0� , we can write T 1c l g m� � �� ; considerations of 

dimensional homogeneity lead to the same formula (1.2.23). 

2.3 Similitude 
In what follows we make some general considerations and introduce the models of 

Froude, Cauchy, Reynolds, Weber etc.; we use thus the geometric, the kinematic and 
the dynamic similitude. 

2.3.1 General considerations 
In many problems of the theory of mechanical systems, the physical phenomenon is 

very complex and depends on many parameters, a study of theoretical nature being 
extremely difficult; in such cases, it is useful to make an experimental study on 
technical models, which reproduce at a reduced scale the considered construction or 
element of construction. To do this, we must observe that, generally, any physical 
phenomenon is expressed by a system of functional equations, which establish relations 
between various physical quantities which appear; the development of the respective 
physical phenomenon does not depend on the system of units used. 

The models, which will be labelled by index m , will be, at a reduced scale, 
constructions similar to the real ones (original, prototypes), which will be labelled by 
index r . At the basis of a study by modelling, considerations of similitude must be 
taken into consideration. The study of physical phenomena on models is made in a 
laboratory and is simpler and more economic; but the results thus obtained must be 
suitable to the real constructions. 
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In general, two bodies (the real one and its model) are geometrically similar if their 
corresponding lengths are in the same ratio (have the same scale). Analogously to the 
geometrical similitude, one can introduce a physical one; we say that two physical 
phenomena are similar if it is possible to obtain the characteristics of one from the 
characteristics of the other one, on the basis of the respective scales. If A  is an arbitrary 
physical quantity, we may write 

r mAA k A� , 
 

(1.2.24) 

where Ak  is a coefficient of similitude corresponding to this quantity. An ideal model 
must have a perfect similitude (for instance, a general mechanical similitude) that is the 
constant Ak  must not depend on the particular physical quantity A ; the laws governing 
the model are in this case identical to those governing the real object. Practically, such a 
model cannot be realized, because one cannot reduce in the same ratio quantities as 
lengths, areas, volumes, velocities, accelerations, forces, densities, coefficients of 
friction, unit weights etc.; one is thus obliged to use an incomplete mechanical 
similitude. Taking into account the importance of a quantity or of another one in the 
study of a mechanical phenomenon, we may consider a geometric, static, kinematic, 
dynamic, thermic similitude etc.; thus, various similitude criteria are put into evidence. 
Newton noticed (1686) that the values of the similitude criteria, homologous to two 
similar physical processes, are equal. Federman shows in 1911 that any physical process 
can be described with the aid of a functional relation between the respective similitude 
criteria. 

As V.L. Kirpichev noticed in 1874, two physical processes are similar if and only if 
they are qualitatively similar and their homologous similitude criteria have equal values. 

We will denote by , , ,� � � �  the similitude coefficients (the respective scales) for 
lengths, masses, time and forces, respectively; hence 

L
L
r

m
� � ,     M

M
r

m
� � ,     T

T
r

m
� � ,     F

F
r

m
� � . 

 
(1.2.25) 

If for a physical quantity of a special interest we put the condition to have the same 
values for the model and for the real object, then there result certain relations between 
these coefficients. We put thus in evidence various laws of similitude (modelling laws), 
corresponding to various models. 

2.3.2 Geometric, static and kinematic similitude 
In the geometric similitude appears only the space and the only basic quantity is the 

length. Thus, the scale for lengths will be /r ml l �� , the scale for areas 2/r mA A ��  
and the scale for volumes 3/r mV V �� . 

In the case of the static similitude, besides lengths one introduces also the forces; in 
this case, the independent scales �  and �  are introduced. 

The kinematic similitude introduces the length (scale � ) and the time (scale � ); 
these scales are also independent. One obtains thus: for velocities 1/r mv v ���� , for 
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accelerations  2/r ma a ���� ,  for  angular   velocities   1/r m� � ��� ,  for   angular 
accelerations 2/r m� � ���  etc.  

2.3.3 Dynamic similitude. Newton’s similitude law 
The dynamic similitude contains the static similitude, as well as the kinematic one; 

the ratios between the homologous masses must be also equal, hence the scale �  of the 
masses intervenes. But only three scales are basic, for instance � , �  and � ; taking into 
account the basic law (1.1.89) and the accelerations scale, the relation 

2� ����� ,  
 

(1.2.26) 

called Bertrand’s characteristic equation, must take place. In this case, the similitude 
sets also for the forces. One obtains corresponding scales for various derived quantities 
with a dynamical character. Thus, the scale of the unit masses will be 3� �� , while the 
scale of the unit weights will have the form 2 2� ��� � ; analogously, one obtains the 
scale of the work 2 2� ��� , the scale of the powers 2 3� ���  etc. 

To can establish a dynamic similitude between two mechanical systems, one of them 
being the real one and the other one the model, it is necessary and sufficient that the 
forces acting upon the model do have the same direction as those on the prototype, the 
ratio of their moduli being constant and given by the relation (1.2.26); this relation is 
called also Newton’s law of similitude. 

For instance, let be the central motion of a system of particles, the modulus of each 
central attractive force being proportional to the mass of the particle and to the distance 
at the nth power with respect to a fixed pole; the ratio �  of the attraction forces 
corresponding to the real mechanical system and to its model, respectively, is given by  

n� � �� . 
 

(1.2.27) 

Taking into account the relation (1.2.26), we find the condition relation  

2 1 n� � �� ; 
 

(1.2.28) 

noting that the particles describe orbits around the attraction centre, we may affirm that 
�  is equal to the ratio of the revolution times of these ones. In the particular case of 
Newtonian attraction forces (in inverse proportion to the square of distances 2n � � ), 
the relation (1.2.28) becomes 

2 3� �� ; 
 

(1.2.28') 

hence, the squares of revolution times are proportional to the cubes of the lengths, 
corresponding to the third law of Kepler. 
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2.3.4 Particular models 
Newton’s similitude law asks that all the forces which are acting upon the real 

mechanical system and upon the model, respectively, be in the ratio �  given by relation 
(1.2.26). Practically, not all the forces can be reduced in the same ratio; hence, from 
case to case, one considers only the similitude of those forces which are prevailing in 
the phenomenon to study. Thus, we may use various similitude laws (particular 
models), which are – in general – of the form ( )� � �� . 

If we put the condition to obtain the same acceleration for the model and for the real 
object (for example, if the gravity forces are predominant), then we may write 

2/ 1r ma a ���� � , hence  

� �� ; 
 

(1.2.29) 

we obtain thus Froude’s mechanical model. For / /r m r r m mM M V V� � � �� � �    
� � 3/r m� � �� , in the case in which the model is of the same material as the real 

object, we may write 

3� � �� � . 
 

(1.2.30) 

Putting the condition to obtain the same stresses (equal to the ratio between the 
forces and the areas of the surfaces upon which they are applied) on the model and on 
the real object, we may write 

L M T L
L M T L

2 2
1 2

2 2
/

1
/

r r r rr

m m m m m

� � ��
�

�
� �

�� � � ; 

if we use the same material for the model as for the real object, hence if relation (1.2.30) 
takes place, then we obtain the law 

� �� , (1.2.31) 

corresponding to Cauchy’s elastic model. 
If the internal friction forces have a dominant action (in case of viscous fluids 

intervene the kinematic viscosity coefficient � ), then we impose the condition 

L T
L T

2 1
2 1

2 1 1r r r

m m m

� � �
�

�
�

�� � � ; 

obtaining thus Reynold’s hydraulic model for which the relation 

2� ��  
 

(1.2.32) 

takes place. If the model and the real object are of the same material, the relation 
(1.2.30) remains still valid. 

The condition that the superficial tension (equal to the ratio between the force and 
the length) measured on the model be equal to that on the real object 
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L M T L
L M T L

2
2

2
/

1
/

r r r r

m m m m
��

�
�

� � �  

leads to 

2� �� ; 
 

(1.2.33) 

for liquids (the same real object and model) the relation (1.2.30) takes place, so that 

� � �� , 
 

(1.2.34) 

corresponding to Weber’s model. 
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Chapter 2 

MECHANICS OF THE SYSTEMS OF FORCES 

The study of the systems of forces is of a special interest in mechanics because, 
applying them upon a body, this one maintains its state of rest or motion or is changing 
this state; moreover, the equivalence of the systems of forces represents one of the 
objects of study of mechanics, as it was shown in Chap. 1, Subsec. 1.2.3. Taking into 
account the vectorial modelling of forces, their algebra is – in fact – a vector algebra.  

1. Introductory notions 
In what follows we will deal with some applications of the principle of the 

parallelogram of forces and of the product of a scalar by a force; one observes thus that 
the forces are elements of a vector space. As well, we introduce some important 
products of forces, modelled as vectors. 

1.1 Decomposition of forces. Bases 
The elementary operations which can be effected with forces are the basis for the 

study of equivalence of the systems of forces; the decomposition of forces is realized 
with the aid of such operations and allows the introduction of the notion of basis of a 
system of forces. We notice that all the results which will be given in this section 
remain valid for any system of vectors. 

1.1.1 Decomposition of forces. Linear dependence 
Let us consider the decomposition of a force F  into a sum of n  forces iF , 
1,2,...,i n� , of given directions. If 3n �  and if we admit that the three directions are 

non-coplanar, then we obtain a unique decomposition, observing that the force F  is the 
diagonal of the parallelepipedon formed with the forces 1F , F2  and F3  (in general, an 
oblique parallelepipedon) (Fig.2.1,a); we thus write 

1 2 3� � �F F F F . (2.1.1) 

If 3n � , then we may always choose the forces 4F , F5 ,…, Fn  arbitrarily, and the 
decomposition is no more unique; as well, the decomposition is not unique neither for 

3n �  if the three directions initially chosen are coplanar with the force F . If 2n �  
and the chosen directions are coplanar with the force F , but not collinear, then we 
obtain a unique decomposition in the plane (the force F  is the diagonal of the 

75
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parallelogram formed  with 1F  and F2 ) (Fig.2.1,b); if  the  two  directions  are  collinear 
with F , then the decomposition is no more unique. 

 
Figure 2.1.  Decomposition of forces. Three-dimensional (a) and plane (b) case. 

Let be n  non-zero forces F1 , F2 ,…, Fn . We say that these forces are linear 
independent if the relation 

1 1 2 2 ... n n� � �� � � �F F F 0  (2.1.2) 

can take place only for zero values of the scalars 1� , 2� ,…, n� . From the relation 
(2.1.2), it follows 

1 1 2 2 ... 0n nii iF F F� � �� � � � ,    1,2, 3i � . (2.1.2') 

This linear system in j� , 1,2,...,j n� , admits only vanishing solutions if and only if 
the rank of the matrix of the coefficients of the system is equal to n ; because this rank 
is less or equal to three, it follows that in the three-dimensional space there exist at most 
three linear independent forces. 

We say that the forces F1 , F2 ,…, Fn  are linear dependent if the relation (2.1.2) 
holds, but not all the scalars 1� , 2� ,…, n�  vanish. Thus, for 3n �  the condition of 
linear dependence of the forces F1 , F2 , F3  is written in the form 

1 1 2 2 3 3� � �� � �F F F 0 ; (2.1.3) 

assuming, for instance, that 1 0� � , we may express the force F1  as follows 

1 2 3� �� �F F F , (2.1.3') 

where � , �  are also scalars. It is easy to see that the force F1  is contained in the plane 
formed by the forces F2  and F3 , admitting that these ones are applied in the very same 
point. Hence, the necessary and sufficient condition for the three forces to be coplanar 
is that they verify the relation (2.1.3), the scalars 1� , 2� , 3�  non-vanishing 
simultaneously, or the relation (2.1.3'); returning to the system (2.1.2'), the condition is 
fulfilled if 
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11 21 31

12 22 32

13 23 33

0

F F F

F F F

F F F

� . (2.1.3'') 

We  notice also that the condition (2.1.3'') is equivalent to 

" #
11 12 13

21 22 23

31 32 33

det 0ij

F F F

F F F F

F F F

� � . (2.1.3''') 

In the case 2n �  (case considered in Chap. 1, Subsec. 1.1.2), we obtain the 
condition of linear dependence 

1 1 2 2� �� �F F 0 ; (2.1.4) 

this is the necessary and sufficient condition (if the scalars 1� , 2�  do not vanish 
simultaneously) for the forces F1  and F2  to be collinear. This condition can be written 
in the form 

1 2��F F , (2.1.4') 

where �  is also a scalar; returning to the system (2.1.2'), the condition becomes 

11 12 13

21 22 23

F F F
F F F

� � . (2.1.4'') 

1.1.2 Basis. Canonical representation of forces 

An ordered triplet of linear independent forces F1 , F2 , F3  constitutes a basis. In this 
case, we can express an arbitrary force F  in the form 

1 1 2 2 3 3� � �� � �F F F F , (2.1.5) 

where 1� , 2� , 3�  are scalars, called the numerical components of the force F  in the 
given basis. Such a representation can be obtained  for an arbitrary vector V , with the 
aid of some vectors Vi , 1,2, 3i � , which determine a basis. If the basis’ vectors are 
orthogonal one to each other, then the basis is called orthogonal. If the basis’ vectors 
are unit vectors, then the basis is called normed. An orthogonal and normed basis is 
called orthonormed. 

Taking into account the fact that many other mechanical quantities are modelled with 
the aid of vectors, we will consider, in what follows, the vectors as abstract 
mathematical entities. Let thus be right-handed (or positive) orthonormed bases (if the 
vectors are in the order V1 , V2 , V3 , then an observer, situated – for instance – along 
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the vector V1 , sees the superposition of the vector V2  onto the vector V3 , after a 
rotation of /2�  in the positive direction, from right to left). More general, a triad of 
arbitrary vectors V1 , V2 , V3  forms a positive basis, in the given order, if an observer, 
situated along the vector V1 , sees the superposition of the vector V2  onto the vector 
V3  by a rotation less than � , in the positive direction; the property must be maintained 
for a circular permutation of the three vectors. 

For a system of Cartesian co-ordinates jOx , the orthonormed basis’ vectors will be 
formed by the unit vectors ji , 1,2, 3j � , of canonical co-ordinates (1, 0, 0) , (0,1, 0) , 
(0, 0,1) , respectively, located at O ; in this case, a vector of canonical co-ordinates jV , 

1,2, 3j � , can be written in the form 

� � � � � � � �1 2 3 1 2 3, , 1, 0, 0 0,1,0 0, 0,1 j jV V V V V V V� � � � �V i ; (2.1.6) 

this is the canonical representation of the vector and is unique. In particular, we obtain 
the canonical representation of a force 

j jF�F i . (2.1.6') 

We notice that the canonical co-ordinates 1V , 2V , 3V  are just the numerical (scalar) 
components of the vector, 1 1V i , 2 2V i , 3 3V i  being its vector components; because i1 , 
i2 , i3  are fixed given unit vectors, it is sufficient to use numerical components, which – 
for the sake of simplicity – will be called components. 

If the vector V  and the unit vectors i j  are directed segments, then the numerical 
components are numbers; but we mention that, from a dimensional point of view, these 
components are not always numbers, their dimensions depending on the physical 
dimension of the vector and of the unit vectors of the chosen basis. 

In the case of a bound vector PQ�
����

V , we may write 

� �( ) ( )Q P
jQ P j jx x� � � � � �V r r Q P i , (2.1.7) 

where we have put into evidence the co-ordinates of the origin and  of  the  extremity  of  

Figure 2.2.  A bound vector V  in two right-handed systems of co-ordinate axes. 
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the vector; this is also the representation of a directed segment. We observe that we may 
note a position vector also by the point indicated by it. 

Let be a positive orthonormed basis of unit vectors i j , hence a right-handed system 
of orthogonal co-ordinate axes jOx , 1,2, 3j � ; let also be a second positive 
orthonormed basis of unit vectors �ik , to which corresponds a second right-handed 
system of orthogonal Cartesian axes �kOx , 1,2, 3k �  (Fig.2.2). Obviously, we have 

jk kj�� �i i ,   1,2, 3k � , (2.1.8) 

where we have introduced the cosines 

� �cos , jkj k� �� i i ,   , 1,2, 3j k � ; (2.1.9) 

analogously, we may write 

j kj k� ��i i ,   1,2, 3j � . (2.1.8') 

Let be the position vector r  of a point P ; we obtain, in the two systems of co-
ordinates,  

j j k kx x � �� �r i i , (2.1.10) 

where 1x , 2x , 3x , and �1x , �2x , �3x , respectively, are the co-ordinates of the point in 
each of the two systems. Taking into account (2.1.8) and (2.1.8'), respectively, we find 
the relations allowing to pass from a system of co-ordinates to another one 

jk kjx x�� � ,  j kj kx x� �� ,   , 1,2, 3j k � ; (2.1.11) 

these linear transformations are orthogonal. 

1.2 Products of vectors 
The conditions of orthogonality or of collinearity of two vectors can be expressed 

with the aid of their scalar or vector products, respectively; the condition of coplanarity 
of three vectors introduces their scalar triple product. One may conceive also a vector 
triple product. 

1.2.1 Scalar product of two vectors 
The scalar product (internal product, dot product) of the (free, bound or sliding) 

vectors V1  and V2  is a scalar (which does no more belong to the vector space) defined 
by the relation 

� �1 2 1 2 1 2cos ,VV� �V V V V . (2.1.12) 

In particular, we obtain the projection of  a  vector V  on  a  directed  axis   of  unit 
vector u  in the form (Fig.2.3) 
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� �cos , prV � � � �V V u V u V ; (2.1.13) 

 
Figure 2.3.  Projection of vector V  on the directed axis  . 

obviously, the projection (which is a scalar) has a sign, as its direction coincides (sign 
+) with the direction of u  or not (sign –). One can thus write the scalar product also in 
the form 

1 21 2 1 2 2 1pr prV V� � �V VV V V V . (2.1.12') 

We mention following properties: 
i) 1 2 2 1� � �V V V V  (commutativity); 

ii) � �1 2 3 1 2 1 3� � � � � �V V V V V V V  (distributivity with respect to the addition 
of vectors; consequence of the properties expressed by the relations (1.1.7) and 
(2.1.13)). 

The unit vectors of the co-ordinate axes verify the relations 

j k jk
� �i i ,   , 1,2, 3j k � , (2.1.14) 

where we have introduced Kronecker’s symbol 

1 for ,

0 for .jk

j k

j k



����  ��!
 (2.1.15) 

If we express the vectors in the canonical form 

1 1 jjV�V i ,   2 2k kV�V i , (2.1.16) 

then it follows 

1 2 1 2j jV V� �V V , (2.1.17) 

where we took account (2.1.14). In particular, if � �1 2, 0�� V V  or � �1 2, ��� V V , 
then the vectors are collinear and we may write 

1 2 1 2VV� � 2V V , (2.1.18) 

as the vectors have or not the same direction; the square of the modulus (1.1.2) of a 
vector is given by  
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2 2
i iV VV� � � �V V V . (2.1.19) 

If � �1 2, /2��� V V , then there results 

1 2 1 2 0j jV V� � �V V , (2.1.20) 

obtaining thus the necessary and sufficient condition of orthogonality of the vectors 1V  
and 2V  (supposing that 1 2, �V V 0 ); obviously, the relation (2.1.20) is verified also if 
one of the factors vanishes. It is a case in which one has divisors of zero. 

The square of the relation (1.1.4) leads to the modulus of the sum of two vectors in 
the form 

� �2 2
1 2 1 2 1 22 cos ,V V V VV� � � V V . (2.1.21) 

The angle (less than � ) of two directed axes of vectors 1V  and 2V  is given by 

� � 1 2 1 2
1 2

1 2 1 2 1 2
cos , i i

j j k k

V V
VV V V V V

�
� �

V V
V V . (2.1.22) 

We can write the component of a vector along an axis in the form 

j jV � �V i ,     1,2, 3j � , (2.1.23) 

so that the canonical representation (2.1.6) becomes 

� �j j� �V V i i . (2.1.6'') 

As well, the cosines given by (2.1.9) may be expressed by the relations 

jkj k� �� �i i ,     , 1,2, 3j k � ; (2.1.9') 

in this case, the scalar products of the relations (2.1.8), (2.1.8') by l�i  and li , 1,2, 3l � , 
respectively, lead to the relations 

ij ik jk� � 
� ,    ji ki jk� � 
� ,    , 1,2, 3j k � , (2.1.24) 

verified by these cosines. 

1.2.2 Vector product of two vectors 
The vector product (external product, cross product) of the (free, bound or sliding) 

vectors 1V  and 2V  is a vector 

1 2� 3V V V , (2.1.25) 
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the direction of which is normal to the plane formed by the given vectors (supposing 
that they are applied at the same point), such that the vectors 1V , 2V , V  (in this order) 
form a positive basis, and the modulus of which is given by 

� �1 2 1 2sin ,V VV� V V ; (2.1.25') 

 
Figure 2.4.  Vector product V  of two vectors (a). Vector 2�V  of orthogonal projection (b). 

hence, the modulus of the vector product is equal to the area of the parallelogram 
defined by the two vectors (Fig.2.4,a). Thus, we introduce an oriented plane, which puts 
into evidence a positive direction for the angle � �1 2, ��� V V  (so that an observer 
situated along the vector V  sees the superposition of 1V  onto 2V  by a rotation from 
right to left, the right-hand rule). The oriented plane element (bounded by a closed 
simple curve), corresponding to the previous definition, is called a bivector and is 
represented by the vector V . In contradistinction to the vector associated to an oriented 
segment (with the aid of which we have built up the vector space), called also polar 
vector, this vector will be called axial vector; the denomination is justified, because it 
corresponds to a rotation in the oriented plane, about an axis normal to this plane. We 
notice that one cannot sum a vector with a bivector, but one can set up an analogous 
algebra of bivectors. 

Let 2�V  be the orthogonal projection vector of vector 2V  on a plane normal to the 
vector 1V  (Fig.2.4,b); it is easy to see that 

1 2 1 2�� 3 � 3V V V V V , (2.1.26) 

because the two vector products lead to axial vectors having the same direction and 
modulus. We mention the following properties:  

i) 1 2 2 13 � � 3V V V V  (anticommutativity); 
ii) � �1 2 3 1 2 1 33 � � 3 � 3V V V V V V V  (distributivity with respect to the 

addition of vectors; consequence of the property expressed by the relations 
(2.1.26)). 

If we express the vectors in the canonical form (2.1.16), then there results, 
symbolically, 

1 2 3

1 2 11 12 13

21 22 23

V V V

V V V

3 �

i i i

V V , (2.1.27) 
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because 

j k jkl l3 ��i i i ,    , 1,2, 3j k � , (2.1.28) 

jkl�  being Ricci’s permutation symbol 

� � � �

� � � �

  1  for , , 1,2, 3 ,

1  for , , 2,1, 3 ,

 0  for    or    or  ,
jkl

j k l

j k l

j k k l l j

� �
��� � � � 
� � � ��!

 (2.1.29) 

where we used the notation (1.1.1). For instance, the component of the vector product 
(2.1.25) along the axis lOx  is given by 

1 2jl jkl kV V V�� , (2.1.30) 

so that 

1 2 1 2jjkl k lV V3 ��V V i ; (2.1.30') 

this is, in fact, the development of the determinant (2.1.27). 
In particular, if � �1 2, /2��� V V , then the two vectors are orthogonal and we have 

1 2 1 2VV3 �V V . (2.1.31) 

If � �1 2, 0�� V V  or � �1 2, ��� V V , then the vectors are collinear and we can write 

1 23 �V V 0 ; (2.1.32) 

this relation represents the necessary and sufficient condition of collinearity of the 
vectors 1V  and 2V  (supposing that 1 2, �V V 0 ) and is equivalent to a condition of the 
form (2.1.4'') (we use the formula (2.1.27)). Obviously, the relation (2.1.32) is verified 
also if one of the factors vanishes. It is another case in which one has divisors of zero. 

By using the formulae (2.1.12) and (2.1.25'), we deduce Lagrange’s identity 

� � 22 2 2
1 2 1 2 1 2V V� � � 3V V V V ; (2.1.33) 

from this relation one can obtain also Cauchy’s inequality 

� �2 2 2
1 2 1 2V V� �V V . (2.1.34) 

1.2.3 Scalar triple product of three vectors 
The scalar triple product (mixed product) of three (free, bound or sliding) vectors 

1V , 2V  and 3V  is the scalar defined by the right or by the left member of the relation 
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� � � �1 2 3 1 2 33 � � � 3V V V V V V , (2.1.35) 

which is easy verified if one takes into account the expressions (2.1.17) and (2.1.27) of 
the scalar and vector products, respectively. The notation of this product in the form 

� � " #1 2 3 1 2 1 23 3, , det ij i j i jijk k ijk kV V V V V V V� �� ��V V V , (2.1.36) 

where we took also (2.1.30') into account, is justified because it is immaterial what 
member of the definition relation we use. We have thus obtained the development of a 
determinant of third order too. We may also write 

" #det pq mj jmlmn ijk li nk ijk il knV V V V V V V� � ��� ,    , , 1,2, 3l m n � , (2.1.37) 

taking into account (2.1.29). Indeed, if two of the indices , ,l m n  are equal, for instance 
l m� , the product of the quantity mjliV V , symmetric with respect to the indices i  and 
j , by Ricci’s symbol ijk� , skew-symmetric with respect to these indices, vanishes, as 
well as mmn� ; if all the indices , ,l m n  are different, for instance 1l � , 2m � , 

3n � , then we find again (2.1.36). Analogously, we can prove the relation 

" # 1det
2pq jmhi ijk lmn hl knV V V V
 � �� ,     , 1,2, 3h i � . (2.1.37') 

We notice also that the scalar triple product of the vectors U , V , W  may be expressed 
in the form 

� �, , i jijk kU VW�U V W � . (2.1.38) 

The relations (2.1.35), (2.1.36) show that the scalar product of an axial vector by a polar 
one has a meaning, because it leads to a scalar; indeed, one can thus introduce the 
notion of a mixed product of three polar vectors. We mention the following properties: 

i) � � � � � �1 2 3 4 1 2 3 1 2 4, , , , , ,� � �V V V V V V V V V V  (distributivity with respect 
to the addition of vectors); 
with three vectors 1V , 2V , 3V  one can form 3! 6�  mixed products, which 
verify the relations 
 

� � � � � �1 2 3 2 3 1 3 1 2, , , , , ,� �V V V V V V V V V  
� � � � � �2 1 3 1 3 2 3 2 1, , , , , ,� � � � � �V V V V V V V V V , 

 
 

(2.1.39) 

ii) 

 
            obtaining thus only two distinct mixed products, which are of opposite sign. 

If we denote 1 2� 3W V V , then we may write 

� � � � � �1 2 3 1 2 3 3 3, , cos ,WV Wh� 3 � � �V V V V V V W V ; (2.1.36') 

hence, the scalar triple product represents the volume of the parallelepipedon formed by 
the vectors 1V , 2V  and 3V , because W  is the area of the parallelogram determined by 
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1V  and 2V , while � �3 3cos ,h V� W V  is the height of the parallelepipedon (Fig.2.5). 
If � �3, /2��� W V  , then the scalar (2.1.36') is positive, while the relation 

 
Figure 2.5.  Triple scalar product trihedron. 

� �1 2 3, , 0V V V �  (2.1.40) 

represents the condition that the vectors 1V , 2V , 3V , in the given order, form a positive 
(right-handed) or negative (left-handed) basis, respectively. If 

� �1 2 3, , 0�V V V , (2.1.41) 

then the corresponding volume vanishes; hence, this is a necessary and sufficient 
condition of coplanarity of vectors 1V , 2V  and 3V  (supposing that 1 2 3, , �V V V 0 ), 
and is equivalent to a condition of the form (2.1.3'''). Obviously, the relation (2.1.41) is 
also verified if one of the factors is equal to zero; if two of the vectors 1V , 2V , 3V  are 
collinear (in particular, equal), then the mixed product vanishes too (a very important 
case in practice). 

Starting from the formula (2.1.36) and applying the rule of multiplication of two 
determinants, we obtain 

� � � � " #1 2 3 1 2 3, , , , det i j� �V V V W W W V W ; (2.1.42) 

in particular, one has 

� � " # � � � �2 2 2 2 2 2
1 2 3 1 2 3 2 3 3 1, , det 1 cos , cos ,i j V V V� � � � �$&V V V V V V V V V  

� � � � � � � �2
1 2 2 3 3 1 1 2cos , 2 cos , cos , cos ,� � %'V V V V V V V V , (2.1.42') 

the determinant in the right member being Gramm’s determinant. 
Taking into account the geometric signification of the scalar triple product, we may 

write 

� �, ,jjkl k l� � i i i ; (2.1.43) 

the formulae (2.1.39) show that there are six components, but only two of them are 
distinct 
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jkl klj ljk kjl jlk lkj� �� �� � � � � � � � � � ,    , , 1,2, 3j k l � . (2.1.44) 

The permutation symbol is thus skew-symmetric in all pair of indices (hence, it is 
totally skew-symmetric). 

Two permutation symbols lead to the product 

im inil

jm jnijk lmn jl

kl km kn


 
 



 
 



 
 


� � � ,      , , , , , 1,2, 3i j k l m n � , (2.1.45) 

where we took into account the formulae (2.1.42) and (2.1.14). For k n� , we obtain 

imil
jm imijk lmk il jl

jmjl


 


 
 
 



 

� � � � � ,      , , , 1,2, 3i j l m � ; (2.1.46) 

if we have also j m� , then it results 

2ijk ljk il
� � � ,      , 1,2, 3i l � , (2.1.46') 

and if i l�  also holds, then we get 

6ijk ijk� � � . (2.1.46'') 

Multiplying the relation (2.1.37) by lmn�  and with the aid of the relation (2.1.46''), 
we obtain 

" # 1det
6pq jmijk lmn il knV V V V� �� . (2.1.36'') 

1.2.4 Vector triple product of three vectors 
Let be three (free, bound or sliding) vectors 1V , 2V  and 3V , with which one can 

form six distinct vector triple products, equal – in modulus – two by two. Choosing one 
of these triple vector products 

� �1 2 3� 3 3V V V V , (2.1.47) 

we note 2 3� 3W V V ; this is a vector normal to the plane  formed  by  the  vectors 2V  
and 3V . On the other hand, the vector product 1� 3V V W  is normal to W , 
belonging to the plane normal to W , hence contained in the plane formed by 2V  and 

3V ; using the condition of coplanarity of the vectors V , 2V  and 3V , we may write 

2 3� �� �V V V , (2.1.48) 
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where �  and �  are – for the moment – indeterminate scalars. This representation of the 
vector triple product by means of two polar vectors allows us to affirm that the vector 
product of a polar vector by an axial one has a meaning. The relation (2.1.48) holds for 
any vectors 1V , 2V  and 3V . We perform a scalar multiplication of both members by 

1V ; the first member becomes a mixed product with two equal factors, hence vanishing. 
We may thus write 

� � � �1 2 1 3 0� �� � � �V V V V .  

Supposing  that 1 2 0� �V V  and 1 3 0� �V V , it follows that �  and �  must be of the 
form 

� �1 3� �� �V V ,         � �1 2� �� � �V V ,  

where �  is a still undetermined scalar; replacing in (2.1.48) and projecting on the axis 
iOx , we can write 

� � � �" #1 3 1 3 2 1 2 32j m j j i j j iijk klm lV V V V V V V V V�� � � � .  

If we take into account a formula of the form (2.1.46), then we obtain 1� � ; thus, the 
basic formula of the vector triple product is 

� � � � � �1 2 3 1 3 2 1 2 33 3 � � � �V V V V V V V V V . (2.1.49) 

If 1 2 1 3 0� � � �V V V V , this triple vector product vanishes, but the formula (2.1.49) 
still holds; if only one of these scalar products is equal to zero, one obtains also an 
identity. 

It follows that the vector product is not associative; hence 

� � � �1 2 3 1 2 33 3 � 3 3V V V V V V , (2.1.50) 

in general. But one can verify the relation 

� � � � � �1 2 3 2 3 1 3 1 23 3 � 3 3 � 3 3 �V V V V V V V V V 0 . (2.1.50') 

Using the formula (2.1.49), one may easily prove the relations 

� � � � � � � � � � � �1 2 3 4 1 3 2 4 1 4 2 33 � 3 � � � � � �V V V V V V V V V V V V , (2.1.51) 
� � � � � � � �1 2 3 4 3 4 1 2 2 3 4 1, , , ,3 3 3 � �V V V V V V V V V V V V   

� � � �4 1 2 3 1 2 3 4, , , ,� �V V V V V V V V ; (2.1.51') 

the last relation leads to 

� � � � � � � �1 2 3 2 3 1 3 1 2 1 2 3, , , , , , , ,� � �V V V V V V V V V V V V V V V V . (2.1.52) 
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In other notations, we may write 

� � � �
1 2 3

, ,
2 , ,

ijk
i j k k kV

�
� �V V e e e e

e e e
, (2.1.52') 

obtaining thus the representation of the vector V  in a positive basis 
� �, -1 2 3,  1,2, 3,  , , 0k k � �e e e e ; hence, the components of the vector V  in this 

basis will be kV  (in fact, contravariant components, but in what follows we will not use 
the notions of covariance and contravariance), corresponding to Cramer’s formulae in 
the theory of linear algebraic equations. The representation (2.1.52') constitutes a 
generalization of the canonical representation (2.1.6''). 

1.2.5 Applications to the study of certain equations 
We will consider now two equations, often used in the vector computation. Let thus 

be the scalar equation 

m� �a x , (2.1.53) 

where a  is a given vector, x  is a unknown vector, while m  is a given scalar. The 
solution of the homogeneous equation 0� �a x  is a vector contained in a plane normal 
to the vector a ; hence, the general solution of this equation is of the form � 3x p a , 
where p  is an arbitrary vector. Adding a particular solution of the non-homogeneous 
equation, we obtain the general solution of the equation (2.1.53) in the form 

2
m
a

� 3 �
ax p a . (2.1.53') 

Let be also the vector equation 

3 �a x b ,    0� �a b , (2.1.54) 

where a  and b  are given vectors, while x  is a unknown vector; we notice that the data 
of the problem cannot be arbitrary, because the vectors a  and b  must be orthogonal 
(otherwise, the vector b  cannot be the vector product of the vectors a  and x , and the 
equation has not solution). The solution of the homogeneous equation 3 �a x 0  is a 
vector collinear with the vector a , hence of the form ��x a , where �  is an arbitrary 
scalar. Introducing a particular solution of the non-homogeneous equation (which is 
verified taking into account the canonical formula of the vector triple product and the 
condition 0� �a b ), one can write the general solution of the equation (2.1.54) in the 
form 

2a
� 3

� �
b ax a . (2.1.54') 
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2. Systems of forces 
A system of forces is a set of forces which can be modelled by bound or sliding 

vectors. The fundamental problem is that of replacing a system of forces by another one 
of a simpler form, equivalent – from the point of view of its mechanical action – to the 
first system; to do this, we use the moment of a force (in general, of a vector) and the 
torsor operator. In what follows, let us deal with discrete systems of vectors, very 
important in the study of discrete mechanical systems. 

2.1 Moments 
The notion of moment plays an important rôle in the theory of systems of forces and, 

in general, in the theory of systems of vectors. We introduce thus the moments with 
respect to a pole or to an axis, for quantities represented by bound vectors, as well as for 
quantities represented by sliding vectors; these moments must be considered as being 
the result of the application of certain operators on the given vectors. For the sake of 
generality, we will obtain these results for arbitrary vectors. 

2.1.1 Moment of a vector with respect to a pole 

Let be a pole O  and a bound vector V , applied at a point P  of position vector r  
(Fig.2.6,a). The moment of the vector V  with respect to the pole O  is, by definition, 
the vector product (considered as a bound axial vector applied at O ) 

 
Figure 2.6.  Moment of a vector with respect to a pole (a). Variation of the point of  

application (b) or of the pole (c). 

� �O O OP� � 3 � 3
����

M M V V r V ; (2.2.1) 

the components of this vector are 

, jO i ijk kM x V�� ,   1,2, 3i � . (2.2.1') 

The moment OM  vanishes if �V 0  (banal case) or if �r 0  (the vector  is  applied  at 
O ); as well, it is equal to zero if the vectors V  and r  are collinear, hence if they have 
the same support. We may thus affirm that the moment of a bound vector with respect 
to a pole vanishes if and only if the pole is on the vector’s support. If the distance of the 
pole O  to the support of the vector V  is d  (the lever arm of the moment, Fig.2.6,a), 
then we can write the modulus of the moment in the form 

� �O Vd�M V . (2.2.2) 
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If a vector V� , equipollent to V  (hence � �V V  as free vectors), is applied at the 
point P � , then we may write (Fig.2.6,b) 

� � � �O OP OP PP OP PP� � � � � � � �� 3 � � 3 � 3 � 3
����� ����� ��������� ����

M V V V V V   

OP PP �� 3 � 3
���������

V V ,  

hence 

� � � �O O PP� �� � 3
�����

M V M V V ; (2.2.3) 

the variation of the moment of a bound vector with respect to a given pole, by a change 
of the point of application of the vector is thus emphasized. The moment OM  remains 

invariant by a change of the point of application of the vector V  if PP � 3 �
�����

V 0 ; this 
condition holds if �V 0  or PP � �

�����
0  (trivial cases) or if P �  belongs to the support of 

the vector V . It results that the above given definition of the moment of a bound vector 
with respect to a pole remains valid also in the case of a sliding vector, because we can 
thus take an arbitrary point of application of the latter vector on its support. 

Let be a pole O � , another one than the pole O . We can write (Fig.2.6,c) 

� � � �O O P O O OP O O OP� � � �� 3 � � 3 � 3 � 3
����� ����� ��������� ����

M V V V V V ,  

hence 

� � � �OO O O� �� � 3
�����

M V M V V ; (2.2.4) 

this relation shows the variation of the moment of a bound vector by a change of the 
pole with respect to which it is taken. The moment ( )M V  remains invariant if we have 

O O� 3 �
�����

V 0 ; this condition is fulfilled if �V 0  or O O� �
�����

0  (trivial cases) or if the 
vectors O O�

�����
 and V  are collinear. Hence, the moment ( )M V  remains invariant if the 

pole with respect to which it is calculated is moving along an axis parallel to the support 
of the vector V . 

Let V  be the resultant of n  bound vectors iV , 1,2,...,i n� , applied at the same 
point P  of position vector r  with respect to the pole O . Let us perform a vector 
product at the left of relation (1.1.5) by r  and take into  consideration  the  distributivity 
of the vector product with respect to the vector summation; if we denote 

� �i iO � 3M V r V ,     1,2,...,i n� ,     � �O � 3M V r V , (2.2.5) 

then we may write (Fig.2.7,a) 

� � � � � � � �1 2 ... nO O O O� � � �M V M V M V M V  (2.2.5') 

and state 
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Theorem 2.2.1 (Varignon). The sum of the moments of n  bound vectors, having the 
same point of application, with respect to a pole, is equal to the moment of their 
resultant with respect to the same pole. 

 
Figure 2.7.  Theorem of Varignon (a). Case of two vectors V  and �V , applied at 

the same point (b) or at two distinct points on the same support (c).  

In the case of two bound vectors V  and �V , which are applied at the same point 
P  and verify the relation (1.1.11), we can write (Fig.2.7,b) 

� � � �O O� � �M V M V 0 ; (2.2.6) 

the result holds also in the case of two sliding vectors having the same support, as well 
in the case in which the points of application 1P  and 2P  of two bound vectors are 
distinct, but belong to their common support (Fig.2.7,c). 

2.1.2 Moment of a vector with respect to an axis 

Let be an oriented axis  , of unit vector u , and a bound vector V , applied at a 
point P  of position vector r  with respect to a pole O  arbitrary chosen on the axis. The 
moment of the vector V  with respect to the axis   is, by definition, the scalar equal to 
the projection on the axis of the moment of the vector V  with respect to the point O , 
hence (Fig.2.8,a) 

� � � � � � � �pr , ,OM M  � � � � 3 �V M V u r V u r V ; (2.2.7) 

 
Figure 2.8.  Moment of a vector with respect to a directed axis (a). Variation of 

the point of application (b) or of the axis (c). 

this definition is correct only if M  does not depend on the choice of the pole O  on 
the axis  . Let be another pole O �  on this axis; a scalar product of the relation (2.2.4) 
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by u  leads to � � � �OO �� � �u M V u M V , because � �, , 0O O� �
�����

u V , hence the 

definition is correct. Because the definition given to the moment of a vector with respect 
to a pole holds also for a sliding vector, we can state that the definition given for the 
moment of a vector with respect to an axis remains valid in the case of a sliding vector 
too. In general, the scalar product of the relation (2.2.3) by the unit vector u  leads to 

� � � � � �, ,M M PP � �� �
�����

V V u V , (2.2.8) 

that is to the variation of the moment of a bound vector with respect to an axis by a 
change of its point of application (Fig.2.8,b). It results that the moment M  remains 
invariant if the point of application of the vector V  is moving along an axis parallel to 
the axis   (in this case � �, , 0PP � �

�����
u V ). 

As well, taking an axis �  of unit vector � �u u  (equality as free vectors), a scalar 
product of the relation (2.2.4) by this unit vector leads to (Fig.2.8,c) 

� � � � � �, ,M M OO� �� �
�����

V V u V ; (2.2.9) 

hence, the moment � �M V  remains invariant if we can choose two poles O  and O �  

so that the vectors OO �
�����

 and V  be collinear, hence if the axis   with respect to which 
this moment is calculated is moving parallel to itself, in a plane parallel to the vector 
V . 

Taking into account (2.2.1'), we notice that the moments of a vector with respect to 
the co-ordinate axes iOx , 1,2, 3i � , are given by 

,iOx O iM M� ,    1,2, 3i � . (2.2.10) 

Let iu , 1,2, 3i � , be the components of the unit vector u ; taking into account the 
relation of definition (2.2.7), we may write the moment of the vector � �iVV  with 
respect to the axis   passing through the point O  in the form 

� �
1 2 3

1 2 3

1 2 3

i jijk k

u u u
M x x x u x V

V V V
 � ��V . (2.2.7') 

We will consider a plane �  normal to the axis   at the point O �  of it and let be the 
projection vector P Q� � ��

������
V  of the vector PQ �

����
V  on this plane (Fig.2.9); taking into 

account the properties of the mixed product, it follows that 

� � � � � �, , , ,M OP OO O P P P PP Q Q � � � � � � �� � � � � �
����� ����� ����� ����� ���������

V u V u V   

� �, ,O P� � ��
�����

u V ,  
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the eight non-written mixed products (obtained taking into account the property of 
distributivity of the mixed product with respect to the addition of vectors) vanishing. 
Because u  and � �O � �M V  are parallel, we have 

 
Figure 2.9.  Moment of a vector of support D  with respect to a directed axis  . 

� � � � � �OM M M  �� �� � 2V V V , (2.2.11) 

taking the sign + or – as the rotation indicated by the vector V �  (hence the vector V ) 
about the axis   (oriented by the unit vector u ) is positive or negative. Hence, the 
modulus of the moment of a vector V  with respect to the axis   is equal to the 
modulus of the moment of the projection vector of V  on a plane normal to the axis, 
with respect to the trace of the axis on the plane. If D  is the support of the vector V , 
we denote by � �,D� � �  the least angle between the two axes. Let d  be the 
distance from the point O �  to the support of the vector V � ; we notice that d  is just the 
length of the common normal to the axes D  and   (the least distance between the 
points of the two axes). Observing that sinV V �� � , taking into account the 
expression (2.2.2) of the modulus of the moment of a vector with respect to a pole and 
using the formula (2.2.11), we may write 

� � sinM Vd �� 2V ; (2.2.11') 

one takes the sign + or –, using the criterion enounced above. Hence, the moment of a 
vector with respect to an axis vanishes if 0V �  (trivial case), if 0d �  (the axes D  
and   are concurrent), or if 0� �  (the axes D  and   are parallel); hence, the 
moment of a vector with respect to an axis vanishes if and only if the support of the 
vector and the axis are coplanar.  

2.1.3 The torsor of a sliding vector 
Introducing the moment of a sliding vector with respect to a pole, we may give a new 

representation for such a vector. Let thus be a sliding vector V , of components iV , 
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1,2, 3i � , with respect to an orthonormed frame of reference, and let be OM  the 
moment of this vector with respect to the pole O  (Fig.2.10); we may write the obvious 
relation 

 
Figure 2.10.  Torsor of a sliding vector with respect to a pole O . 

0
iiO OxV M� � �V M . (2.2.12) 

Starting from the expression (2.2.1) of the moment OM , we can write the vector 
equation 

O3 � �V r M , (2.2.13) 

where r  is an unknown vector; if we take into account the relation (2.2.12), we may 
affirm that this equation, which must determine the support of the sliding vector V , has 
a solution. Using the formula (2.1.54'), the general solution of the equation (2.2.13) can 
be written in the form 

2
O

V
�

3
� �

V M
r V , (2.2.13') 

obtaining thus the equation of the axis D  (the support of the vector V ). We may write 

0 2
O

V
3

�
V M

r ,    0
Or
V

�
M

 (2.2.13'') 

for 0� � ; it follows that � �0 0P r  is the projection of O  on the axis D , because 

0 0� �r V . Starting from (2.2.13'), we can write the equations of the axis D  also in 
the form 

� � � �3 2 1 3

2 2
1 2 3 2 3 1

1 2

1 1
Ox Ox Ox OxV x V M V M V x V M V M

V V
� � � � �   

� �2 1

2
3 1 2

3

1
Ox OxV x V M V M

V
� � � . (2.2.13''') 

r
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Hence, a sliding vector is characterized by the vectors V  and OM  which verify the 
relation (2.2.12); such a vector is thus given by two ordered triplets of numbers 
� �1 2 31 2 3, , , , ,Ox Ox OxV V V M M M , which verify the relation (2.2.12), hence by five 
independent numbers. The six numbers mentioned above are called the co-ordinates of 
the sliding vector or Plücker’s co-ordinates. 

Since OM  is the result of the application of an operator on the vector V , the couple 
of vectors , -, OR M  represents the result of the application of another operator on the 
same vector V ; these vectors form the torsor (wrench) of the vector V  at the point 
(pole) O , 

� � , -,O O= �V R M , (2.2.14) 

characterizing entirely the sliding vector. The quantity O�R M  is called torsor’s scalar 
and it vanishes in case of a single sliding vector. Taking into account (2.2.4), we may 
write 

� � � � , -,OO O O� �= � = � 3
�����

V V 0 R ; (2.2.15) 

this relation shows the variation of the torsor of a sliding vector by a change of the pole 
with respect to which it is calculated. If the torsor of a sliding vector vanishes at a point, 
then it vanishes at any other point; therefore, the necessary and sufficient condition for a 
sliding vector to be zero is the vanishing of its torsor at a point. 

We also introduce a scalar, called virial, by the relation of definition (Fig.2.10) 

� � j jO O x V� � � �V r VV V ; (2.2.16) 

in this case, if we add the number OV  to the co-ordinates  of  a  sliding  vector,  then  we 
obtain the point of application on the support D . We have thus a new possibility to 
represent a bound vector (by six independent numbers). 

2.2 Reduction of systems of forces 
The forces are modelled with the aid of bound or sliding vectors as they are applied 

upon a deformable or non-deformable mechanical system, respectively; a study of the 
equivalence of systems of forces (in particular, the equivalence to zero), these ones 
being modelled correspondingly, is made. We consider also the systems of free vectors, 
because of their importance. 

2.2.1 Systems of free vectors 

Let , - , -, 1,2,...,i i n� �V V  and , - , -, 1,2,...,j j m� �� �V V  be two systems of 
free vectors. By definition, we say that the two systems are equivalent if they have the 
same resultant 

1 1

n m

i j
i j� �

�� � R V V ; (2.2.17) 
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in this case, we write 

, - , -��V V . (2.2.18) 

The operations of passing from a system of vectors to another system, equivalent to the 
first one, are operations of vector addition (composition and decomposition of vectors); 
these operations are called elementary operations of equivalence. We consider also the 
system of free vectors , - , -, 1,2,...,k k p�� ��� �V V . We mention following properties: 

i) , - , -�V V  (reflexivity); 
ii) , - , - , - , -� ��� �V V V V  (symmetry); 

iii) , - , - , - , - , - , -,� � �� ���� � �V V V V V V  (transitivity). 
Taking into account these properties, we may affirm that the set of elementary 
operations of equivalence forms a group. 

The simplest system of free vectors equivalent to a given system of free vectors is the 
resultant of the latter one. In particular, the resultant of a system of free vectors can be 
equal to zero. By definition, we say that a system of free vectors is equivalent to zero 
and we may write 

, - , -�V 0  (2.2.19) 

if its resultant vanishes 

�R 0 . (2.2.19') 

A system of free vectors equivalent to zero can be eliminated from computation by 
elementary operations of equivalence. 

2.2.2 Mathematical modelling of systems of forces 
The forces acting upon the mechanical systems have been represented by bound 

vectors, and their points of application are the very same points of the system (the 
points at which are the particles of a discrete system or the points of a continuous 
system). We are thus led to the study of a system of forces modelled by bound vectors. 

 
Figure 2.11.  Mathematical modelling of a force acting upon a rigid solid. 

In the case of a rigid solid, let iP  be a point of it at which acts a force F  (Fig.2.11); 
we suppose that at the point jP  of this solid, on the support of F , is acting a system of 
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two forces , - , -,� �� �F F 0  (system equivalent to zero), considered as bound vectors 
and for which holds the relation � �F F , as free vectors. We may write the following 
relations of equivalence of the systems of forces 

, - , - , - , - , - , -, ,� � � � �� � � �� � �F F F F F F F F ,  

taking into account the relation , - , -, �� �F F 0 , because – from a mechanical point of 
view – the forces are applied at points which are at an invariable distance between them 
(the modelling of the solid as a rigid); by way of consequence, the effect of the force F  
can be replaced by the effect of the force F� . In the case of a rigid solid, the forces will 
be thus modelled by sliding vectors. Hence, a force acting upon a rigid solid can be 
applied at any point of it, if this point is on the support of the force; this result may be 
applied also to a non-deformable discrete system if two or several particles of it are on 
the support of the force. Hence, the necessity to study a system of forces modelled by 
sliding vectors is put into evidence. 

2.2.3 Systems of forces modelled by bound vectors 

Let , - , -, 1,2,..., , 1,2,...,ij ii n j n� � �F F  and , - , , 1,2,..., ,ik i n� �� �F F  
-1,2,..., ik n ��  be two systems of forces modelled by bound vectors; the first index 

corresponds to the point iP  at which are applied the forces ijF  and ikF� , while the 
second index individualises the force in the respective system. By definition, we say 
that the two systems of forces modelled by bound vectors are equivalent if they have the 
same resultant at each point of application  

1 1

i in n

i ij ik
j k

�

� �
�� � R F F ,    1,2,...,i n� , (2.2.20) 

and this is written in the form 

, - , -��F F . (2.2.21) 

The operations of passing from a system of forces to another system of forces, 
equivalent to the first one, are operations of vector addition at each point iP  of the 
system; these operations are elementary operations of equivalence in the case of 
systems of forces modelled by bound vectors. Let be also the system of forces modelled 
by bound vectors , - , -, 1,2,..., , 1,2,..., iil i n l n�� �� ��� � �F F . The properties mentioned 
in Subsec. 2.2.1 still hold; also in this case, the set of elementary operations of 
equivalence forms a group. 

The simplest system of forces modelled by bound vectors is formed by the resultants 
iR  applied at the points , 1,2,...,iP i n� . If 

i �R 0 ,    1,2,...,i n� , (2.2.22) 

then we say, by definition, that the system of forces modelled by bound vectors is 
equivalent to zero, and we may write 
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, - , -�F 0 . (2.2.23) 

These results hold also for an arbitrary system of bound vectors. In general, a system of 
bound vectors equivalent to zero can be eliminated from computation by elementary 
operations of equivalence. 

2.2.4 Systems of forces modelled by sliding vectors 

Let , - , -, 1,2,...,i i n� �F F  be a system of forces modelled by sliding vectors. 
Besides the operations of vector addition (including composition and decomposition of 
vectors), we introduce also the operations of sliding along the support, obtaining thus 
the enlarged set of elementary operations of equivalence, which forms a group too. 

Let us consider three non-collinear points 1 2 3, , ,O O O  so that the plane �  
determined by them do not contain the supports of the forces iF . We choose the point 
of application iP  of the force iF  on its support (eventually, we perform a sliding along 
this support), so that iP �> ; in this case, the force iF  can be decomposed univocally 
along 1iPO , 2iPO , 3iPO  (Fig.2.12,a) (if the support of the force iF  is contained in the 
plane � , then the decomposition remains possible, but it is no more unique). Thus, the 
system of forces , -F , modelled by sliding vectors, may be replaced, after sliding along 
the supports 1iPO , 2iPO , 3iPO , by three subsystems of forces of the same type, applied 
at the points 1O , 2O , 3O ; summing the forces at these points, we obtain a system of 
three forces modelled by sliding vectors , - , -1 2 3, ,�F F F F , equivalent to the given 
system of forces , -F . Because of the arbitrariness in the choice of the points 1O , 2O , 

3O  and iP , there exists an infinity of such systems of three forces, which have the 
above mentioned property. Let 2�  and 3�  be the planes determined by the point 1O  
and the forces 2F  and 3F , respectively; the intersection of these planes is a straight line 

1OO �  (the point O �  is arbitrary on this line) (Fig.2.12,b). We decompose the forces 2F  
and 3F , along 2 1O O  and 2O O � , and along 3 1O O  and 3O O � , in the planes 2�  and 3� , 
respectively; by sliding, these components will be applied at the points 1O  and O � , 
where we are summing them, together with 1F . We obtain thus a system of two forces 

modelled by sliding vectors , - , -1 , ��F F F , equivalent to the system , -F , as well as 

to the system , -F ; the point O �  is arbitrarily chosen, so that there is an infinity of such 
systems of two forces, modelled by sliding vectors. 

Let , - , -, 1,2,...,j j m� �� �F F  be also a system of forces modelled by sliding 
vectors. We say, by definition, that two systems of forces modelled by sliding vectors 
are equivalent if, by operations belonging to the enlarged set of elementary equivalence 
operations, they can be reduced to the same system of three (or two) forces modelled by 
sliding vectors, and we may write a relation of the form (2.2.21). We introduce also the 
system of forces , - , -, 1,2,...,k k p�� ��� �F F , modelled by sliding vectors; then the 
three properties mentioned at Subsec. 2.2.1 hold. 
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The simplest system of forces modelled by sliding vectors equivalent to a given one 
is formed by two forces modelled by sliding vectors. In particular, this system of two 
vectors modelled by sliding vectors is equivalent to zero if the two forces have the same 
support, the same modulus and opposite directions; in this case, we say that the system 
, -F  of forces modelled by sliding vectors is equivalent to zero, and we write it in the 
form (2.2.23). These results hold for any system of sliding vectors. In general, a system 
of sliding vectors equivalent to zero can be eliminated from computation by operations 
belonging to the enlarged group of elementary operations of equivalence. 

 
Figure 2.12.  Systems of forces modelled by sliding vectors. Equivalent systems 

of three (a) or two (b) sliding vectors. 

2.2.5 Torsor of a system of vectors. The minimal form of the torsor 
Because the “torsor” operator appears in connection with any systems of vectors, not 

only in connection with systems of forces, we will study this notion for arbitrary 
systems of vectors. Let thus , - , -, 1,2,...,i i n� �V V  be a system of n  bound 
vectors, applied at the points iP  of position vectors ir , or of n  sliding vectors on 
supports passing through these points. We introduce also the resultant R  of the system 
of vectors, in the form of a free vector given by (in this relation the vectors iV  are 
considered as free vectors) 

1

n

i
i�

� R V , (2.2.24) 

as well as the resultant moment of the system of vectors, in the form of a bound vector, 
applied at the point O  and given by 

1

n

i iO
i�

� 3M r V . (2.2.24') 

We notice that the pair of vectors , -, OR M  is the result of the application of an 
operator O�  on a system , -V  of vectors; this pair of vectors is called, by definition, 
the torsor (wrench) of the system of vectors , -V  at the pole (point) O   
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, - , -,O O= �V R M . (2.2.24'') 

Because the moment of a bound vector with respect to a pole holds also for a sliding 
vector, the definition given above is valid as well for a system of sliding vectors. The 
components of the resultant and of the resultant moment can be written in the form 

1

n

j ij
i

R V
�

�  ,    
�

��  ( )

1
j

n
i

Ox jkl ilk
i

M x V ,    1,2, 3j � . (2.2.24''') 

Let , - , - , -, , 1,2,..., , 1,2,...,i j i n j m� �� � � �V V V V  be the sum of two systems 

of vectors, where , - , -, 1,2,...,j j m� �� �V V  is another system of bound or sliding 
vectors. As well,  let be a scalar �  and a system of vectors , -V ; the product of �  by 
, -V  is of the form , - , - , -, 1,2,...,i i n� � �� � �V V V . The two operations 
mentioned above have all the properties which are put in evidence in Chap. 1, Subsec. 
1.1.2 concerning the addition of vectors or the product of a scalar by a vector. In 
particular, we can take 1� � � , which leads to the operation , - , -��V V . The 
definition of the torsor of a system of vectors yields the basic properties: 

i) , - , -� � , - , -O O O� �= � � = � =V V V V ; 
ii) , -� � , -O O� �= � =V V . 

Hence, the torsor is a linear operator. We notice also that the torsor is invariant with 
respect to the group of elementary operations of equivalence or with respect to the 
enlarged group of these operations, as we have to do with systems  of  bound  or  sliding 
vectors, respectively. 

If a system of vectors , -V  is equivalent to zero, then its torsor at an arbitrary pole 
O  is equal to zero 

, -O= �V 0 , (2.2.25) 

which is equivalent to 

�R 0 ,    O �M 0 . (2.2.25') 

Indeed, supposing that we have to do with a system of bound vectors, the resultant at 
each point of the system must vanish, the affirmation being thus justified. A system of 
sliding vectors is reduced to a system of two sliding vectors, which verify a relation of 
the form (1.1.11), the vectors having the same support; we are thus led to a relation of 
the form (2.2.6) too, hence the affirmation is justified also in this case. 

Let be now a system of sliding vectors for which the torsor vanishes. We can reduce 
this system to a system of two sliding vectors , - , -1 2,�U U U ; but the torsor is an 
invariant, so that it vanishes also for this system of sliding vectors. Because the resultant 
of the system , -U  is equal to zero, we can state that the vectors 1U  and 2U  have the 
same modulus, but opposite directions; their supports can be parallel ( 1 2� �U U 0 , as 
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free vectors). The resultant moment of the system , -U  also vanishes, so that the two 
supports must coincide. Indeed the condition 1 1 2 23 � 3 �r U r U 0  leads to the 

condition � �2 1 2 1 2 2P P� 3 � 3 �
�����

r r U U 0 , the above affirmation being thus justified 
(Fig.2.13); by sliding along the common support, it is seen that the system , -U  is 
equivalent to zero. Hence, a system of sliding vectors is equivalent to zero, and we write 
this in the form (2.2.19), if and only if its torsor vanishes; in the case of a system of 
bound vectors, the condition (2.2.25) is only necessary. Taking into account (2.2.24'''), 
this condition leads to six equations of projection on the three axes of  co-ordinates. 

 
Figure 2.13.  Torsor of a system of two sliding vectors equivalent to zero. 

Let , -V  and , -�V  be two equivalent systems of vectors, so that one can write the 
relation (2.2.18); it results , - , - , -�� �V V 0 , and further , - , -� �O �= � �V V 0 . 
Noting that the torsor is a linear operator, we state that two systems of sliding vectors 
are equivalent, and we write the relation (2.2.18), if and only if their torsors with 
respect to the same pole are equal 

, - , -O O �= � =V V ; (2.2.26) 

in the case of systems of bound vectors, the condition (2.2.26) is only necessary. 
The resultant R  of the system of vectors , -V  is invariant by a change of pole O . 

In what concerns the resultant moment, by passing to a pole O � , we obtain 

� �
1 1 1 1

n n n n

i i i i i i iO
i i i i
O P O O OP O O OP�

� � � �
� � �� 3 � � 3 � 3 � 3   

����� ����� ��������� ����
M V V V V , 

so that 

OO O O� �� � 3
�����

M M R  (2.2.27) 

or 

, - , - , -,OO O O� �= � = � 3
�����

V V 0 R , (2.2.27') 

a relation of the same form as the relation (2.2.15); we obtain thus the variation of the 
resultant moment, hence also of the torsor of a system of vectors, by a change of the 
pole with respect to which this torsor is calculated. The torsor of a system of vectors is 
invariant by a change of pole O  if this pole moves along an axis parallel to the resultant 
R  or if this one vanishes. Hence, if the torsor of a system of vectors equivalent to zero 
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vanishes at a point ( , -O= �V 0 ), then it is equal to zero at any other point 
( , -O �= �V 0 ); otherwise, the equivalence to zero of a system of sliding vectors would 
depend on the pole with respect to which the torsor is calculated. 

 
Figure 2.14.  Couple of two sliding vectors. 

A system of sliding vectors for which �R 0  and O �M 0  is reducible to a system 
formed by two sliding vectors having the same modulus, parallel supports and opposite 
directions (Fig.2.14). Such a system is called a couple, and its torsor – as we have seen 
– is invariant by a change of pole. 

A scalar product of the relation (2.2.27) by R  leads to 

OO �� � �R M R M , (2.2.28) 

observing that we obtain also a mixed product equal to zero; this quantity is called the 
torsor’s scalar and is invariant by a change of pole. Let be 

O O O
?� �M M M� , (2.2.29) 

where we have decomposed the moment OM  into two components: a component 
parallel and a component normal to the resultant R , respectively (Fig.2.15); in this 
case, the relation (2.2.28) is equivalent to 

 
Figure 2.15.  Central axis of a system of sliding vectors. 

OO �� � �R M R M� � , (2.2.28') 

because 0O
?� �R M . Hence, the component of the resultant moment along the 

resultant R  is also an invariant by a change of pole 

OO � �M M� � . (2.2.28'') 
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In this case, the relation (2.2.27) leads to 

OO O O? ?
� �� � 3

�����
M M R . (2.2.27'') 

We put the problem to find a pole with respect to which the torsor of a system of 
vectors has the simplest form possible (the minimal form). Because R  and OM�  are 
invariants, the only quantity varying in modulus, together with the pole O , is O

?M ; we 
will try to find a pole with respect to which this component of the resultant moment 
vanishes. If the pole O �  has this property, then the relation (2.2.27'') allows us to write 
the condition 

O O O? �� 3 �
�����

M R 0 .  

We obtain thus a vector equation of the form (2.1.54); using the solution (2.1.54'), we 
may write 

2
OOO

R
�

?3
� � �

����� R M
R ,  

where �  is an arbitrary scalar; we notice that this solution  may  be  written  also  in  the 
form 

2
OOO

R
�

3
� � �

����� R M
R , (2.2.30) 

because O3 �R M 0� . We obtain thus an axis parallel to the resultant R ; the resultant 
moments with respect to its points have only the invariant component OM� . We say, in 
this case, that the torsor takes its minimal form; the respective axis is called the central 
axis of the system of vectors (Fig.2.15). For 0� � , we obtain OO � ?

�����
R , with  

OOO
R

?

� �
����� M

. (2.2.30') 

A vector product of the relation (2.2.30) at left by R  allows us to eliminate � , and we 
obtain 

2
OOO

R
3

�3 � 3
����� R M

R R . (2.2.31) 

The formula of the triple vector product leads to 

2
O

O OO
R
�

�� � 3
�����R M

R M R . (2.2.31') 

Taking the pole O  as origin of the co-ordinate axes and denoting the co-ordinates of the 
point O �  by , 1,2, 3ix i � , we can write 
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� � � �1 22 3 3 2 3 1 1 3
1 2

1 1
Ox OxM x R x R M x R x R

R R
� � � � �   

� � � �3 1 2 31 2 2 1 1 2 32
3

1 1
Ox Ox Ox OxM x R x R R M R M R M

R R
� � � � � � ; (2.2.31'') 

these equations represent two planes, the intersection of which is the central axis.  
As we have seen, the torsor operator characterizes a system of sliding vectors; thus, 

taking into account the form of the torsor, we can distinguish several cases of reduction 
of such a system of vectors to simpler systems, i.e.: 

i) If �R 0  and O �M 0 , then we obtain a system of sliding vectors equivalent 
to zero. 

ii) If �R 0  and O �M 0 , then the system of sliding vectors is equivalent to a 
resultant having as support the central axis; indeed, because O

? �M 0 , the pole 
belongs to this axis, so that the affirmation is justified. 

iii) If �R 0  and O �M 0 , then the system of sliding vectors is equivalent to a 
couple. 

iv) If �R 0  and O �M 0 , then we distinguish two subcases: 
 iv') If 0O� �R M , then the system of sliding vectors is equivalent to a 

resultant, the support of which is the central axis; indeed, in this case 
O �M 0� . It is a difference between the cases ii) and iv'), because – in the 

latter case – the pole O  does not belong obligatory to the central axis. 
   

 
Figure 2.16.  Dynam of a system of sliding vectors for which the 

torsor’s scalar does not vanish. 

 iv'') If the torsor’s scalar 0O� �R M , that is in the general case, then the 
system of sliding vectors is equivalent to a dynam (or a screw); the 
support of the resultant R  is the central axis, while the resultant moment 
OM  leads to a couple of moment O �M  (the point O �  on the central axis), 

acting in a plane �  normal to this resultant (Fig.2.16). 

2.2.6 Systems of coplanar forces 

In the case of a system of coplanar forces , - , -, 1,2,...,i i n� �F F , modelled by 
sliding vectors, the resultant is – obviously – contained in the considered plane �  
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(Fig.2.17). The moment OM  of the system of forces with respect to a pole O ��  will 
be a vector normal to the resultant R ; hence, 0O� �R M  and we are in the case iv'). 
If �R 0 , then the system of coplanar forces modelled by sliding vectors is reduced to 
a resultant along the central axis, contained in the considered plane. If the resultant 
vanishes, then the system of forces reduces to a couple if O �M 0  (with respect to an 
arbitrary point in the plane) or is equal to zero if O �M 0 . 

 
Figure 2.17.  Systems of coplanar forces. 

Supposing that this system of forces acts in the plane 1 2Ox x , the conditions of 
equivalence to zero are written in the form 

1 2 0R R� � ,    
3

0OxM � . (2.2.32) 

In particular, a system of three non-parallel coplanar forces modelled by sliding 
vectors, the resultant of which vanishes ( 1 2 0R R� � ), is equivalent to zero if and 
only if the three forces are concurrent (we use the condition 

3
0OxM � ). But choosing 

two poles O �  and O ��  in the plane and writing the conditions 

OO O O� �� � 3 �
�����

M M R 0 ,     OO O O�� ��� � 3 �
�����

M M R 0 ,  

we state that a system of coplanar forces modelled by sliding vectors is equivalent to 
zero if and only if the conditions 

O �M 0 ,    O � �M 0 ,    O �� �M 0  (2.2.33) 

are fulfilled, the poles O , O �  and O ��  being non-collinear; these conditions lead to 
three projection equations on the axis 3Ox , which can be useful in applications. We 
mention that, for the equivalence to zero of a system of coplanar forces modelled by 
bound vectors, these conditions are only necessary. 

2.2.7 Systems of parallel forces 
Let be a direction of unit vector u  and a system of parallel forces 

, - , -, 1,2,...,i i n� �F F , modelled by sliding vectors and given by  
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i iF�F u ; (2.2.34) 

 
Figure 2.18.  Systems of parallel forces. 

these forces are applied at the points iP , of position vectors , 1,2,...,i i n�r  (Fig.2.18).  
We notice that iF  represent the components of these forces along the given direction, 
having vers i � 2F u . The resultant of this system of forces will be 

1

n

i
i

F
�

� �R F u , (2.2.35) 

where we have used the notation 

1

n

i
i

F F
�

�  . (2.2.35') 

The resultant moment with respect to the pole O  is written in the form  

1

n

i iO
i�

� 3 � 3M r F R@ ,  

where we took into consideration the resultant (2.2.35), defining the vector 

1

1 n

i i
i
F

F �
�  r@  (2.2.36) 

and admitting that 0F � . The position vector @  determines a point C  with respect to 

which the resultant moment vanishes ( C O CO� � 3 �
����

M M R 0 ); hence, the point C  
belongs to the central axis, which is determined by the unit vector u . The system of 
parallel forces modelled by sliding vectors is reduced, in this case, to a resultant along 
the central axis. We have 0O� �R M  and are in the case iv'). 
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If 0F � , then �R 0 , and the system of forces modelled by sliding vectors is 
reduced to a couple if O �M 0  or is equivalent to zero if O �M 0 . Supposing that the 
forces of the system , -F  are parallel to the axis 3Ox , i.e., 3�u i  (Fig.2.18), the 
conditions of equivalence to zero are written in the form 

3 0R � ,    
1 2

0Ox OxM M� � . (2.2.37) 

The above conditions are only necessary in the case of parallel forces modelled by 
bound vectors. 

The point C  is called the centre of the system of parallel forces modelled by sliding 
vectors, through it passing the central axis of the respective system. One obtains the 
same centre C  for the system , -� F , �  scalar. Let , - , -, 1,2,...,i i n� �� �F F  be 
another system of parallel forces modelled by sliding vectors, the supports of which 
pass through the same points, respectively, but have another direction, given by the unit 
vector �u  ( i iF� � ��F u ), and which have the same components as the system of forces 
, -F  (that is , 1,2,...,i iF F i n� � � ); in fact, it is a rotation of the same angle of all the 
supports. One obtains the same centre C  of the  system  of  parallel  forces,  the  central 
axis having – obviously – the direction given by the new unit vector �u . 

2.2.8 Other considerations concerning systems of forces 

Let , -, , 1,2,...,i i i n� �F rF  be a system of forces modelled by bound vectors, 
where we put into evidence also the position vectors of the points of application; the 
torsor of this system with respect to the pole O  is 

, - , -,O O= �F R M , (2.2.38) 

where the resultant and the resultant moment are given by  

1

n

i
i �

� R F ,    
1

n

i iO
i �

� 3M r F . (2.2.38') 

We notice that, excepting the so-called forces, a mechanical system is acted upon by a 
couple of forces (or a moment) too; we use also the generic denomination of charge 
(load). 

The considered system of forces F  corresponds rigorously to a discrete mechanical 
system; we have seen in Chap. 1, Subsec. 1.1.11 that, in the case of a continuous 
mechanical system, which has as support a domain D , the load can be punctual, linear, 
superficial or volumic, corresponding to the dimensions of the subdomain D.D  to 
which it is transmitted. 

The torsor (2.3.38), corresponding to a distributed load on a line L , a surface S  or a 
volume V , respectively will be given by 

d
L
s� �R p ,    d

S
S� �R p ,    d

V
V� �R f , 

 

(2.2.39) 

dO L
s� 3�M r p ,    dO S

S� 3�M r p ,    dO V
V� 3�M r f , 

 

(2.2.39') 
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where p  and f  are continuous functions, representing loads on a unit of line, of area or 
of volume, respectively; these unit loads are vector quantities. Obviously, we may use 
also the notation of mean unit load 

mean s
)

�
)
Rp ,    mean S

)
�

)
Rp ,    mean V

)
�

)
Rf , (2.2.40) 

where )R  is the resultant corresponding to a finite element of line s) , of area S)  or 
of volume V) , respectively; there results 

mean
0

lim
s) �

�p p ,    mean
0

lim
S) �

�p p ,    mean
0

lim
V) �

�f f . 
 

(2.2.40') 

We mention that, in general, 

� �;t�p p r ,    � �;t�f f r . (2.2.39'') 

In the case of the action of distributed couples m , we can write the resultant moment in 
one of the forms 

dO L
s� �M m ,    dO S

S� �M m ,    dO V
V� �M m . 

 

(2.2.39''') 

The linear and superficial loads represent, in general, actions of contact (for instance, 
the action of a fluid upon a solid, on the contact surface between these material bodies). 
The volume loads correspond to an action at distance of a field of forces on the mass of 
the continuous mechanical system (forces the intensity of which is proportional to the 
gravitational or to the inertial mass); we thus have to do with massic loads, for which  

d
V

m
�

� �
fR  ,    dO V

m
�

� 3�
fM r  , 

 
(2.2.39iv) 

corresponding to a measure induced by the mass and where �  is the density. 
As it was shown by W. Kecs and P.P. Teodorescu, to represent concentrated loads, it 

is convenient to use the methods of the theory of distributions, considered in Chap. 1, 
Subsec. 1.1.7. Let thus be a field of parallel forces (distributed loads) 

( ) ( )f� ��Q r F r , (2.2.41) 

defined on the sphere of volume V� , of centre at the origin and of radius ��r , f�  
being a 
  representative sequence, while F  is a constant vector. Passing to limit in the 
sense of the theory of distributions, we obtain 

0 0
( ) lim ( ) lim ( )f� �

� ��� ��
� �Q r Q r F r ,  

so that 

( ) ( )
�Q r F r , (2.2.42) 



www.manaraa.com

Mechanics of the systems of forces 109

where the field ( )Q r  is a volume density of the concentrated force F . To put in 
evidence the correctness of this representation, we will calculate the torsor of the field at 
the pole O , obtaining thus the resultant 

d d d
V V V

V f V f V
� � �

� � � �� � �� � �R Q F F ;  

hence, passing to limit ( 0� � � ), we have 

�R F . (2.2.41') 

The resultant moment is written in the form 

3 3
3 3

d d d
4 4V V V

V V V
� � �

� �
�� ��

� 3 � 3 � � 3 �� � �M r Q r F F r 0 ,  

where we took into consideration 

d
V

V
�

�� r 0 , 
 

(2.2.41'') 

because the integral corresponds to the static moment of the homogeneous sphere with 
respect to its centre; obviously, O �M 0 , the representation (2.2.42) being thus 
justified from a mechanical point of view. We used above a 
  representative sequence 
given by  

 

3

 

3 ,    ,
4( )
  0  ,  , 

r
f

r
�

�
��

�

� ���  
� �!

r        i ir x x� �r ,  

the function having as support the sphere of volume V� ; we notice that one can use any 
other 
  representative sequence, which depends only on � , for r �� . As well, we 
may consider any other deformable domain of volume V�  and an arbitrary field of 
forces ( )�Q r , the components of which along the three axes of co-ordinates being 
three fields of parallel forces. 

 
Figure 2.19.  System of concentrated forces applied at the same point P . 

Let F  be a discrete system of forces applied at a point � �0P r  (concurrent forces) 
(Fig.2.19); the equivalent fields are given by 
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0( ) ( )i i
� �Q r F r r ,    1,2,...,i n� . (2.2.43) 

By means of the resultant (2.2.38'), applied at the same point P , we may write the 
volume density in the form 

0
1

( ) ( ) ( )
n

i
i



�

� � �Q r Q r R r r ; (2.2.43') 

the properties of the concentrated forces applied at the same point are thus preserved in 
this representation. 

In the case of concentrated forces represented by bound vectors, at different points of 
application, one cannot speak – in general – about their composition. However, in some 
cases, we can give a representation in distributions of a system formed by two such 
concentrated forces. So, in the case of a system of 2n �  concentrated forces, applied 
at different points, one can try their composition if they are parallel; otherwise, one can 
decompose each force along three directions, and one obtains three systems of n  
parallel forces (components of the forces initially given). 

 
Figure 2.20.  System of two (a) or four (b) parallel concentrated forces  

of the same modulus and direction. 

Let be, for instance, two parallel forces of the same direction and the same intensity 
( 1 2� �F F F , as free vectors), applied at the points � �0

1 1 , 0, 0P x�  and � �0
2 1 , 0, 0P x , 

0
1 0x � , respectively (Fig.2.20,a); there correspond the equivalent vector fields 

� � � �0
1 1 2 3 1 1 2 3, , , ,x x x x x x x
� �Q F , 

� � � �0
2 1 2 3 1 1 2 3, , , ,x x x x x x x
� �Q F . 

 

The volume density of this system of two forces is given by  

� � � �� �20 2 0
1 2 3 1 1 1 2 3, , 2 , ,x x x x x x x x
� �Q F ,    0

1 0x � , (2.2.44) 

where we took into account the relation (1.1.40'); this relation can be used as a rule for 
the composition of the two equipollent forces (equal as free vectors), applied on the 
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1Ox -axis. We have taken 1 2P P  as axis 1Ox , but this is not essential for the problem; 
e.g., for the points of application � �0 0

1 1 2 3, ,P x x x�  and � �0 0
2 1 2 3, ,P x x x��  we obtain 

� � � � � �� �0 0
1 2 3 1 1 1 1 1 1 2 2 3 3, , , ,x x x x x x x x x x x x x
� �� � ��� � � � � �Q F , (2.2.44') 

corresponding to the relation (1.1.41). 
Let be also a system of four parallel forces having the same direction and the same 

intensity ( 1 2 3 4� � � �F F F F F , as free vectors), applied at the points 

� �0 0 0
1 1 2 3, ,P x x x� , � �0 0 0

2 1 2 3, ,P x x x , � �0 0 0
3 1 2 3, ,P x x x� , � �0 0 0

4 1 2 3, ,P x x x� � , 0 0
1 2, 0x x � , 

respectively (Fig.2.20,b). The equivalent vector field is given by  

� � � �" 0 0 0
1 2 3 1 1 2 2 3 3, , , ,x x x x x x x x x
� � � �Q F   

� � � �0 0 0 0 0 0
1 1 2 2 3 3 1 1 2 2 3 3, , , ,x x x x x x x x x x x x
 
� � � � � � � �   

� � #0 0 0
1 1 2 2 3 3, ,x x x x x x
� � � � ;  

using the relation (1.1.42), we obtain the composition formula 

� � � � � �� �2 20 0 2 0 2 0 0
1 2 3 1 2 1 1 2 2 3 3, , 4 , ,x x x x x x x x x x x
� � � �Q F ,    0 0

1 2, 0x x � . 

 (2.2.45) 

 
Figure 2.21.  System of two parallel forces of the same modulus and opposite directions. 

Let us consider also two parallel forces of opposite directions, but of the same 
intensity ( 2 1� � �F F F , as free vectors), applied at the points � �0 0 0

1 1 2 3, ,P x x x�  and  

� �0 0 0
2 1 2 3, ,P x x x , 0

1 0x � , respectively (Fig.2.21). The equivalent vector field is 

� � � � � �" #0 0 0 0 0 0
1 2 3 1 1 2 2 3 3 1 1 2 2 3 3, , , , , ,x x x x x x x x x x x x x x x
 
� � � � � � � � �Q F ; 

using the relation (1.1.43), we may write 

� � � �� �22 0 0 0
1 2 3 1 1 1 2 2 3 3, , 2 , ,x x x x x x x x x x
� � � �Q F ,   (2.2.46) 

obtaining thus the searched composition formula. 
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In the case of deformable continuous media there appear various concentrated loads 
(mechanical quantities which have a punctual support), which play an important rôle, 
for instance: directed concentrated moments and dipoles of concentrated forces of 
various orders, centres of rotation, centres of plane or spatial dilatation etc.; all these 
loads can be expressed by means of distributions, starting from the representation 
(2.2.42), corresponding to a concentrated force. 

One can show that a linear load of the form 

 

( ),    [ , ],
( )

 0 ,    [ , ],

u u a b
u

u a b

����  >�!

F
F  (2.2.47) 

the support of which is a curve of parametric equations ( ( )u�r r ) 

( )i ix f u� ,   if C �� ,   1,2, 3i � ,   lim ( ) ( )i iu
f u f u

�2�
� � , 

 

(2.2.47') 

leads to a volume density 

� � � �  

3

1 2 3 1 2 3
1 2 3

, , , , ( ) ( ) ( ) du i ix x x x x x u f u f u u
x x x

�
�

��

( � ��
( ( ( �Q F , (2.2.47'') 

where ( ) d ( )/di if u f u u� � , while 

� � � � � � � �1 2 3 1 1 2 2 3 3, , ( ) ( ) ( )u x x x x f u x f u x f u� � � �� � � �   

1 1 2 2 3 3 

1,    ( ),  1,2, 3, [ , ],

0,   ( ) or ( ) or ( ) or [ , ],
i ix f u i u a b

x f u x f u x f u u a b

� � ����  � � � >�!
 (2.2.47''') 

�  being Heaviside’s function. 
As well, in the case of a superficial load, given by the relation 

� �
� � � �

� �    

, ,    , ,
,

  0 ,    , ,

u v u v D
u v

u v D

����  >�!

F
F  (2.2.48) 

where D  is the definition domain of the parameters u  and v , and the support of which 
is the surface of parametric equations ( ( , )u v�r r ) 

� �,i ix f u v� ,  if C �� ,  1,2, 3i � ,   � � � �
2 2
lim , ,i i

u v
f u v f u v

� ��
� � , 

 

(2.2.48') 

we are led to the volume density 

� � � �
3

1 2 3 1 2 3
1 2 3

, , , ,uvx x x x x x
x x x

�
� �

�� ��

(
�
( ( ( � �Q   

� � � � � � � �   
2, , , , d du v E u v G u v F u v u v3 �F , (2.2.48'') 
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where 

� � � �� � � �� � � �� �1 2 3 1 1 2 2 3 3, , , , ,uv x x x x f u v x f u v x f u v� � � �� � � � , (2.2.48''') 

� being Heaviside’s function, and where we have used the differential parameters 

� � � �
� � � � � �
� � � �

2

2

, ,

, ,

, ,

i i

i i

i i

f f
E u v

u u u
f f

F u v
u v u v

f f
G u v

v v v

( ((� � �� ( ( (�
( (( (� � � � ( ( ( (�

� ( ((
� �� ( ( (!

r

r r

r

 (2.2.48iv) 

corresponding to the first basic form of the surface (4.1.15), (4.1.15'). 
The functions ( )uF  and � �,u vF  considered above are piecewise continuous and 

lead to regular distributions. 
The methods of the theory of distributions allow us to represent continuous loads, as 

well as discontinuous ones, from a spatial point of view; we obtain also the 
representation of concentrated loads. One can consider continuous and discontinuous 
phenomena from a temporal point of view too; thus, the forces appearing in a 
phenomenon which takes place in a very short interval of time (for instance, the 
collision of two spheres) can be represented by Dirac’s distribution with respect to time. 

Returning to a unitary representation in distributions (corresponding to the formula 
(1.1.73)), we may write, in general, 

dV
�

� �R f ,    dO V
�

� 3�M r f , 
 

(2.2.49) 

where �  is the geometric support of the mechanical system S, while the integrals are 
Stieltjes integrals. In the case of a discrete mechanical system, we find again the 
formulae (2.2.38), (2.2.38'), while for a continuous one we obtain formulae (2.2.39), 
(2.2.39'), and the integrals become Riemann integrals. 

In the case of a deformable mechanical system (the forces are modelled by bound 
vectors), the torsor (2.2.38), (2.2.38') leads to necessary conditions which can occur in 
various problems (relations of equivalence, equivalence to zero etc.); in the case of a 
non-deformable mechanical system (the forces are modelled by sliding vectors), the 
torsor leads to conditions which are also sufficient for the respective problems. 

We have seen in Chap. 1, Subsec. 1.1.11 that the forces acting upon a mechanical 
system can be external forces or internal forces, the latter ones being always pairs (they 
are applied at the points iP  and jP ), being linked axiomatically by the relation 
(1.1.81). Taking into account the results of Subsec. 2.1.1, we may affirm that the 
moment with respect to an arbitrary pole of such a pair of internal forces vanishes, the 
mechanical system being deformable or even non-deformable; hence, the torsor of these 
forces with respect to the pole O  (Fig.1.18) is equal to zero 

, -,ij jiO= �F F 0 . (2.2.50) 
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We can make an analogous affirmation for the whole system of internal forces acting 
upon the given mechanical system. If the relation (2.2.50) holds, then we have 

, - � �,ij ji i ij j ji j i ji i j jiO P P� 3 � 3 � � 3 � 3 �
�����

M F F r F r F r r F F 0 ;  

hence, ij i j ijP P� �� �
�����

F r , �  scalar, and the considered forces are a pair of internal 
forces. 

A pair of internal forces constitutes a finite dipole of forces, which can be 
represented, in distributions, by a formula of the form (2.2.46). 

By decomposing a mechanical system in two subsystems, some forces which – at the 
beginning – have been internal forces, may become external ones; hence, the 
classification of the forces in internal and external ones is conventional. 

The forces acting upon mechanical systems are modelled with the aid of vectors; 
these ones will thus play an important rôle to determine the class of equivalent systems 
of forces, which lead to the same effects of mechanical order. 
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Chapter 3 

MASS GEOMETRY. DISPLACEMENTS. 
CONSTRAINTS 

It is necessary to introduce some notions which play an important rôle in a static and 
dynamic study of mechanical systems; we will thus consider problems of mass 
geometry, as well as problems concerning displacements and constraints, expressed by 
means of the latter ones.  

1. Mass geometry 
Mass plays an important rôle in the dynamics of mechanical systems; we are thus led 

to the study of moments of first order (static moments) or of second order (moments of 
inertia). 

1.1 Centres of mass 
We introduce, in what follows, the notions of centre of mass, centre of gravity and 

static moment (moment of first order); we give also some properties useful for the 
practical computation. 

1.1.1 Centres of mass. Centres of gravity 

Let S  be a mechanical system of geometric support � . We call centre of mass of 
this system a point C , which may not belong to it, defined by the position vector 

1 dm
M �

� �  r@ , 
 

(3.1.1) 

the integral being a Stieltjes one, and the mass ( )m m� r  a distribution. Introducing 
the density (1.1.71), (1.1.71''), we can write 

1

1 n

i i
i
m

M �
�  r@ , (3.1.2) 

in the case of a discrete mechanical system of n  particles iP , of position vectors ir  
and masses im , 1,2,...,i n� , or 

115  
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1 ( )d
V

V
M

�� �  r r@ , (3.1.3) 

in the case of a continuous mechanical system of density ( )� r . If the continuum is 
homogeneous, it results 

1 d
V
V

V
� �  r@ . (3.1.4) 

In components, we may write 

1 dj jx m
M �

� � � ,  � 1,2, 3j , (3.1.1') 

as well as 

� �

�
� 

1

1 n
i

j i j
i
m x

M
� ,  � 1,2, 3j , (3.1.2') 

or 

1 ( )dj jV
x V

M
� �� �  r ,  � 1,2, 3j , (3.1.3') 

and 

1 dj jV
x V

V
� � �  ,  � 1,2, 3j . (3.1.4') 

In the case of a two-dimensional mechanical system, we replace the volume integral by 
a surface one, using a superficial density; if the mechanical system is plane, then the 
integral is a double one. As well, in the case of a one-dimensional mechanical system, 
we replace the volume integral by a curvilinear one, introducing a linear density. 

Figure 3.1.  Centre of gravity of a heavy discrete mechanical system. 

Let us admit that the mechanical system S, supposed to be non-deformable at a given 
moment, is subjected to the action of a uniform gravitational field (for instance, the 
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terrestrial gravitational field). To fix the ideas, we consider a discrete mechanical 
system, the particles of masses im  being acted upon by the gravity forces 

�G gi im ,  1,2,...,i n� , (3.1.5) 

which form a field of parallel forces of the same direction. The system of particles 
being non-deformable at a certain moment, the forces form a system of sliding vectors; 
the central axis will pass through the point C  of position vector (Fig.3.1) 

�
�  r

1

1 n

i i
i
m g

Mg
@ ,  

 

given by the formula (2.2.36). We rotate the whole discrete mechanical system by a 
given angle; the forces iG  will not change their supports and their direction. This is 
equivalent to the supposition that the system did not rotate, but the parallel forces did 
rotate with the same angle; with the aid of a property put in evidence in Chap. 2, 
Subsec. 2.2.7, it follows that the central axis passes through the same point C . This 
point will be called the centre of gravity of the mechanical system at a given moment, at 
which the system is considered non-deformable; in the case of a uniform gravitational 
field, it coincides with the centre of mass of the very same system. In the case of a 
continuous mechanical system, one can make analogous considerations. If the 
mechanical system is non-deformable, then the “instantaneous” centre of gravity 
becomes “permanent”. 

In general, in the case of a non-uniform gravitational field, the centre of gravity of a 
mechanical system is the point of application of the resultant of the gravity forces acting 
upon the points of this system (if the resultant moment vanishes, and this point of 
application is independent of the position of the mechanical system; for instance, a 
mechanical system with central symmetry in a gravitational field with axial symmetry). 

We notice that the centre of mass has a more general significance, the centre of 
gravity being put in evidence only in the presence of a gravitational field (for example, 
the gravitational field of the Earth). The centre of gravity of a non-deformable 
mechanical system is the same in any place on the surface of the Earth, because it 
coincides with the centre of mass. The point C  is called also centre of inertia if we take 
in consideration the inertial property of the mass. In the case of a non-deformable 
mechanical system, the centre of mass C  is a point rigidly linked to this system (the 
distance from C  to any point of the system is constant in time). 

In the case of a homogeneous continuous mechanical system, the centre of gravity is 
given by the relation (3.1.4); we are led thus to the notion of geometric centre of gravity 
(which has a purely geometric character). Analogously, in the case of a discrete 
mechanical system for which all the particles iP  have the same mass, the centre of 
gravity C  is specified by the position vector 

�
�  r

1

1 n

i
in

@ , (3.1.2'') 
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corresponding to the formula (3.1.2); this point is called also the barycentre of the 
system of points iP . 

Because the position of the centre of a system of parallel vectors does not depend on 
the frame of reference used, it follows that the centre of gravity represents an intrinsic 
characteristic of the considered mechanical system, the centre of mass having the same 
property. 

1.1.2 Static moments 

We define the polar static moment of the mechanical system S, of geometric support 
� , with respect to the pole O  in the form 

dO m
�

� �  S r , (3.1.6) 

where we have introduced a Stieltjes integral, the mass � r( )m m  being a distribution; 
its components are the planar static moments (with respect to the planes of co-
ordinates) 

d
k l jOj Ox xS S x m

�
� � � ,  � � �j k l j ,   �, , 1,2, 3j k l . (3.1.6') 

In the case of a discrete mechanical system, considered at the previous subsection, we 
can write 

1

n

i iO
i
m

�
� S r ,  ( )

1
k l

n
i

iOj Ox x j
i

S S m x
�

� �  , j k l j� � � ,  �, , 1,2, 3j k l , (3.1.7) 

and in the case of a continuous mechanical system we have 

( )dO V
V�� �  S r r ,  ( )d

k l jOj Ox xS S x V
�

�� � � r , j k l j� � � ,  �, , 1,2, 3j k l ; 

 (3.1.7') 

to a homogeneous continuous mechanical system will correspond the geometric static 
moment 

dO V
V� �  S r ,  d

k l jOj Ox xS S x V
�

� � � , j k l j� � � ,  �, , 1,2, 3j k l , (3.1.8) 

while for a homogeneous discrete mechanical system we obtain 

1

n

iO
i �

� S r ,  ( )

1
k l

n
i

Oj Ox x j
i

S S x
�

� �  ,  � � �j k l j ,   �, , 1,2, 3j k l . (3.1.8') 

Taking into account the relation of definition (3.1.1), one observes easily that 

O M�S @  (3.1.9) 
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or 

jOjS M�� ,  1,2, 3j � ; (3.1.9') 

hence, we state 
Theorem 3.1.1. The polar (planar) static moment of a mechanical system with respect 
to a pole (plane) is equal to the static moment of the centre of mass, at which is 
considered to be concentrated the mass of the whole mechanical system, with respect to 
the same pole (plane). 

The relations (3.1.9), (3.1.9') show that, in a certain manner, the centre of mass can 
replace the whole given mechanical system; this observation holds also for other 
mechanical quantities which we will define, the usefulness of the centre of mass 
introduced above being thus put into evidence. If the pole O  (a plane) coincides with 
(passes through) the centre of mass ( � 0@  or � 0j� , � 1,2, 3j ), then the polar 
(planar) static moment with respect to this pole (plane) vanishes and reciprocally. 
Hence, the centre of mass of a mechanical system is characterized by the vanishing of 
the polar (planar) static moment with respect to it (to a plane passing through it); one 
can thus affirm once more that the centre of mass constitutes an intrinsic characteristic 
of the considered mechanical system (there is only one point C  defined by the relation 
(3.1.1)). 

We notice that we can write the relation (3.1.9) also in the form 

( ) ( )O O C�S SS S , (3.1.9'') 

where CS  is the mechanical system formed by only one material point, the centre of 
mass C , at which we consider concentrated the mass of the whole mechanical system 
S. If we write the relation (3.1.9) for the poles O  and �O , respectively, and subtract 
one relation from the other, then we obtain the relation 

OO MO O� �� �
�����

S S , (3.1.10) 

which may be written in the form 

( ) ( ) ( )O OO O� �� �S S SS S S  (3.1.10') 

too, the notations being analogous to the above ones. It is thus put into evidence the 
variation of the polar static moment of a mechanical system S  if one passes from a pole 
O  to another pole �O ; projecting on the co-ordinate axes, one obtains corresponding 
relations for the planar static moments. 

In the case of a plane mechanical system (for which the geometric support �  
belongs, e.g., to the plane �3 0x ), the components of the static moment SO  with 
respect to a pole in this plane are axial static moments (with respect to the co-ordinate 
axes) 

 dO OxS S x m� � ��
� � � ,   � �� ,   �, 1,2� � ; (3.1.6'') 
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hence, the axial static moment of a plane mechanical system with respect to an axis 
contained in the plane of the system is equal to the static moment of the centre of mass, 
at which one considers concentrated the mass of the whole mechanical system, with 
respect to the very same axis. We can state also that the centre of mass of a plane 
mechanical system is characterized by the vanishing of the axial static moment with 
respect to an axis contained in the plane and passing through it. 

In the case of a linear mechanical system (the geometric support �  of which is a 
straight line), one has to do only with the polar static moment (with only one 
component) with respect to a pole belonging to the straight line. 

1.1.3 Properties. Applications 

We notice that the centre of mass is placed in the interior of any convex closed 
surface �  which contains in its interior the geometric support �  of the considered 
mechanical system. Indeed, taking the plane of co-ordinates 1 2Ox x  tangent to the 
surface �  at an arbitrary point of it, taken as pole O , and admitting the direction of the 
axis 3Ox  towards the interior of � , it follows that for all the points of the geometric 
support �  we have �3 0x ; the formula (3.1.1') allows us to affirm that �3 0�  (the 
equality takes place if �  is a plane geometric support). Hence, the centre C  is situated 
in the same part of the considered plane as the surface � ; because �O �  is 
arbitrarily chosen, it follows that the centre C  is situated in the interior of the surface 
� . 

If the support �  is a straight line or a plane, then the centre C  is on the straight line 
or is contained in the plane. In the first case, if we choose this line as the 1Ox –axis, 
then we find easily that � �2 3 0� � ; in the second case we choose the respective 
plane as plane 1 2Ox x  and obtain �3 0� . 

If the mechanical system admits a plane of geometric (the geometric support �  
admits a plane of symmetry) and mechanical (the symmetric points of the geometric 
support �  have the same unit mass, in the case of a continuous mechanical system, or 
the same finite mass, in the case of a discrete mechanical system) symmetry, then we 
take this plane as plane 1 2Ox x ; applying the formula (3.1.1'), we notice that some 
points of the support �  belong to the plane �3 0x , while the other points are pairs of 
symmetric points, obtaining thus �3 0� . The centre of mass belongs thus to the plane 
of symmetry. If there exist two (or three) planes of geometric and mechanical 
symmetry, then the centre C  belongs to the straight line (centre) of intersection of these 
planes, which – obviously – will be an axis (a centre) of geometric and mechanical 
symmetry. If the mechanical system admits a plane �  diametrically conjugate from 
geometric and mechanical point of view to a direction   (to each point iP  of the 
mechanical system there corresponds a point jP  of the same system, having the same 
mass, so that the segment i jP P  has the direction of   and the middle in the plane � ), 
then the point C  will belong to the plane � ; in particular, if ? � , then this plane 
is a plane of geometric and mechanical symmetry. 
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For any division iS , � 1,2,...,i n , of the mechanical system S in n  disjoint 
subsystems, 

�
� 

1

n

i
i

S S , 
 

we may write (see Theorem 3.1.1) 

1

1 n

i i
i
M

M �
� @ @ , (3.1.11) 

where iM  and i@  are the mass and the position vector of the centre of mass iC , 
respectively, corresponding to the subsystem iS , and M  and @  are the mass and the 
position vector of the centre of mass C , respectively, corresponding to the given 
mechanical system S ; by means of the formulae of definition and the property of 
associativity (additivity) of the finite sum (of the integral), the proof is obvious. If a 
mechanical system S  may be considered as resulting by taking off a mechanical system 

2S  from a mechanical system 1S , then the formula (3.1.11) allows us to write 

1 1 2 2

1 2

M M
M M

�
�

�
@ @

@ , (3.1.12) 

the notations being analogous to the above ones. 

Figure 3.2.  Pappus-Guldin theorems: for a surface (a) and for a volume (b). 

The notion of centre of gravity allows us to state 
Theorem 3.1.2 (Pappus-Guldin). Let be an arc of a rectifiable plane curve of length l , 
coplanar with an axis  , at the same part of this one, which rotates by an angle 

� 2� �  about the axis; the area of the surface thus obtained is given by 

S l��� , (3.1.13) 

where �  is the distance from the centre of gravity C  of the arc of curve to the axis 
(Fig.3.2,a). 

In the particular case of a surface of rotation ( � 2� � ), we obtain 

2S l��� , (3.1.13') 
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where the product of the perimeter of the circle described by the point C  by the length 
l  is put into evidence. We may also state 
Theorem 3.1.3 (Pappus-Guldin). Let be a plane figure of area A , coplanar with an 
axis  , at the same part of the latter one, which rotates by an angle � 2� �  about the 
axis; the volume of the domain thus generated is given by 

V A��� , (3.1.14) 

where �  is the distance from the centre of gravity C  of the plane figure to the axis   
(Fig.3.2,b). 

In particular, in the case of a body of rotation ( � 2� � ), we can write 

2V A��� , (3.1.14') 

where the product of the perimeter of the circle described by the point C  by the area 
A  is put into evidence. 

The proof of these theorems is obvious if one takes into account the definition and 
the properties of the Riemann integral. 

 
Figure 3.3.  Centre of mass of a system of two particles. 

For a discrete mechanical system, formed by two particles 1P  and 2P , of masses 1m  
and 2m , respectively, the centre of mass is on the segment 1 2P P , at the distances 1r  
and 2r  from the extremities of it, so that (Fig.3.3) 

1 2
rr m
m

� ,  2 1
rr m
m

� ,   1 2r r r� � ,   1 2m m m� � ,  1 2m m� ; (3.1.15) 

we notice that the centre C  is closer to the particle of the greatest mass (in the 
considered case, closer to the particle 1P ). 

Taking into account the properties mentioned above, one observes easily that the 
centre of gravity of a discrete mechanical system formed by three particles of equal 
masses, or of a triangular line (or figure) is at the piercing point of its median lines; if 
the three masses are not equal, one obtains the famous theorem enounced in 1678 by 
Giovanni Ceva.  

The centre of gravity of a contour (or figure) in form of a parallelogram (in 
particular, rectangle) is at the piercing point of its diagonals, the centre of gravity of a 
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contour (or figure) having a circular form is at its centre a.s.o. Analogously, the centre 
of gravity of a discrete mechanical system formed by four non-coplanar particles of 
equal masses, or of a trihedral surface (or domain) is the piercing point of its median 
lines. Obviously, we can admit that all these lines, figures and domains correspond to 
homogeneous bodies. 

 
Figure 3.4.  Centre of gravity of a regular polygonal line (a) or sector (b).  

Centre of gravity of an arc (c) or sector (d) of circle. 

In the case of a regular polygonal line 0 1 ... nA A A , formed by n  segments of length 
l , the centre of gravity is on the symmetry axis, which passes through a vertex (n  
even) or through the middle of a segment (n  odd). The similar triangles � �1i iiAA A  and 

�i iOB B  (Fig.3.4,a) allow us to write �� �� � � 1i i i i i iOB AA OB AA , so that the centre of 
gravity is given by 

1 1

1
0 0 0

1 1 1

1 1 1
0 0 0

n n

i i i i ii
ni i i

n n n

i i ii i i
i i i

AA OB OB AA
OB A A

AA AA AA
�

� �

�
� �

� � �

� � �
� � �

� �� �
�

� � �
 

  
; 

 

if �iOB a  is the short radius, � �1i iAA l  the side, 0 nA A c�  the chord and �p nl  
the perimeter, then we can write 

ac
p

� � . (3.1.16) 
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The centre of gravity of the polygonal sector 0 1 ... nA A A  (Fig.3.4,b), formed by the 
triangles �1i iOAA , � �0,1,2,..., 1i n , coincides with the centre of gravity of the 
polygonal line 0 1 ... nA A A , which passes through the centres of gravity 

�0 1 2 1, , ,..., nC C C C  of the n  triangles; in this case, it is obvious that 

2
3
ac
p

� � . (3.1.17) 

In the case of an arc of circle of angle �2 2� �  and of radius R  (Fig.3.4,c) we 
obtain, by a process of passing to the limit ( � 2p R� , � 2 sinc R � , �a R ), 

sinc
R R
p

��
�

� � ; (3.1.16') 

as well, for a circular sector of angle �2 2� �  and radius R  (Fig.3.4,d) we write 

2 2 sin
3 3
c
R R
p

��
�

� � . (3.1.17') 

In particular, for a semicircular line ( � /2� � ) it results 

2 R�
�

� , (3.1.16'') 

while for the figure in form of a semicircle we obtain 

4
3
R�

�
� . (3.1.17'') 

Analogous considerations can be made for three-dimensional bodies; for example, in 
the case of a homogeneous semisphere of radius R  we have 

3
8
R� � . (3.1.18) 

Let be a compound figure formed by two adjoining rectangles (Fig.3.5). We obtain 
thus the centres 1C  and 2C ; the centre C  of the compound figure is on the segment 

1 2C C , its position being determined by formulae of the form (3.1.15), where the 
masses, considered concentrated at those centres, are proportional to the areas of the 
component rectangles. Dividing the compound figure in other two rectangles, we are led to 
the centres �1C  and �2C ; the centre C  will belong to the segment � �1 2C C , hence it is at 
the piercing point of this segment with the segment 1 2C C . Thus, the formula (3.1.11) 
leads to a graphic construction of the geometric centre of gravity C . We notice that the 
above-considered figure may also be obtained by taking off a rectangle from another 
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one, applying thus the formula (3.1.12); obviously, a graphic construction can be used 
too. 

 
Figure 3.5.  Centre of gravity of a compound figure formed by two adjoining rectangles. 

1.2 Moments of inertia 
In mechanics and physics can appear moments of the form 

1 2 3
1 2 3 dx x x m� � �

��  ,   1 2 3, , 0� � � � , (3.1.19) 

of order � � �1 2 3� � � � , where the mass � r( )m m  is a distribution and we have 
introduced the Stieltjes integral. In the case � � � �1 2 3 0� � � �  one obtains the 
mass M , while the case � 1i� , � � 0j k� � , � � �i j k i , �, , 1,2, 3i j k , 

� 1�  corresponds to a planar static moment. The moments for which � 2�  are not 
of a particular interest. In what follows, we will deal with moments of second order 
( � 2� ), called moments of inertia, which play an important rôle in the dynamics of 
mechanical systems. We mention also some considerations concerning tensors of nth 
order and, in particular, tensors of second order, useful in the study of the moment of 
inertia tensor. 

1.2.1 Definitions. Properties 

Let S  be a mechanical system of geometric support � . We define the polar 
moment of inertia with respect to the pole O  

2 dOI r m
�

� �  , (3.1.20) 

the axial moments of inertia 

� �2 2 dlx j kI x x m
�

� ��  ,  j k l j� � � ,   �, , 1,2, 3j k l , (3.1.21) 

and the planar moments of inertia 

2 d
j kOl Ox x lI I x m

�
� � �  ,  j k l j� � � ,   �, , 1,2, 3j k l , (3.1.22) 
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where we have introduced the Stieltjes integral, ( )m m� r  being a distribution. 
In the case of a discrete mechanical system of particles of finite masses im , 
1,2,...,i n� , we may write 

2

1

n

i iO
i

I m r
�

�  , (3.1.20') 

� �� � � �� �2 2

1
l

n
i i

x i j k
i

I m x x
�

$ %� �& ' ,   j k l j� � � ,   �, , 1,2, 3j k l , (3.1.21') 

� �� �2
1

j k

n
i

iOx x l
i

I m x
�

�  ,   j k l j� � � ,   �, , 1,2, 3j k l , (3.1.22') 

while, in the case of a continuous mechanical system for which the geometric support 
�  occupies the volume V , there result 

2 ( )dO V
I r V�� �  r , (3.1.20'') 

� �2 2 ( )dlx j kV
I x x V�� ��  r ,   j k l j� � � ,   �, , 1,2, 3j k l , (3.1.21'') 

2 ( )d
j kOx x lV

I x V�� �  r ,   j k l j� � � ,   �, , 1,2, 3j k l . (3.1.22'') 

To a homogeneous continuous mechanical system there correspond the geometric 
moments of inertia (for the sake of simplicity, we use the same notation) 

2 dO V
I r V� �  , (3.1.20''') 

� �2 2 dlx j kV
I x x V� ��  ,   j k l j� � � ,   �, , 1,2, 3j k l , (3.1.21''') 

2 d
j kOx x lV

I x V� �  ,   j k l j� � � ,   �, , 1,2, 3j k l , (3.1.22''') 

while for a homogeneous discrete mechanical system we can write 

2

1

n

iO
i

I r
�

�  , (3.1.20iv) 

� �� � � �� �2 2

1
l

n
i i

x j k
i

I x x
�

$ %� �& ' ,   j k l j� � � ,   �, , 1,2, 3j k l , (3.1.21iv) 

� �� �2
1

j k

n
i

Ox x l
i

I x
�

�  ,   j k l j� � � ,   �, , 1,2, 3j k l . (3.1.22iv) 

The above moments of inertia verify the relations 

� �1 2 32 3 3 1 1 2

1
2 x x xO Ox x Ox x Ox xI I I I I I I� � � � � � , (3.1.23) 

l j l k lx Ox x Ox xI I I� � ,  lj k xO Ox xI I I� � ,  j k l j� � � ,  �, , 1,2, 3j k l , (3.1.23') 
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from which 

� �1
2 j k lj k x x xOx xI I I I� � � ,   j k l j� � � ,  �, , 1,2, 3j k l ; (3.1.23'') 

hence, the polar moment of inertia and the planar moments of inertia can be expressed 
by means of the axial moments of inertia, so that it is sufficient to consider the latter 
ones. All these moments of inertia are non-negative. 

We are led to the relations 

j jk l kx x x x xI I I I I� � � � ,  j kx xI I� ,  j k l j� � � ,  �, , 1,2, 3j k l , (3.1.24) 

of the type of the triangle relations; the equalities take place if the geometric support �  
is contained in a manifold of the three-dimensional space (a plane or a straight line). 

If 1� , 2�  and 3�  are two by two orthogonal planes, then we can write, in general, 

1 2
I I I� � � � ,  1 2 � �� A ,  

1 2 3OI I I I� � �� � � ,  1 2 3O � � �� A A . 
 (3.1.25) 

If   is an axis of geometric and mechanical symmetry, then the moments of inertia 
with respect to any plane �  passing through   are equal; taking into account the first 
relation (3.1.25), we obtain 

2I I� � . (3.1.26) 

If O  is a centre of geometric and mechanical symmetry, then the moments of inertia 
with respect to any plane �  passing through O  are equal; the second relation (3.1.25) 
and the relation (3.1.26) lead to 

33
2OI I I� � � , (3.1.26') 

where   is a straight line passing through O . For instance, in the case of a 
homogeneous whole sphere of radius R  and mass M , we can write 

23
5OI MR� ,   21

5
I MR� � ,   22

5
I MR � . (3.1.27) 

We introduce the centrifugal moments of inertia (products of inertia) 

 dj kx x j kI x x m
�

� � ,   j k� ,  , 1,2, 3j k � , (3.1.28) 

too, which may be of the form 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 128 

� � � �

1
j k

n
i i

x x i j k
i

I m x x
�

�  ,  ( )dj kx x j kV
I x x V�� �  r , j k� ,  , 1,2, 3j k � , (3.1.28') 

or of the form 

� � � �

1
j k

n
i i

x x j k
i

I x x
�

�  ,  dj kx x j kV
I x x V� �  ,  j k� ,  , 1,2, 3j k � ; (3.1.28'') 

these moments of inertia can be also negative. We notice that 

� � � � � �2 2 2 21 1
4 2j j jk k k jk jkx x x x x x d d$ % �� � � � � �& ' ,  j k� ,  , 1,2, 3j k � ,  

where jkd , jkd �  are the distances of a point of the mechanical system to the bisector 
planes jk� , jk� �  of the dihedron formed by the planes 0jx � , 0kx � , respectively; 
we obtain 

� � � �1
2j k jk jkjk jk

x xI I I I I� � � �� � � � ,  j k� ,  , 1,2, 3j k � , (3.1.29) 

where jk , jk�  are the bisectrices of the angle formed by the axes jOx , kOx , 
respectively, and we used formulae of the form (3.1.23''). 

If the plane j kOx x  is a plane of geometric and mechanical symmetry, (the points of 
co-ordinates lx  and lx�  of the mechanical system have the same contribution in the 
computation of the integrals of the form (3.1.28)) or if the axis lOx  is an axis of 
geometric and mechanical symmetry, then we obtain 0j l k lx x x xI I� � , 
j k l j� � � , , , 1,2, 3j k l � . 

The gyration radius (radius of inertia) with respect to the axis   is defined by the 
relation 

I
i

M


 �  (3.1.30) 

and represents the distance of a material point at which is concentrated the mass M  of 
the whole mechanical system to the axis  ; in the case of a geometric moment of 
inertia of a homogeneous mechanical system of volume V , we may write 

I
i

V


 � . (3.1.30') 

If the geometric support �  is contained in the plane 1 2Ox x , then we may define the 
polar moment of inertia 

� �2 2 2
1 2d dOI r m x x m

� �
� � �� �  , (3.1.31) 
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the axial moments of inertia 

2 dxI x m� ��
� �  ,   � �� ,   , 1,2� � � , (3.1.32) 

and the products of inertia 

1 2 1 2 dx xI x x m
�

� �  ; (3.1.33) 

for discrete or continuous mechanical systems one can put in evidence analogous 
formulae. We notice the relation 

1 2x xOI I I� � . (3.1.34) 

If the geometric support �  is a circle, of centre O  and radius R , then we obtain (for a 
homogeneous mechanical system) 

4
2OI R�� ,  1 2

4
4x xI I R�� � . (3.1.34') 

In the case of an axis or of a centre of geometric and mechanical symmetry, 
respectively, one can emphasize properties analogous to those mentioned in the three-
dimensional case. If the geometric support �  is on a straight line, then one can define 
only polar moments of inertia (in the one-dimensional space). 

1.2.2 Tensors of nth order 

We will deal with some elements of tensor algebra and analysis, considering scalars, 
tensors of first order as well as of nth order, and we will put into evidence various 
particular cases; we will consider only tensors in 3E . 

One can pass from a positive orthonormed basis B of unit vectors ji  to another 

positive orthonormed basis B ' of unit vectors k�i  by means of formulae (2.1.8)-
(2.1.11), given at Chap. 2, Subsec. 1.1.2. 

The cosines kj�  which are introduced verify the relations 

ij ik jk� � 
� ,    ji ki jk� � 
� ,   , 1,2, 3j k � . (3.1.35) 

As well, one can pass from a system of co-ordinate axes to another one by means of the 
formulae (2.1.11) or of the formulae 

k
kj

j

x
x

�
�(
�

(
,    j

kj
k

x
x

�
(

�
�(

,   , 1,2, 3k j � . (3.1.36) 

Let be a function � �1 2 3, ,U U x x x� ; by a change of co-ordinates of the form 
(2.1.11), we obtain the function � �1 2 3, ,U U x x x� � � � �� . If the condition 
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U U� �  (3.1.37) 

is fulfilled, hence if the considered function is invariant to a change of orthogonal 
Cartesian co-ordinates, then we say that U  is a scalar (or a tensor of zeroth order). 

In the case of a scalar considered as a constant function (or of a scalar defined only 
at one point) we obtain a mathematical entity characterized by modulus and sign. 

Let be a vector ( )�V V r  (see Fig.2.2); by means of the two systems of co-
ordinates, we may write 

j j k kV V � �� �V i i , (3.1.38) 

where � �1 2 3, ,j jV V x x x� , � �1 2 3, ,k kV V x x x� �� , , 1,2, 3j k � . Taking into account 
the relations (2.1.8) and (2.1.8'), respectively, we find the relations with the aid of 
which one may pass from the components of the vector V  in the basis B to its 
components with respect to the basis B ' and inversely, in the form 

jk kjV V �� � ,   j k kjV V ��� ,   , 1,2, 3j k � . (3.1.39) 

In general, three functions iV , 1,2, 3i � , which are transformed accordingly to the 
formulae (3.1.39) by a change of orthogonal Cartesian co-ordinates of the form 
(2.1.11), are the components of a vector (or of a tensor of first order) with respect to the 
considered frame of reference B. A tensor of first order can be represented by its 
components with respect to a certain basis in the form of a row or column matrix 

" #

T
1

1 2 3 2

3

i

V

V V V V V

V

$ %
* +

$ %� � * +& '
* +
* +& '

, (3.1.40) 

where T indicates the transpose matrix. 
Taking into account (3.1.36), we can express the transformation relations (3.1.39) 

also in the form 

k
jk

j

x
V V

x
�(

� �
(

,   j
j k

k

x
V V

x
(
��

�(
,  , 1,2, 3j k � ; (3.1.41) 

this form has a more general character, because it can be used also in the case of an 
arbitrary (non-linear) co-ordinate transformation (not only in the case of a linear one). 

Extending these results, we call tensor of second order a mathematical entity a  
which is represented by its components with respect to a positive orthonormed basis B 
in the form of a square matrix 
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" #
11 12 13

21 22 23

31 32 33

ij

a a a
a a a a

a a a

$ %
* +

� * +
* +
& '

; (3.1.42) 

the elements of this matrix form a set of 32 = 9 quantities ija , , 1,2, 3i j � , which, by a 
change of orthogonal Cartesian co-ordinates of the form (2.1.11), behave corresponding 
to the relations 

ijkl ki lja a � �� � ,   ij kl ki lja a � ��� ,    , , , 1,2, 3i j k l � . (3.1.43) 

Similarly, a tensor of third order is a mathematical entity a , represented by its 
components ijka , , , 1,2, 3i j k � , with respect to a positive orthonormed basis B; these 
components form a set of 33 = 27 quantities which are transformed by a change of 
orthogonal Cartesian co-ordinates of the form (2.1.11) by means of the relations 

mjlmn ijk li nka a � � �� � ,   mjijk lmn li nka a � � ��� ,   , , , , , 1,2, 3i j k l m n � . (3.1.44) 

In general, a tensor of nth order is a mathematical entity a , represented by its 
components 

1 2 ... ni i ia , 1,2, 3ki � , 1,2,...,k n� , with respect to a positive 

orthonormed basis B; these components form a set of 3n  quantities which, by a change 
of orthogonal Cartesian co-ordinates of the form (2.1.11), are transformed 
corresponding to the relations 

1 2 1 2 1 1 2 2... ... ...n n n nj j j i i i j i j i j ia a � � �� � ,   
1 2 1 2 1 1 2 2... ... ...n n n ni i i j j j j i j i j ia a � � ��� , 

, 1,2, 3k ki j � ,   1,2,...,k n� . (3.1.45) 

The tensors thus defined are Euclidean tensors. 
Let 

1 2 ... ni i ia� $ %& 'a  be a tensor of nth order; if the relation 

1 2 1 2... ... ... ... ... ...n nj jk ki i i i i i i i i ia a�  (3.1.46) 

takes place in a basis B, then we say that the tensor is symmetric with respect to the 
indices ji  and ki ; if the property (3.1.46) holds for any indices ji  and ki , then the 
tensor a  is totally symmetric. If the components of the tensor a  verify the relation 

1 2 1 2... ... ... ... ... ...n nj jk ki i i i i i i i i ia a� �  (3.1.46') 

in a basis B, we say that this tensor is antisymmetric (sqew-symmetric) with respect to 
the indices ji  and ki ; if the property (3.1.46') takes place for all the indices ji  and ki , 
then the tensor is totally antisymmetric. A tensor a  which has not one of the properties 
mentioned above is an asymmetric tensor. 
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A tensor is, in general, definite at a point of the space; as well, we may consider a 
tensor mapping � � � �

1 2 ...1 2 3 1 2 3, , , ,ni i ix x x a x x x� , defining thus a tensor field. 
If we use the upper index “prime” for the quantities which are obtained from the 

relation (2.1.9'), by a change of co-ordinate axes, it follows that mlm l�� �� �i i , 
, 1,2, 3l m � , the relation of definition of these cosines remaining the same; indeed, the 

scalar products (2.1.9') are invariant with respect to any frame of reference, in particular 
with respect to the frames B and B '. We see that a relation of the form (3.1.43) holds, 
because 

mjlm kj lk lk km lm� � � � � 
 �� � � � ,   , 1,2, 3l m � ,  

where we have introduced Kronecker’s symbol. Hence ij� , , 1,2, 3i j � , are the 
components of a tensor of second order 

" #
11 12 13

21 22 23

31 32 33

ij

� � �
� � � �

� � �

$ %
* +

� * +
* +
& '

, (3.1.47) 

which makes clear the position of the orthonormed basis B ' with respect to the basis B 
and inversely. 

We can define Kronecker’s symbol with respect to the basis B in the form 

0,    ,

1,   , kl

k l

k l



���� �  ��!
    , 1,2, 3k l � ; 

 

also in this case, a relation of the form (3.1.43) is verified, because 

ijkl ki lj ki li kl
 
 � � � � 
� � � � ,  , 1,2, 3k l � .  

Hence, Kronecker’s symbols are the components of a tensor of second order too 

" #
1 0 0

0 1 0

0 0 1
ij


$ %
* +

� * +
* +
* +& '

, (3.1.48) 

which is just the unit tensor ( � 1B ); this tensor is symmetric ( ij ji
 
� , , 1,2, 3i j � ). 
Let us consider also the permutation symbol, defined by the formula (2.1.29). Taking 

into account the relations � � " #1 2 3, , det 1pq�� � � � �i i i  and � �, ,m nl lmn� � � ���i i i , 
, ,l m n � 1,2, 3 , and the relations (2.1.37), it follows 
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mjlmn ijk li nk� � ��� �� ,  , , 1,2, 3l m n � .  

Hence, the permutation symbol is a totally antisymmetric tensor of third order � , for 
which the relations (2.1.45)-(2.1.46'') take place. 

Two tensors a  and b  of the same order n are equal ( �a b ) if they have the same 
components 

1 2 1 2... ...n ni i i i i ia b� ,  1,2, 3ji � ,   1,2,...,j n� , (3.1.49) 

in an arbitrary frame B; this relation has the well known properties of reflexivity, 
symmetry and transitivity. 

The sum of two tensors ( a  and b ) of order n is a tensor � �c a b  of the same 
order; hence, in a frame B we have 

1 2 1 2 1 2... ... ...n n ni i i i i i i i ia b c� � . (3.1.50) 

The addition of tensors is commutative and associative. 
Multiplying all the components of a tensor a  of nth order in a frame B by the same 

scalar � , one obtains a new tensor ��b a , of the same order and of components 
1 2 ... ni i ia� ; this operation is distributive with respect to the addition of tensors, as well as 

of scalars. In particular, we can have 1� � � ; hence, by subtracting two tensors of nth 
order one obtains a tensor of the same order. If �b 0  (all the components of a null 
tensor in an arbitrary basis B vanish), then we have 0� �  or �a 0 . 

Starting from the observations made at the previous subsection, one can show that an 
asymmetric tensor of nth order can be univocally decomposed in a sum of two tensors, 
the first one symmetric with respect to the indices ji  and ki  and the second one 
antisymmetric with respect to the same indices; we can thus write 

� �1 2 1 2 1 2... ... ... ... ... ... ... ... ...
1
2n n nj j jk k ki i i i i i i i i i i i i i ia a a� �  

� �1 2 1 2... ... ... ... ... ...
1
2 n nj jk ki i i i i i i i i ia a� � . (3.1.51) 

The tensor product (external product) of two tensors a  and b  of nth and mth order, 
respectively, is a tensor � Cc a b  of (n + m)th order; in a frame B, we can write 

1 2 1 2 1 2... ... ...n m n mi i i j j j k k ka b c
�

� , (3.1.52) 

where the indices lk , 1,2,...,l n m� �  are the indices pi , 1,2,...,p n� , and qj , 
1,2,...,q m� . For instance, by the dyadic product of two tensors of first order one 

obtains a tensor of second order 

i j ija b c� ,   , 1,2, 3i j � . (3.1.52') 
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The external product of tensors is not commutative, but it is associative and distributive 
with respect to their addition. 

If we make k lj j�  in the relation of definition (3.1.45) and if we take into account 
the formulae (3.1.35), then we obtain, in a basis B, 

1 2 1 2 1 1 2 21 1 1 1 1 1 1 1... ... ... ... ... ... ...n nk k k l k l k k k l k lj j j j j j j j j i i i i i i i i i j i j ia a � �
� � � � � � � �

� �  

1 1 1 1 1 1 1 1
... ... ... n nk k k k l l l lj i j i j i j i j i� � � � �

� � � � � � � �
; 

 

this operation is called the contraction of the tensor. Hence, by the contraction of two 
indices of a tensor of nth order one obtains a tensor of (n – 2)th order. For instance, by 
the contraction of a tensor a  of second order, of components ija  in a basis B, one 
obtains a scalar, called the trace of the tensor a  and denoted 

tr iia�a . (3.1.53) 

In particular, by the contraction of Kronecker’s tensor one obtains tr 3ii
� �1 . 
The internal product (the contracted tensor product) of two tensors a  and b  of nth 

and mth order, respectively, is a tensor ab  of (n + m – 2p)th order, where p  is the 
number of effected contractions. For instance, the scalar product of two vectors a  and 
b , of components ia  and ib , respectively, will be given by the contracted product 

i ia b� � �a b ab . If � 3c a b  is the vector product of the two vectors, we may write 

i jijk kc a b�� , 1,2, 3i � . We notice that the triple scalar product of three vectors a , 
b  and c  can be expressed also by means of a contracted product in the form 
( , , ) i jijk ka b c��a b c . If a  is a tensor of second order, of components ija  in the basis 

B, while b  is a vector of components jb  in the same basis, then the contracted product 
�c ab  is a vector of components i ij jc a b� ; if a  is a tensor of components ijka , 

while b  is a tensor of components klb , then we obtain the contracted product of 
components ijl ijk klc a b� . The sum is obtained by contracting the last index of the first 
tensor by the first index of the second tensor; eventually, one can contract also the last 
but one index of the first tensor by the second index of the second tensor a.s.o. By 
means of two permutation tensors one obtains the external product ijk lmn� � , given by 
the formula (2.1.45); by contraction, one is led to various internal products of the form 
(2.1.46)-(2.1.46''). 

We  have seen that by algebraic operations of addition and of external or internal 
products one obtains new tensors. To identify if a quantity is a tensor, the quotient law 
is frequently used; so, if we have a relation of the form 

� �
1 2 1 2...1 2 ..., ,..., m n mn j j j k k kf i i i b c

�
� , (3.1.54) 

where the indices lk , 1,2,...,l n m� � , are just the indices pi , 1,2,...,p n� , and qj , 
1,2,...,q m� , then the function f  is of the form 
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� �
1 2 ...1 2, ,..., nn i i if i i i a� , (3.1.54') 

obtaining thus the components of a tensor of nth order in a basis B. 
Let � �1 2 3, ,U U x x x�  be a scalar field, defined on a domain D , with 

1 ( )U C D� , and let be / iU x( ( , 1,2, 3i � , the components of the conservative 
vector field which is thus obtained; by a change of co-ordinates, we obtain 

� �1 2 3, ,U U x x x� � � � ��  and we may write 

i
ji

j i j i

xU U U
x x x x

�
� (( ( (
� �

� �( ( ( (
,   1,2, 3j � ,  

where we took into account the relations (3.1.36), (3.1.37). Hence, the derivatives of a 
scalar field with respect to the independent variables lead to a tensor field of first order; 
we denote ,/ i i iU x U U( ( � ( � , 1,2, 3i � . Analogously, starting from the vector 

field � �1 2 3, ,i iV V x x x� , 1,2, 3i � , with 1 ( )iV C D� , and by a change of co-
ordinates of the form (2.1.11), we can write 

� �l k lk i k
jilk

j i j i

V V Vx
x x x x

�
� �

�( ( ((
� �

� �( ( ( (
    , 1,2, 3l j � ; 

 

hence, the derivatives of first order of a tensor field of first order are the components of 
a tensor field of second order. We write ,/i j j i i jV x V V( ( � ( � , , 1,2, 3i j � . In 
general, the derivatives of first order of a tensor field of nth order are the components of 
a tensor field of (n + 1)th order. 

One can define, analogously, derivatives of higher order with respect to the 
independent variables of a tensor field. If 2 ( )ia C D� , the we can write 

, ,i jk i kja a� ,   , , 1,2, 3i j k � , (3.1.55) 

the derivatives of second order being immaterial of the order of differentiation 
(Schwartz’s theorem); we notice thus that the tensor ,i jka  is symmetric with respect to 
the indices j  and k . 

Besides the operators grad, div and curl introduced in App. §2, for a vector field, we 
can introduce also the operators Grad, Div and Curl for the tensors of higher order. 

1.2.3 Tensors of second order 

Let a  be an asymmetric tensor of second order, expressed by its components ija  in 
the form of a square matrix (3.1.42). If we denote the symmetric part of this tensor by 

� �T1
2s � �a a a ,  � � � �1

2 ij jiija a a� � , (3.1.56) 

and the antisymmetric one by  
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� �T1
2a � �a a a ,  " # � �1

2 ij jiija a a� � , (3.1.56') 

then we can write univocally 

s a� �a a a ,  � � " #ij ij ija a a� � . (3.1.56'') 

Here Ta  is the transpose tensor, represented by the transpose matrix 

" #
11 21 31

12 22 32

13 23 33

ji

a a a
a a a a

a a a

$ %
* +

� * +
* +
& '

; (3.1.57) 

we have � �TT �a a , T
s s�a a  and T

a a� �a a . 
A symmetric tensor of second order is represented by the matrix 

" #
11 12 13

12 22 23

13 23 33

ij

a a a
a a a a

a a a

$ %
* +

� * +
* +
& '

, (3.1.58) 

which has only six distinct components, while an antisymmetric tensor of second order 
is represented in the form 

" #
12 13

12 23

13 23

0

0

0
ij

a a

a a a

a a

$ %�
* +

� �* +
* +�* +& '

, (3.1.58') 

and has only three distinct components. 
Let us consider the contraction 

11 22 33tr iia a a a� � � �a  (3.1.59) 

of the symmetric tensor of components ija ; it is an invariant by the transformations of 

co-ordinates, being a scalar. The tensor 0 (tr / 3)�a a 1  of components /3ijlla 
 , 
, 1,2, 3i j � , and matrix 

1 0 0
1

0 1 0
3

0 0 1
lla

$ %
* +
* +
* +
* +& '

 (3.1.60) 
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constitutes the spheric tensor of the symmetric tensor a ; the tensor (tr / 3)� � �a a a 1  
of components /3ij ij ijlla a a 
� � � , and matrix 

11 12 13

12 22 23

13 23 33

1
3

1
3

1
3

ll

ll

ll

a a a a

a a a a

a a a a

$ %�* +
* +
* +�
* +
* +

�* +& '

 (3.1.60') 

is called the deviator of the considered symmetric tensor. We obtain thus the canonical 
decomposition of a symmetric tensor of second order 

0 �� �a a a . (3.1.61) 

An antisymmetric tensor a  of second order is a degenerate one, equivalent to a 
tensor of first order; we can associate the axial vector 

1
2 ijk ijka a� � ,   1,2, 3k � , (3.1.62) 

being thus led to 1 23a a� , 2 31a a� , 3 12a a� . Inversely, multiplying both members 
by klm�  and taking into account (2.1.46), we find 

� � � �1 1 1
2 2 2ij mj mi ijklm k klm ijk li lj lm mla a a a a
 
 
 
� � � � � � � � ;  

hence, one can write 

ij ijk ka a�� ,    , 1,2, 3i j � . (3.1.62') 

For instance, the vector product c  of two vectors a  and b  ( � 3c a b ) leads to an 
antisymmetric tensor of second order 

2i j ijk ka b c� � ,  , 1,2, 3i j � . (3.1.63) 

Let a  be a symmetric tensor of second order, of components ija , represented by the 
matrix (3.1.58), and let be the associate quadratic form 

ij i ja x x� � ; (3.1.64) 

this form being a scalar, we can write as well 

ij i ja x x� � � �� , (3.1.64') 
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in a new system of orthonormed Cartesian co-ordinates. Considering the tensor a  
defined at a point, which we choose as the origin of the co-ordinate axes, the equation 

1� � 2  (3.1.65) 

represents a quadric 	  (one chooses the sign so as to obtain a real quadric); this one 
allows us to give a geometric image to the variation of the tensor components, by a 
change of the system of co-ordinate axes. To reduce the matrix (3.1.58) to a diagonal 
one, corresponds to the reduction of the quadratic form (3.1.64) to a sum of squares 
(eventual with a sign minus), as well as to the representation of the quadric 	  in the 
canonical form (with respect to its axes). 

Let us consider the components for which the indices k  and l  are equal (without 
summation) in the relation (3.1.43). In this case, ki�  and kj�  are direction cosines of an 
axis   with respect to the frame 1 2 3Ox x x ; denoting them by i� , 1,2, 3i � , we may 
write 

ij i ja a � �� , (3.1.66) 

where a  is a component of the principal diagonal of the tensor a  in the new system 

1 2 3Ox x x� � � ,   being one of the new axes of co-ordinates. The directions for which this 
component has extreme values are called principal directions and correspond to the 
quadric’s 	  axes; we have 0kla � � , k l� , , 1,2, 3k l � , in this system of co-
ordinates, and quadric’s equation can be written in the canonical form, while the 
quadratic form (3.1.64') is expressed as a sum of squares. 

We notice that 

1i i� � � ; (3.1.67) 

we have thus to solve a problem of extremum with constraints. Using the method of 
Lagrange’s multipliers, we consider the function 

� � � �1i ij i j i iF a� � � � � �� � � ;  

we calculate the partial derivatives 

� �2 2 2ij j i ij ij j
i

F a a� �� �
 �
�
(

� � � �
(

,   1,2, 3i �  
 

and are led to the equations 

� � 0ij ij ja �
 �� � ,    1,2, 3i � . (3.1.68) 

This system of three equations with three unknowns is homogeneous; because, by 
virtue of the relation (3.1.67), the system allows only non-zero solutions, its 
determinant must vanish, so that 
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" #
11 12 13

12 22 23

13 23 33

det 0ij ij

a a a

a a a a

a a a

�

�
 �

�

�

� � � �

�

. (3.1.69) 

Developing this equation, we get 

3 2
1 2 3 0� � �� � � �I I I , (3.1.70) 

where 

1 11 22 33
1
2 iiijk ljk il il ila a a a a a
� � � � � � � �I , (3.1.70') 

� �2 22 33 33 11 11 22
1 1
2 2jm ii jj ij ijijk lmk ila a a a a a a a a a a a� � � � � � � �I  

� �2 2 2
23 31 12a a a� � � , (3.1.70'') 

" #3 11 22 33
1 det
6 pqjmijk lmn il kna a a a a a a� � � � �I  

� �2 2 2
11 23 22 31 33 12 23 31 122a a a a a a a a a� � � � . (3.1.70''') 

The equation (3.1.70) is of the third degree and has three roots, at least one of them 
being real; the system (3.1.68) together with the condition (3.1.67) leads, for each root, 
to a principal direction for which 

ij j ia � ��� ,   1,2, 3i � . (3.1.71) 

We may write the relations 

1ij j ia � � �� �� ,   2ij j ia � � ��� ��� ,   1,2, 3i � ,  

corresponding to two roots 1�  and 2� ; multiplying the first relation by i���  and the 
second one by i� � , we get 

1ij j i i ia � � � � �� �� � ��� ,   2ij j i i ia � � � � ��� � �� �� .  

Interchanging the dummy indices in the first member of the latter equation, taking into 
account that tensor a  is symmetric, and subtracting the second equation from the first 
one, one obtain 

� �1 2 0j j� � � �� ��� � . (3.1.71') 

If 1 2� �� , then the two roots are real; if 1 2� �� , then we obtain 0j j� �� �� � ; hence, 
the corresponding principal directions are orthogonal. If the two roots are complex 
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conjugate ( 1,2 i� � �� 2 ), then we have ij j j� � 
� � � , ij j j� � 
�� � � , 1,2, 3j � ; 
hence, 0j j j j j j� � � � 
 
� �� � � � , a relation which takes place only if all the terms 
vanish. In conclusion, all the roots of the equation (3.1.70) are real; hence, there exist 
three principal directions which, in the case of distinct roots, are orthogonal. These 
roots represent the eigenvalues of the given matrix, while the vectors along the 
corresponding principal directions are the eigenvectors. 

If two roots are equal, then the corresponding quadric is of rotation (we have one 
principal direction, all the directions contained in the plane normal to this one being 
principal directions), while if all the roots are equal, then the quadric is a sphere (all the 
directions are principal directions). 

The considered quadric is Cauchy’s quadric, corresponding to the symmetric tensor 
a . 

Because the tensor is a mathematical entity for which the principal directions do not 
depend on the system of co-ordinates, it follows that the coefficients 1I , 2I , 3I  are 
invariant by a change of co-ordinates. These are the three invariants of the symmetric 
tensor a . An antisymmetric tensor a  has only one invariant 

2 2 2
2 23 31 12a a a� � �I , (3.1.72) 

which corresponds to the modulus of its associate vector. If �a  is the deviator (of 
associate matrix (3.1.60')) of the symmetric tensor, then we get 

1 0��I . (3.1.73) 

Let us suppose that the system of axes 1 2 3Ox x x  corresponds to the principal 
directions. We may write, e.g., 1 1� � , 2 3 0� �� �  for 1� �� , and the relation 
(3.1.71) leads to 11 1a �� , 12 13 0a a� �  for 1,2, 3i � . Hence, i� , 1,2, 3i � , 
represent the extreme values of the components a  of the principal diagonal, 
corresponding to the reduction of the matrix (3.1.58) to a diagonal one and to the 
reduction of the quadratic form (3.1.64) to a sum of squares; obviously, we have 

1 1 2 3� � �� � �I , (3.1.74) 

2 2 3 3 1 1 2� � � � � �� � �I , (3.1.74') 

3 1 2 3� � ��I . (3.1.74'') 

Using the direction cosines of the axis   with respect to the principal axes, we may 
write 

2 2 2
1 1 2 2 3 3a � � � � � �� � � . (3.1.75) 

Let be a system of axes 1 2 3Ox x x  and a point P  of position vector j jx�r i  on the 
axis   (Fig.3.6); it results 
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1
i ixr

� � ,    1,2, 3i � ,  

so that the relation (3.1.66) leads to 

Figure 3.6.  The 	  quadric associated to a symmetric tensor of second order. 

2
i j

ij
x x

a a
r � .  

Let us choose the point P  so as to fulfill the condition 

1
sign

r
a a 

� ; (3.1.76) 

the locus of the point P , corresponding to all the positions which can be taken by the 
axis  , will be just the quadric (3.1.65), obtaining thus a geometric image of the 
variation of the component a . The equation of the quadric will be of the form 

2 2 2
1 1 2 2 3 3 signx x x a� � �� � �� � � , (3.1.77) 

where the function “sign” has been introduced to get always a real quadric. By 
convention, we denote the principal values so as to have 

1 2 3� � �� � . (3.1.78) 

If 3 0� �  or if 1 0� � , then we get an ellipsoid; otherwise, one obtains an one-sheet 
or a two-sheet hyperboloid (we notice that both hyperboloids, which are conjugate, 
form the considered locus). The relation (3.1.76) shows that the major and the minor 
principal axes correspond to mina  and maxa , respectively. If we introduce the vector 
a  of components i ij ja a �� , 1,2, 3i � , then we obtain a direction which coincides 
with that of the normal to the surface const� �  at the point P  (direction parameters 

,i� ); hence, the vector a  is normal to the plane tangent to the quadric at the point in 
which this one is pierced by the axis   (Fig.3.6). We notice that the vector a  is along 
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the axis   if the latter one coincides with a principal direction. The equation (3.1.77) 
allows us also to express the quadratic form (3.1.64) in the form of a sum of squares. 

The three principal directions form a three-orthogonal principal trihedron of 
reference 123O . One can prove that the components ija , i j� , , 1,2, 3i j � , get their 
extreme values with respect to the trihedron formed by the bisector planes of the 
dihedral angles of the principal trihedron, i.e.: 

� �2 3
1
2
� �2 � ,    � �3 1

1
2
� �2 � ,    � �1 2

1
2
� �2 � ; (3.1.79) 

the two signs correspond to the two bisectors: the internal and the external one. 
Obviously, the greatest value is ( i j� ) 

� �max 1 3
1
2ija � �� � . (3.1.79') 

The components a  corresponding to the normals to these bisector planes are equal to 

� �2 3
1
2

� �� ,   � �3 1
1
2

� �� ,   � �1 2
1
2

� �� , (3.1.79'') 

respectively. 

1.2.4 The moment of inertia tensor 

Let be the matrix 

1 1 2 1 3

2 1 2 2 3

3 1 3 2 3

x x x x x

x x x x x

x x x x x

I I I

I I I

I I I

$ %� �
* +
� �* +

* +
� �* +& '

, (3.1.80) 

formed by means of the axial and the centrifugal moments of inertia. We notice that the 
moments of inertia may be expressed in a unitary form, i.e. 

� �d dn p np n pjnq jpjk kpq jk knI x x m x x m
� �


 
 
 
�� � � �� �  

� �djl l jk kx x x x m
�


� �� ,   , 1,2, 3j k � , (3.1.81) 

where 

 ,    ,

,   ;
j

j k

x

jk
x x

I j k
I

I j k

����  � ��!
 (3.1.81') 

one puts thus into evidence the moment of inertia tensor I  of components jkI , which 
is a symmetric tensor of second order. 
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Let us suppose that through the point O  passes an axis  , the direction of which is 
given by the unit vector n  of direction cosines in , 1,2, 3i �  (Fig.3.7). Taking into 
account the transformation relations of the components jkI  by a rotation of the right-
handed orthonormed frame of reference, we get 

 
Figure 3.7.  The axial moment of inertia with respect to a given axis. 

1 2 3
2 2 2
1 2 3x x xjjk kI I n n I n I n I n � � � � � � �2 3 3 1 1 22 3 3 1 1 22 x x x x x xI n n I n n I n n� � ; 

 (3.1.82) 

in a compact form, we may write 

( )I � �In n , (3.1.82') 

where In  represents a contracted tensor product. 
Noting that 

� � � �2( ) ( ) j j j j jk k k l l jk k kr u x u x x x x x x u
3 3 � � � � � � �r u r u u r r i i ,  

where u  is a given unit vector, we obtain the remarkable relation 

( )dm
�

3 3 �� r u r Iu , (3.1.83) 

Iu  being a contracted tensor product too. 
Using the results of the previous subsection, we search the directions for which the 

axial moments of inertia get their extreme values. These values (the principal moments 
of inertia 1 2 3I I I� � ) are the roots of the third degree equation in Lagrange’s 
multiplier I  

11 12 13

21 22 23

31 32 33

det jk jk

I I I I

I I I I I I

I I I I




�

� � � �$ %& '
�

3 2
1 2 3 0I I I� � � �I I I , 

 (3.1.84) 
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corresponding to three directions, orthogonal two by two (the principal directions 
1, 2, 3O O O ), the direction cosines of which are given by the system of homogeneous 

equations with non-vanishing solutions 

� � 0jk jk kI I n
� � ,   1,2, 3j � , (3.1.85) 

to which we associate the supplementary condition 

1k kn n � . (3.1.85') 

The matrix (3.1.80) is reduced, in this case, to its diagonal form, the corresponding 
centrifugal moments of inertia being equal to zero. The coefficients of the equation 
(3.1.84) are the invariants of the tensor I  and are given by 

1 11 22 33 1 2 3
1
2 jjO ijk ljk il il ilI I I I I I I I I I
� � � � � � � � � � � �I , (3.1.86) 

� �2 22 33 33 11 11 22
1 1
2 2jm ii jj ij ijijk lmk ilI I I I I I I I I I I I� � � � � � � �I  

2 2 2
23 31 12 2 3 3 1 1 2I I I I I I I I I� � � � � � , (3.1.86') 

" # 2 2
3 11 22 33 11 23 22 31

1 det
6 jm ijijk lmn il knI I I I I I I I I I I� � � � � � �I  

2
33 12 23 31 12 1 2 32I I I I I I I I� � � . (3.1.86'') 

If 1 2 3, ,n n n  are the direction cosines of the axis   with respect to the principal 
directions, then we may write 

2 2 2
1 1 2 2 3 3I I n I n I n � � � . (3.1.82'') 

1.2.5 The two dimensional case 

If the support �  is contained in the plane 1 2Ox x , then we obtain 3 0n �  and 

33 31 32 0I I I� � � ; the formula (3.1.82) leads to 

� �1 2 1 2 1 2
2 2
1 2 1 2

12
2x x x x x xI I n I n I n n I I � � � � �  

� � � � � �1 2 1 21 1
1 cos2 , sin2 ,
2 x x x xI I x I x� � �n n , (3.1.87) 

where we put into evidence the angle formed by the unit vector n  of the axis   with 
the co-ordinate axis 1Ox ; for an axis �  normal to the axis  , we may write 

� � � � � � � �1 2 1 2 1 21 1
1 1 cos2 , sin2 ,
2 2x x x x x xI I I I I x I x� � � � � �n n . (3.1.87') 

The centrifugal moment of inertia is given by 
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� � � � � �1 2 1 21 1
1 sin 2 , cos2 ,
2 x x x xI I I x I x� � � �n n ; (3.1.87'') 

we notice that we have also 

� �
1 2

1
2

I I I � � � , (3.1.87''') 

where 1  and 2  are the two bisectrices of the angle formed by the axes   and � . 
Equating to zero the derivative of the function I  with respect to the argument 
� �12 ,xn , we get 

� � 1 2

2 1
1

2
tan2 , x x

x x

I
x

I I
�

�
n , (3.1.88) 

obtaining thus the directions for which the axial moment of inertia I  attains its 
extreme (maximal or minimal) values; in this case, the axial moment of inertia I�  
attains its extreme (minimal or maximal) values too. It is easy to verify that for the 
angles � �1,xn  given by (3.1.88) (and only for those angles) the centrifugal moments of 
inertia vanish. 

The relation (3.1.88) determines two angles � �12 ,xn , differing by � ; hence, the 
searched angles � �1,xn  differ by /2� . One obtains thus two principal directions, 
normal one to the other, denoted by 1O  and 2O , to which correspond the principal 
moments of inertia 1I  and 2I  ( 1 2I I� ), respectively. 

To see which of those directions corresponds to the maximal value of I  (which 
will be denoted by 1I ) and which to its minimal value (denoted by 2I ), we calculate 
the second derivative 

� �
� �

� �1 2 1 2
1 2

2
21 2

2
1

d 2 cos2 ,
4

d ,
x x x x

x x

I x
I I I

I Ix
 $ %� � � �& '�

n
n

� �
� �1 2 1 2

1 2

21 2sin2 ,
4x x x x

x x

x
I I I

I
$ %� � �& '

n
, 

 

where we took into account also the relation (3.1.88). We suppose that 1 2 0x xI � . If 

1 2 0x xI �  and � �1 min, / 4x ��n  and 2 1x xI I�  or � �1 min/ 4 , /2x� �� �n  and 

2 1x xI I� , then the second derivative is positive and we get 2minI I � ; otherwise, if 

1 2 0x xI �  and � �1 min, / 4x ��n  and 1 2x xI I�  or � �1 min/ 4 , /2x� �� �n  and 

1 2x xI I� , then the second derivative is negative and we obtain 1maxI I � . The angle 
� �1 min,xn  is the smallest positive angle. In conclusion, the principal axis 1O  is that 
one which makes the smallest angle with the axis 1Ox  if 1 2x xI I�  or with the axis 
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2Ox  if 2 1x xI I� , hence with the axis with respect to which the moment of inertia is the 
greatest. If 1 2x xI I� , then we get � �1 min, / 4x ��n ; in this case 

� �
� �1 2

2

12
1

d
4 sin2 ,

d ,
x x

I
I x

x
 � n

n
, 

 

and the corresponding direction is 1O  or 2O  as we have 1 2 0x xI �  or 1 2 0x xI � , 
respectively. If 1 2 0x xI �  and 1 2x xI I� , then we obtain 

� �
� � � �1 2

2

12
1

d
2 cos2 ,

d ,
x x

I
I I x

x
 � � � n

n
, 

 

and � �1 min, 0x �n  or � �1 min, /2x ��n ; if 1 2x xI I� , then 1 1Ox O�  and 

2 2Ox O� , while if 2 1x xI I� , then 1 2Ox O�  and 2 1Ox O� . Finally, if 1 2 0x xI �  
and 1 2x xI I� , then the expression (3.1.88) is indeterminate; any direction passing 
through the respective point is a principal direction, while the common magnitude of 
the axial moments of inertia is the magnitude of the principal moment of inertia. 

We associate thus the diagonal matrix 

1

2

0

0

I
I

I
$ %

� * +
* +& '

 (3.1.89) 

to the moment of inertia tensor. The equation (3.1.84) becomes 

2
1 2 0I I� � �I I , (3.1.90) 

with the invariants 

1 21 1 2x xOI I I I I� � � � �I , (3.1.90') 

1 2 1 2
2

2 1 2x x x xI I I I I� � �I ; (3.1.90'') 

the principal moments of inertia are thus given by 

� � � �1 2 1 2 1 2
2 2

1,2
1 4
2 x x x x x xI I I I I I� � 2 � � . (3.1.91) 

Taking into account the relations (3.1.88) and (3.1.91), the angles made by the 
principal directions with the axis 1Ox  are given also by one of the relations 

� � 1 1 2 2 1 2

1 2 2 1 2 1

2 1
1

2 1
tan , x x x x x x

x x x x x x

I I I I I I
x

I I I I I I
� �

� � � �
� �

n . (3.1.92) 

If the relation (3.1.87) is written with respect to the principal axes, then we get 
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� � � � � �2 2
1 2 1 2

1cos ,1 sin ,1
2

I I I I I � � � � �n n � � � �1 2
1 cos2 ,1
2
I I� n ; 

 (3.1.93) 

the relations (3.1.87') and (3.1.87'') lead to 

� � � � � �1 2 1 2
1 1 cos2 ,1
2 2

I I I I I� � � � � n , (3.1.93') 

� � � �1 2
1 sin2 ,1
2

I I I� � � n . (3.1.93'') 

We notice that we have 

� � � �1 2 cos2 ,1I I I I �� � � n  (3.1.93''') 

too. 
 

  
Figure 3.8.  Principal axes of inertia (plane case). 

It is easy to see that the centrifugal moment of inertia has an extreme value for the 
angles � �,1 / 4��n  and � �,1 3 / 4��n , hence for the bisectrices of the angles 
formed by the principal directions (Fig.3.8). The value of the extreme centrifugal 
moments of inertia are given by 

� �1 233
1
2

I I I� � 2 � , (3.1.94) 

while the axial moment of inertia corresponding to the bisectrices 3O  and 3O �  is 

� �1 23
1
2

I I I� � � . (3.1.94') 
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Starting from the gyration radii (3.1.30) and (3.1.30'), we may write 

1
1

I
i

M
� ,    2

2
I

i
M

�  (3.1.95) 

and 

1
1

I
i

A
� ,    2

2
I

i
A

� , (3.1.95') 

respectively, with respect to the principal axes of inertia, obtaining thus the principal 
gyration radii; with the aid of (3.1.93), we get 

� � � �2 2 2 2 2
1 2cos ,1 sin ,1i i i � � �n n � � � � � �2 2 2 2

1 2 1 2
1 1 cos2 ,1
2 2
i i i i� � � n . 

 (3.1.96) 

In the case of a rectangle of sides a  and b  we may write 

3
1

1
12

I a b� ,    3
2

1
12

I ab� ,   � �2 21
12OI ab a b� � ,    a b� , (3.1.97) 

with respect to the two axes of symmetry. For an ellipse of semiaxes a  and b  we get 

3
1 4
I a b�

� ,    3
2 4
I ab�

� ,   � �2 2
4OI ab a b�

� � ,    a b� , (3.1.98) 

too; if a b R� � , we obtain 

4
1 22 2

2OI I I R�� � � , (3.1.98') 

for a circle of radius R . For an annulus of internal and external radii iR  and eR , 
respectively, we get 

� �4 4
1 22 2

2 e iOI I I R R�
� � � � . (3.1.99) 

1.2.6 Three-dimensional geometric representations 

Choosing a point P  of co-ordinates ix , 1,2, 3i � , on the axis  , we introduce a 

vector OP
����

, the extremity of which is given by 

K
OP

I
�

����
,  i

i
Kn

x
I

� ,   1,2, 3i � , (3.1.100) 

where 0K �  is a constant which determines the units; replacing in (3.1.82), we get 
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1 2 3 2 3 3 1 1 2
2 2 2 2
1 2 3 2 3 3 1 1 22 2 2x x x x x x x x xI x I x I x I x x I x x I x x K� � � � � � ; (3.1.101) 

hence, the locus of the point P  is a quadric. If 0I �  (the geometric support �  
belongs to the axis  ), then the quadric is a circular cylinder with the generatrices 
parallel to  ; if 0I � , then the quadric has all its points at a finite distance, hence it 
is an ellipsoid (Poinsot’s ellipsoid of inertia). Taking into account the relation 
(3.1.100), this ellipsoid allows a geometric study of the variation of the moment of 
inertia I  when the axis   rotates about the pole O  (determination of the principal 
axes, of the principal moments of inertia etc.). If the ellipsoid of inertia is expressed 
with respect to the principal axes (the co-ordinates 1 2 3, ,x x x  are considered to be with 
respect to these axes) and if we use the semiaxes 1 2 3, ,a a a  given by the relations 

2 2 2 2
1 1 2 2 3 3I a I a I a K� � � , (3.1.102) 

then we may express this ellipsoid in the form ( 1 2 3a a a� � ) 

2 2 2
1 2 3
2 2 2
1 2 3

1
x x x
a a a

� � � ; (3.1.101') 

hence, the principal moments of inertia are in inverse proportion to the squares of the 
semiaxes of the ellipsoid of inertia. Taking into account the relations (3.1.24) and 
(3.1.102), we get the conditions 

2 2 2 2 2
1 1 1 1 1

j jk l ka a a a a
� � � � ,   j ka a� ,  j k l j� � � ,  , , 1,2, 3j k l � , (3.1.103) 

which must be verified by the semiaxes of the ellipsoid (3.1.101') so as to be an 
ellipsoid of inertia; these conditions are superabundant, the inequalities on the right side 
being sufficient. To the semi-minor axis of the ellipsoid corresponds the maximal 
moment of inertia, while to the semi-major one corresponds the minimal moment of 
inertia. If two of the principal moments of inertia are equal (for instance 1 2I I� ), then 
the ellipsoid of inertia is an ellipsoid of rotation ( 1 2a a� ); any axis passing through 
the pole O  and situated in the plane 12O  is a principal axis of inertia. If all the 
principal moments of inertia are equal ( 1 2 3I I I� � ), then the ellipsoid of inertia is a 
sphere. If the mechanical system admits three three-orthogonal planes of geometric and 
mechanical symmetry, then their intersection lines are principal axes of inertia. 
Corresponding to the properties mentioned in Subsec. 1.2.4 concerning the centrifugal 
moments of inertia, we may state that any axis normal to a plane of geometric and 
mechanical symmetry of a mechanical system is a principal axis of inertia for the point 
of piercing of the plane by this axis. As well, if a mechanical system has an axis of 
geometric and mechanical symmetry, then this one is a principal axis of inertia for all its 
points; the corresponding ellipsoid of inertia is an ellipsoid of rotation with respect to 
this axis. 
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Let be the equation of the ellipsoid of inertia written in the form 

2 2 2 2
1 2 3 1 1 2 2 3 3( , , ) 0f x x x I x I x I x K� � � � �   

Figure 3.9.  The ellipsoids of inertia and of gyration. 

and an arbitrary point P  of position vector r  on this surface (Fig.3.9); the normal from 
O  to the plane tangent at P  to the ellipsoid of inertia pierces this plane at Q , so that 

OQ h�
����

. We construct the inverse P �  of the point Q  with respect to a sphere of 

centre O  and arbitrary radius R ; hence, 

versOP r OQ� � �� �
����� ����

r ,   grad
vers

grad
f

OQ
f

�
����

, 

versh OQ OQ� � �
���� ����

r ,    2r h R� � , 

 

the point P �  being of co-ordinates 1 2 3, ,x x x� � � . It follows that 

2 grad
grad

R f
f

� �
�

r
r

, (3.1.104) 

wherefrom 

2
1 2 3

2
1 1 2 2 3 3

x x x R
I x I x I x K

� � �
� � � . (3.1.104') 

The locus of the point P �  is an ellipsoid too ( 2 4K MR� ) 

2 2 2
1 2 3
2 2 2
1 2 3

1
x x x
i i i
� � �

� � � , (3.1.105) 

called the ellipsoid of gyration, where we have introduced the gyration radii. One may 
pass from P �  to P  by a similar graphic construction and by a formula of the form 
(3.1.104), obtaining thus the ellipsoid of inertia; the two ellipsoids are reciprocal. 

Let us consider a plane of axes of co-ordinates OI  and OI�  (Fig.3.10) and  
three circles (Mohr’s circles): 1C  of centre � �� �1 2 3 /2, 0O I I�  and radius  
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� �1 2 3 /2R I I� � , 2C  of centre � �� �2 3 1 /2, 0O I I�  and radius 
� �2 1 3 /2R I I� �  and 3C  of centre � �� �3 1 2 /2, 0O I I�  and radius 
� �3 1 2 /2R I I� � . The co-ordinates of a point P  in the hatched domain are an 

axial moment of inertia I  and a centrifugal moment of inertia I� . One obtains a 
plane geometric representation for a three-dimensional moment of inertia tensor; we 
have thus the possibility to get – in a simple way – the extreme values of the axial 
and centrifugal moments of inertia. For instance, the extreme centrifugal moments of 
inertia are the radii of the three circles, that is 
 

 
Figure 3.10.  Mohr’s circles for axial moments of inertia (three-dimensional case). 

� �2 3
1
2

I I I�� � 2 � ,  � �3 1
1
2

I I I��� � 2 � ,  � �1 2
1
2

I I I���� � 2 � , (3.1.106) 

while the corresponding axial moments of inertia are the abscissae of the centres of the 
very same circles, (see also Subsec. 1.2.3), i.e., 

� �2 3
1
2

I I I� � � ,  � �3 1
1
2

I I I�� � � ,  � �1 2
1
2

I I I��� � � . (3.1.106') 

Once the principal moments of inertia specified, the three circles are easily obtained. 
Let be a direction of unit vector n ; one can thus build up three arcs of circle of centres 

1O , 2O  and 3O , and of radii given by (Fig.3.11,a) 

� � � � � �22 2
1 2 3 1 1 2 1 3

1
4

r I I n I I I I� � � � � ,   

� � � � � �22 2
2 3 1 2 2 3 2 1

1
4

r I I n I I I I� � � � � ,   

� � � � � �22 2
3 1 2 3 3 1 3 2

1
4

r I I n I I I I� � � � � ; 

(3.1.107) 
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the point P  of co-ordinates I  and I�  is the piercing point of these arcs of circle. 

 
Figure 3.11.  Mohr’s circles. Determination of the components of the moments of inertia  

tensor for the direction n : analytical (a) and graphical (b) method. 

One can use also a graphic method. Let be the tangents to the circle 2C , at the point 
in which the latter one intersects the axis OI  and let us set up straight semi-lines 
inclined by the angles 1�  and 3�  with respect to those tangents, respectively 
(Fig.3.11,b); these semi-lines pierce the circles 3C  and 2C  at the points 3A  and 2A , 
respectively, and the circles 1C  and 2C  at the points 1B  and 2B , respectively. One can 
easily prove that the arc of circle of radius 1r  and centre 1O  passes through the points 

3A  and 2A , while the arc of circle of radius 3r  and centre 3O  passes through the points 

1B  and 2B ; their intersection is just the point P . The construction is thus completely 
specified. 

An important rôle is played by the approximation methods of computation of the 
integrals, by the graphical methods, by the methods using apparatuses for graphical 
determinations, by the experimental methods a.s.o. 

1.2.7 Two-dimensional geometric representations 

We may represent the variation of the axial moments of inertia I  and I�  given by 
(3.1.87) and (3.1.87'), respectively, by a rotation of the axes 1O , 2O  about the point 
O , as a function of the angle � �,1n  (Fig.3.12,a); the curve of fourth degree thus 
obtained is symmetric with respect to the two principal axes of inertia. The moments of 
inertia corresponding to the bisectrices of the angles formed by the principal axes of 
inertia are also put into evidence. 

As well, the variation of the centrifugal moment of inertia I�  by the angle � �,1n  
is represented in Fig.3.12,b also by a curve of fourth degree, symmetric both with 
respect to the principal axes of inertia and to the bisectrices of the angles formed by 
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those axes (with respect to which the considered moments of inertia have extreme 
values). 

If the geometric support �  is contained in the plane 1 2Ox x , then the relations 
(3.1.102) become 
 

 
Figure 3.12.  Variation of the axial (a) and centrifugal (b) moments of inertia. 

2 2 2
1 1 2 2I a I a K� �  (3.1.108) 

and one obtains the ellipse of inertia ( 1 2a a� ) 

2 2
1 2
2 2
1 2

1
x x
a a

� � ; (3.1.109) 

hence, the principal moments of inertia are in inverse proportion to the squares of the 
semiaxes of the ellipse of inertia. To the semi-minor axis of the ellipse corresponds the 
maximal moment of inertia, while to the semi-major one corresponds the minimal 
moment of inertia. If the two principal moments of inertia are equal ( 1 2I I� ), the 
ellipse of inertia is a circle ( 1 2a a� ), and any axis passing through the pole O  is a 
principal axis of inertia. 

For instance, in the homogeneous case, we can take 2
1 2 /K I I A� , obtaining thus 

1 2a i� , 2 1a i� , so that the equation of the ellipse becomes (Fig.3.13) 
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2 2
1 2
2 2
2 1

1
x x
i i

� �  (3.1.109') 

We notice that we have 2 2 2
1 2K Ai i�  too; on the other hand, taking into account 

(3.1.30') and (3.1.100), we obtain 

Figure 3.13.  Properties of the ellipse of inertia. 

1 2i iOQ
i

�
����

, (3.1.110) 

a remarkable relation, specifying the radius vector of the point Q . 
Let be �  and ��  the tangents to the ellipse, parallel to the axis  , and D �  and 
D ��  the tangents parallel to the axis D , at the points Q  and Q � , respectively,   and 
D  being two conjugate diameters of the ellipse; one obtains thus a parallelogram, the 
area of which is an invariant equal to 4h OQ

����
, h  being the distance from the centre O  

to one of the tangents � , �� . If the axis   coincides with one of the principal axes 
of inertia, the parallelogram becomes a rectangle of area 1 24i i ; taking into account 
(3.1.110), we get 

i h � , (3.1.110') 

hence a graphical evaluation of the gyration radius with respect to an arbitrary axis  . 
Obviously, also in this case one can introduce an ellipse of gyration of the form 

(analogous to (3.1.105)) 

2 2
1 2
2 2
1 2

1
x x
i i
� �

� � . (3.1.111) 
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By eliminating the angle � �1,xn  between one of the relations (3.1.87), (3.1.87') and 
the relation (3.1.87''), we get 

� � � �1 2 1 2 1 2

2 2
2 21 1

2 2x x x x x xI I I I I I I �
$ % $ %� � � � � �* + * +& ' & '

. (3.1.112) 

Figure 3.14.  Mohr’s circle. Principal axes and moments of inertia. 

The relation remains valid if we replace I  by I� . Taking the axial moments of 
inertia I  and I�  along the axis 1Ox  and the centrifugal moment of inertia I�  
along the axis 2Ox , we notice that the equation (3.1.112) corresponds to a circle of 

centre � �� �1 2 /2, 0x xO I I� �  and radius � �" #1 2 1 2
2 2/2x x x xR I I I� � �  (Fig.3.14). 

Supposing that 2 1x xI I�  and 1 2 0x xI � , we obtain the points � �2 1 2,x x xP I I  and 
� �1 1 2,x x xP I I� �  on the circle; indeed, � �2 1 /2x xA O O A I I� � �� � �  and 

O P O P R� � �� � , the affirmation made above being thus justified. 
We notice that  

�
� �

1 2

2 1

tan
/2

x x

x x

IPAAO P
I IO A

� � �
��

. 
 

Taking into account the relation (3.1.88), it results � � �12 ,AO P x� � n ; we find also that 
� � �1,AB P x� � n  (Fig.3.14). We are in the case in which � �1 min, / 4x ��n , 

2 1x xI I�  and 1 2 0x xI � , so that, corresponding to the results of Subsec. 1.2.5, the 
direction of the axis 2O  is given by B P� ; analogously, the direction of the axis 1O  
corresponds to the straight line PB . 
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We see that 2OB OO R I� �� � � , 1OB OO R I�� � � , so that the extremities of 
the diameter BB �  specify the magnitudes of the principal moments of inertia 1 2I I� , 
corresponding to the formulae (3.1.91). 

This circle, called O.Mohr’s circle (initially introduced by Culmann and Rankine), 
puts into evidence – in a concise way – the properties of extremum of the moments of 
inertia with respect to axes rotating about a point. 

By eliminating the angle � �,1n  between the relations (3.1.93) and (3.1.93''), one 
obtains 

� � � �
2 2

2
1 2 1 2

1 1
2 2

I I I I I I �
$ % $ %� � � � �* + * +& ' & '

. (3.1.112') 

 

 

Figure 3.15.  Mohr’s circle. Determination of moments of inertia with  
respect to two orthogonal axes. 

The equation holds also if we replace I  by I� . We get thus a circle of Mohr, drawn 
with the aid of the principal moments of inertia, in the plane 12O , which allows us to 
determine the axial moments of inertia I  and I� , as well as the centrifugal moment 
of inertia I� , corresponding to a given angle � �,1n  (Fig.3.15). Starting from the 
centre � �� �1 2 /2, 0O I I� �  of the circle of radius � �1 2 /2R I I� �  and taking into 
account the relations (3.1.93)-(3.1.93''), we find the points � �,P I I �  and 

� �,P I I � �� � , I I �� , 0I� � , corresponding to the angle � �2 ,1n  or to the 
angle � �,1n , respectively; the searched moments of inertia are thus obtained. We 
notice also that for � �,1 / 4��n  we get the extreme centrifugal moments of inertia, 
which have the properties mentioned in Subsec. 1.2.5, corresponding to the points P  
and P �  on the circle. 
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Another geometric construction was proposed by Mohr too and was improved by R. 
Land; it is known as Land’s circle. As in the previous case, we suppose that the axial 
moments of inertia 1 2x xI I�  and the centrifugal moment of inertia 1 2x xI  are known. 

Figure 3.16.  Land’s circle. Principal axes and moments of inertia. 

With respect to the frame of reference 1 2Ox x , we take the segments 1xOA I�  and 

2xAB I�  on the axis 2Ox ; on OB  as diameter, we construct a circle with the centre 
at � �� �1 20, /2x xO I I� � , of radius � �1 2 /2x xR I I� �  and tangent at O  to the axis 

1Ox . We build up a segment AC , parallel to the axis 1Ox , and having the same 
direction, so as to have 1 2x xAC I�  (if 1 2 0x xI � , then the point C  must be in the 
opposite direction); the straight line O C�  pierces the circle at the points D  and E  
(Fig.3.16). 

If � �1,xn  is the angle formed by OD  with the axis 1Ox , then it follows that 
� � �12 ,OO D x� � n . We notice that � � � �1 2 1 2 1/2 /2x x x x xO A I I I I I� � � � � � , 

hence 

� �" #2 1 1 2
2 2/2x x x xO C I I I� � � � .  
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Taking into account the formulae (3.1.91), we get 1EC I� , 2CD I� ; on the other 
hand, � � � �1 2 2 11tan2 , / 2 /x x x xx AC O A I I I�� � �n , so that OD  is along the axis 

2O , while OE  is along the axis 1O . 
 

Figure 3.17.  Land’s circle. Determination of moments of inertia with  
respect to two orthogonal axes. 

With respect to the principal axes 1O , 2O , one can construct a circle of diameter 
OB OA AB� � , 2OA I� , 1AB I�  and of radius � �1 2 /2R I I� � , tangent to 

1O  at O  (Fig.3.17). By means of the angle � �,1n , we draw the straight lines OD  and 
OE  along the axes   and �  ( � ? ), respectively; the points D  and E  are the 
extremities of a diameter. The point C  is the foot of the normal from A  to DE . It is 
easy to verify that DC I�� , CE I�  and AC I�� , obtaining thus the axial 
moments of inertia I , I�  and the centrifugal moment of inertia I� , corresponding 
to the direction � �,1n  with respect to the principal axis 1O . 

1.2.8 Huygens-Steiner theorems 

Let be an axis   and an axis C , parallel to the first one and passing through the 
centre of mass C  of the mechanical system. A point P  of the system is projected at 
P �  on a plane � , normal to both axes   and C ; this plane is pierced by the axes at 

the points P  and 
C

P , respectively. Denoting P P � �
������

r , 
C C

P P � �
�������

r  and 

C
P P  �
��������

d , and noting that we have to do with equipollent vectors, contained in the 
plane � , we may write (Fig.3.18) 
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� � 

22 2 2d d d 2 d d
C C C

I r m m r m m d m    � � � � �
� � � � � � �� � � � �r d d r ;  

observing that the static moment with respect to the centre of mass vanishes, we have 

2
C

I I Md � �  (3.1.113) 
 

Figure 3.18.  Huygens-Steiner theorem. 

and we can state 
Theorem 3.1.4 (Huygens-Steiner). The moment of inertia of a mechanical system with 
respect to an axis   is equal to the sum of the moment of inertia of the same system 
with respect to an axis C  parallel to the first one, passing through the centre of mass, 
and the moment of inertia of the centre of mass, at which we consider concentrated the 
mass of the whole mechanical system, with respect to the axis  . 

It follows that, being given all axes which have the same direction, the moment of 
inertia of a mechanical system is minimal for that axis which passes through the centre 
of mass. The moments of inertia with respect to the central axes (the axes which pass 
through the centre of mass) are called central moments of inertia; the moments of 
inertia which correspond to the central principal axes of inertia are called central 
principal moments of inertia. Corresponding to what was related before, from all the 
axes passing through the point C , there exists one (or at least one if we have equal 
moments of inertia) with respect to which the axial moment of inertia admits a 
minimum minimorum. We notice also that the locus of the parallel axes which have the 
same moment of inertia is a circular cylinder of radius d , the axis of the cylinder 
passing through C ; as well, the variation of the moments of inertia with respect to axes 
of the same direction may be represented by a paraboloid of rotation, the axis of which 
has the same direction and passes through C . 

Let �  be another axis, parallel to the axis  ; if we write a formula of the form 
(3.1.113) for this axis too, and if we subtract the two formulae, then we get 

� �2 2I I M d d� �� � � ; (3.1.114) 

this result allows us to pass from an axis of a given direction to an axis parallel to the 
latter one, taking into account the distances d  and d �  from these axes to an axis which 
has the same direction and passes through C . 
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With the aid of the radii of gyration (3.1.30), the formulae (3.1.113), (3.1.114) 
become 

2 2 2
C

i i d � � , (3.1.113') 
2 2 2 2i i d d� �� � � , (3.1.114') 

the notations corresponding to those used above. 
For the polar and the planar moments of inertia, respectively, we may write also the 

formulae 

2
O CI I M�� � , (3.1.115) 

2
C

I I Md� �� � , (3.1.115') 

corresponding to theorems of Huygens-Steiner type, where @  is the position vector of 
C  with respect to O , while d  is the distance between the parallel planes �  and C� . 
The properties previously established can be adapted to those formulae too. 
Analogously, for the products of inertia we obtain a theorem of Huygens-Steiner type of 
the form 

C C
I I Mdd  � � �� � , (3.1.113'') 

where   and �  are axes corresponding to orthogonal directions and which pass 
through the point O , while d  and d �  represent the co-ordinates of the centre of mass 
C  with respect to those axes. These products of inertia may be also negative, so that 
for the central axes we cannot have minimal values. As well, starting from axes which 
pass through C , one can find axes parallel to latter ones for which 0I� � ; in the 
plane case, the locus of the pole O  which has this property is an equilateral hyperbola. 

Analogously, if C
j j jx x�� �  (obvious notations) and if we take into account the 

characteristic property of the centre of mass, then the relation (3.1.81) leads to a 
synthesis of the Huygens-Steiner theorem in the form 

� �O C
jjk jk l l jk kI I M � � 
 � �� � � ,  , 1,2, 3j k � , (3.1.116) 

or in the form 

( ) ( ) ( )O C O C� �I I IS S S ; (3.1.116') 

hence, we may state 
Theorem 3.1.5. The moment of inertia tensor of a mechanical system with respect to 
the point O  is equal to the sum of a moment of inertia tensor of the same system with 
respect to the centre of mass C  and the moment of inertia tensor of the centre of mass, 
at which we consider concentrated the mass of the whole mechanical system, with 
respect to the point O . 
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If we write the relation (3.1.116') for the poles O  and O � , respectively, and if we 
subtract the two relations, then we obtain the relation 

( ) ( ) ( ) ( )O C O CO O� �� � �I I I IS S S S ; (3.1.117) 

we put thus in evidence the variation of the moment of inertia tensor of a mechanical 
system S  by passing from a pole O  to a pole O � . Denoting by j� � , j�  and j�  the 

components of the vectors O C�
�����

, OC
����

 and O O�
�����

, respectively ( j j j� � �� � � ), we may 
write too 

� � � �1
2

2
O O

j j jjk jk l l jk k k k l l jkI I M M� � 
 � � � � � � � � 
� $ %� � � � � �* +& '
, 

 

wherefrom 

( ) ( ) ( ) ( ; )O C C OO O OO� � �� � �I I I JS S S S S , (3.1.117') 

with 

 ( ; ) ( ; ) tr ( ; )C O C O C OOO OO OO� � �� �J J J 1S S S S S S , (3.1.117'') 

where 

� �2( ; ) ( ) ( )C O O C OOO OM� �� CJ S SS S S S  (3.1.117''') 

represents the symmetric part of the dyadic product of the two vectors. 
In the case of a discrete mechanical system of particles iP  of position vectors ir , 
1,2,...,i n� , we may write the identity 

2
2 2 2 2

i j j i i i j j i i
i j i i j i
m m r m r m m r m� �� � � 	 


� �
     r  

� �2 22 i j i j i j i j
i j i j

m m m m r r� � � � r r ,    i j� . 

 

Denoting by ijr  the distance between the particles iP  and jP  ( ij j i� �r r r ), we get 

1
2 2

1 1

n n

i j ijO O
i j j

MI S m m r
�

� � �
� �   ; (3.1.118) 

in particular, if O C� , then the central polar moment of inertia is given by 

1
2 2

1 1 1 1

1 1
2

n n n n

i j ij i j ijC
i j j i j

I m m r m m r
M M

�

� � � � �
� �   . (3.1.118') 
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2. Displacements. Constraints 
A mechanical system can be free or subjected to constraints (internal constraints or 

constraints due to the interactions with other systems). We are thus led to a study of the 
constraints, which is based on the notion of geometric displacement. 

2.1 Displacements 
We put into evidence the real, possible and virtual displacements, which play an 

important rôle in the representation of constraints as well as in the study of equilibrium 
and motion of the mechanical systems. 

2.1.1 Real, possible and virtual displacements 

Let P  be a point of a mechanical system S  subjected to the action of a system of given 
forces. We suppose that the displacement of the point P  from the given position of 
position vector r  (at the moment t ) to a neighbouring position P �  of position vector 

d� � �r r r  (at the moment dt t t� � � ) is  a  differential  quantity,  compatible 

Figure 3.19.  Real (a), possible and virtual (b) displacements. 

with the constraints of the system (Fig.3.19,a). We call real displacement that one 
which depends on the time t  and is determined by the forces acting upon the 
mechanical system. The real displacement is univocally determined for a given system 
of forces and for certain given conditions depending on the constraints of the 
mechanical system; it corresponds to the real motion of the mechanical system, 
supposing that the solution of the considered mechanical problem is unique. The 
displacements �) � �r r r , which depend on the time t  and take place in a time 
interval t) , but which are not determined by the forces which act upon the mechanical 
system, are called possible displacements; obviously, they are differential too and 
compatible with the constraints of the system (sometimes, to be more specific, they are 
called infinitesimal possible displacements). Possible displacements are all the 
differential displacements which correspond to a possible position of a mechanical 
system, at a given moment t ; in general, they are not unique and can be also in an 
infinite number. The real displacement is one of the possible displacements (it is 
obtained if supplementary conditions are put to the latter ones, i.e., imposing the 
dependence on the forces which act upon the mechanical system). By means of 
relations 

t) � )r v ,   d dt�r v , (3.2.1) 
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we may – analogously – introduce the possible velocities v , to the set of which belongs 
the real velocity v  too. We notice that, in the case of a free mechanical system, any 
displacement is a possible displacement and any velocity is a possible velocity. 

Let �) r  and ��) r  be two possible displacements of the point P , which convey this 
point to the neighbouring positions P �  and P �� , respectively (Fig.3.19,b). We 
introduce the differential displacement Br , which must be imposed to the point P , so 
that this one do change its position from P �  to the neighbouring one P �� ; this 
displacement, equal to the difference of the two possible displacements 

�� �B � ) � )r r r  (3.2.2) 

is called virtual displacement. Hence, by the summation of a possible displacement of a 
point and a virtual one of the very same point, we obtain a new possible displacement 
of the considered point. The relation (3.2.2) establishes a geometric link (and not a 
kinematic one) between two possible displacements of a point P  and a virtual 
displacement of the very same point; it gives thus the possibility of passage from a 
possible displacement to another one. Thus, the virtual displacements (which are 
differential quantities too) do not take place in time, but are compatible with the 
constraints of the mechanical system at the time t ; neither these displacements (as well 
as the possible displacements) are not determined by the given forces. The virtual 
displacements are thus displacements in the hypothesis in which the time t  is fixed 
(the constraints of the system are “frozen”, hence they do not depend on time); this 
point of view allows us to write – easily – constraint relations with the aid of virtual 
displacements (differentiating the geometric constraints with the assumption that 

constt � ). We notice that, although the virtual displacements do not take place in 
time, they depend – in a certain manner – on this variable, because they are different 
from a moment to another one; indeed, the virtual displacements represent the 
displacements of the points of a mechanical system from a possible position at the 
moment t  to a neighbouring possible position at the very same moment. In a stationary 
case, the set of virtual displacements coincides with the set of possible displacements; 
thus, fixing the time t , we may pass from relations written by means of possible 
displacements )r  to relations expressed with the aid of virtual displacements Br . 
Obviously, we admit that the virtual displacements Br  are applied at the point P  of 
position vector r , being – in fact – variations of this vector. V. Vâlcovici has 
introduced the virtual displacements in the form 

� �d
d

t t
t

B � ) � ) � ) � )r r v r ,   d
d
t
t

B � ) � ) , (3.2.2') 

where v  is the real velocity; the set of these displacements coincides with the set of the 
displacements defined by the relation (3.2.2). From (3.2.1), (3.2.2), it follows that 

tDB � )r v ,  D �� �� �v v v ; (3.2.1') 

we can thus introduce the virtual velocities Dv  as a difference of possible velocities. 
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For instance, in the case of a particle P  constrained to stay on a fixed curve C , the 
real displacement dr  is tangent to the curve, having a specified direction; the possible 
and the virtual displacements are also tangent to the curve, but can be oriented in any of 
the two possible directions (there may exist two such displacements) (Fig.3.20,a). In the 
case of a particle constrained to stay on a fixed surface S , the real displacement dr  is 
tangent to the surface and univocally directed; but the possible and the virtual 
displacements, the sets of which coincide (we are in a stationary case, as above), and 
which are also tangent to the surface, can be anyone in the tangent plane (Fig.3.20,b). 
If, besides the virtual displacement Br , there exists the virtual displacement �Br  too, 
then the virtual displacement is called reversible; otherwise, the virtual displacement is 
called irreversible. 

 
Figure 3.20.  Real and virtual displacements on a fixed curve (a) or surface (b). 

 In both cases considered above, the curve and the surface are fixed, so that the real 
displacement belongs to the set of virtual displacements. If a particle P  is, for instance, 
on a movable rigid surface S , the displacement of which is of translation velocity u , 
and if we introduce the relative velocities �v  and ��v , contained in the plane tangent to 
the surface at the point P , then we obtain the possible displacements 

t t� �) � ) � )r v u ,  t t�� ��) � ) � )r v u ;  

Figure 3.21.  Real and virtual displacements on a movable rigid surface. 

the virtual displacements of the form (3.2.1') thus obtained take place in the mentioned 
tangent plane, at the moment t . But the possible displacements connect points of the 
surface S  to points of the surface S �  (corresponding to the moment t t� ) ) 
(Fig.3.21). Hence, in this case, the real displacement does not belong to the set of 
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virtual displacements. In the case of a deformable surface, one may obtain analogous 
conclusions. 

2.1.2 Real and virtual work 

Let S  be a mechanical system and iP  points of it of position vectors ir , 
1,2,...,i n� . The real elementary work of the forces iF , acting at the mentioned n  

points of the system, is given by 

1
d d

n

i i
i

W
�

� �F r , (3.2.3) 

where we used the definition formula (A.1.28'); analogously, we introduce the virtual 
work (the specification “elementary” is not necessary) 

1

n

i i
i

W
�

B � � BF r . (3.2.3') 

For internal forces which verify the relation (1.1.81), we may write (Fig.1.18) 

� � � �d d d d d dij i ji j ij ji i ji ij ji ij ijF r r� � � � � � � � � � � �F r F r F F r F r u u u dij ijF r , 

where vers ij�u r , while ij jiF F�  are positive quantities, in the case of repulsive 
forces (which have the tendency to move off the points iP  and jP  one of the other), or 
negative ones, in the case of attractive forces; one obtains thus the real elementary work 
of internal forces in the remarkable form 

1

int
1 1 1 1

1d d d
2

n n n n

ij ij ij ij
i j j i j

W F r F r
�

� � � � �
� �   ,  i j� . (3.2.4) 

Figure 3.22.  Real work along a curve C . 

Noting that d 0ijr �  for 0ijF � , it results that the real elementary work of internal 
forces is a strict positive quantity ( intd 0W � ). In the case of a non-deformable 
mechanical system (discrete non-deformable system or rigid solid) and only in the case 
of such a system, we have d 0ijr � , so that intd 0W � . In general, we can state that 

intdW  is a non-negative quantity. 
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In the case of a force F , the point P  of application of which describes a curve C  
between the points 0P  and 1P , we may write (Fig.3.22) 

 0 10 1
d

P PP P
W � �� F r ; (3.2.5) 

if the force is conservative, of the form (1.1.82), then we obtain 

d dW U� ,      � � � � � � � �
0 1

1 0
01

P P
W U P U P U U� � � �r r , (3.2.5') 

the real work depending only on the extreme positions of the point P . In the case of a 
closed curve C , we have 

d 0C C
W � � ��� F r , (3.2.5'') 

and the corresponding real work vanishes. 
If there exists a function ijU  so that 

d dij ij ijU F r�  (3.2.6) 

(for instance, if the internal forces depend only on the distances, � �ij ij ijF F r� , then 

� �  dij ij ij ijU F r r� � ), then there exists the potential 

1

1 1 1 1

1
2

n n n n

ij ij
i j j i j

U U U
�

� � � � �
� �   ,    i j� , (3.2.6') 

too, and the mechanical system is conservative. Thus, the elastic solids in adiabatic or 
isothermic regime as well as the compressible fluids, in certain conditions (e.g., the 
perfect gases), are conservative mechanical systems. 

2.2 Constraints 
In the following, we deal with the notion of constraint, which will be characterized 

from a geometric, as well as from a kinematic point of view and for which we put in 
evidence various classifications. A special attention is given to ideal constraints and to 
constraints with friction, as well as to the constraints of a rigid solid; the constraint 
forces which arise are thus put into evidence. 

2.2.1 Classification of constraints. Axiom of liberation from constraints 

A mechanical system (discrete or continuous) can be free or can be subjected to 
some restrictions of geometric or kinematic nature; these restrictions, which represent a 
limitation of the positions of the points of the system, will be expressed by relations 
between the co-ordinates, or between the co-ordinates and the displacements 
(velocities) of the respective points. We say that the mechanical system is subjected to 
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constraints, which can be due to internal causes (internal constraints) or may be due to 
interactions with other systems (external constraints). The constraints can be unilateral 
(if, for instance in 3E , a point P  of the mechanical system is in one part with respect 
to a surface S  or on the respective surface), being mathematically expressed by 
inequalities (strict, if the point P  cannot belong to the surface, or not, otherwise), or 
can be bilateral (if the point P  is on the surface S ), being expressed by equalities. As 
well, the constraints can be of contact (if the mechanical systems – for instance, 
continuous – are lying one on the other) or at distance (if the distance between two 
points is invariant in time or depends on a certain law). Another classification of the 
constraints puts into evidence the finite constraints (holonomic, of geometric nature) 
and the infinitesimal (differential) constraints, of kinematic nature (in general, non-
holonomic); thus, we reach a mathematical representation of the constraints. We notice 
also another classification, very important from the point of view of computation, i.e.: 
ideal constraints (perfect, smooth) and constraints with friction (real); analytical 
mechanics was developed just for mechanical systems subjected to ideal constraints. 
The constraints which do not change in time (do not depend explicitly on time) are 
called stationary (scleronomic) constraints; the constraints which vary in time are 
called non-stationary (rheonomic) constraints. We mention also the critical constraints; 
such constraints allow infinitesimal displacements which have not any correspondence 
in finite displacements. 

We can pass from the study of a mechanical system with constraints to the study of a 
free one, using the axiom of liberation from constraints. This axiom allows us to 
replace the constraints by constraint forces applied to certain points of the mechanical 
system; in this case, the system may be considered as being free, but subjected to the 
action of constraint forces too. We are thus led to a new classification of the forces, i.e.: 
given (known) forces and constraint (unknown) forces; this classification is 
independent of the previous classifications (in external and internal forces or in 
conservative and non-conservative ones). 

In these conditions, we may consider that the formulae (3.2.3), (3.2.3') give the real 
elementary work and the virtual work of the given forces, respectively. Analogously, the 
real elementary work of the constraint forces iR  (the letter R  corresponds to the word 
“reaction”), applied at the same points iP , is expressed in the form 

1
d d

n

i iR
i

W
�

� �R r , (3.2.7) 

while the corresponding virtual work is given by 

1

n

i iR
i

W
�

B � � BR r . (3.2.7') 

In the case of internal constraint forces (corresponding to internal constraints and 
verifying relations of the form (1.1.81) and (2.2.50)) one can establish a formula of the 
form (3.2.4) for the corresponding work 
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1

int
1 1 1 1

1
d d d

2

n n n n

ij ij ij ijR
i j j i j

W R r R r
�

� � � � �
� �   ,   i j� . (3.2.4') 

The external constraint forces correspond to external constraints. 

2.2.2 Geometric characterization of constraints 

In an inertial frame of reference, the finite constraints of geometric nature are 
expressed by relations between the position vectors of the points of the mechanical 
system S  and the time t . In the case of a discrete mechanical system of n  particles 
iP  of position vectors ir , 1,2,...,i n� , we may write these relations in the form (we 

introduce a shortened notation, so that jr  represents the set of all position vectors) 

� � � �1 2; , ,..., ; 0njl lf t f t� �r r r r ,   1,2,...,l p� , (3.2.8) 

where p  is the number of the respective constraints; thus, the mechanical system 
cannot occupy any position in the space, but only the positions allowed by the 
restrictions (3.2.8). We suppose that the functions lf  are of the class 2C , so that all p  
constraints be distinct (no one of the constraints can be a consequence of the other ones 
or of the differential equations of motion). We notice that 3p n� , so that the motion 
may take place; the difference 3s n p� �  represents the number of geometric degrees 
of freedom of the mechanical system S. If 3p n� , then the mechanical system has not 
any geometric degree of freedom, being at rest with respect to the considered frame of 
reference; solving a system of 3n  equations with 3n  unknowns (the co-ordinates of 
the n  particles), one obtains the position of the mechanical system (eventually, this 
position is not univocally determinate). We cannot have 3p n� , because in such a 
case the constraints are no more distinct. In the above considerations, we have admitted 
tacitly that the constraints are bilateral, in any expression being involved all the 
particles of the mechanical system S ; so that we can no more make considerations for 
each particle (point of the mechanical system), as in the case of a single particle. In the 
case of unilateral constraints of geometric nature of a mechanical system S, we are led 
to relations of the form 

� �; 0jlf t �r ,   1,2,...,l p� . (3.2.8') 

If the equality cannot take place for one of the constraints, then the respective 
constraint is called strict. Obviously, the condition 3p n�  must further hold. 

We introduce the notations 

� �
3( 1)

i
ji jX x� � � ,   1,2,...,i n� ,   1,2, 3j � , (3.2.9) 

where � �i
jx  are the components of the position vectors ir ; we may thus pass from the 

geometric support �  of the discrete mechanical system S  in the space 3E  (formed by 
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the geometric points iP ) to a representative geometric point P  (of generalized co-
ordinates 1 2 3, ,..., nX X X ) in a representative space 3nE . The relations (3.2.8), which 
express bilateral constraints, will be written in the form 

� � � �1 2 3; , ,..., ; 0j nl lf X t f X X X t� � ,   1,2,...,l p� , (3.2.8'') 

while the relations (3.2.8'), corresponding to unilateral constraints, will take the form 

� �; 0jlf X t � ,    1,2,...,l p� . (3.2.8''') 

The relations (3.2.8'') represent thus the conditions that the representative point P  be at 
the intersection of p  hypersurfaces in the representative space 3nE , hence on a 
manifold of dimension 3s n p� �  (equal to the number of geometric degrees of 
freedom) of this space. Analogously, the relations (3.2.8''') represent the conditions that 
the representative point P  be only in one side of this manifold or, eventually, on the 
manifold itself, if the constraint is not strict. 

For instance, if a particle P  can be only in the interior of a sphere of variable radius 
R vt�  (v  is a velocity), we impose the condition (we take the origin O  at the centre 
of the sphere) 

� � � �2 2 2 2
1 2 3 0R vt x x x� � � � � . (3.2.10) 

If the mechanical system S  is formed by the particles 1P  and 2P , linked by an 
inextensible thread of length l , then we impose the condition 

� � � �� � � � � �� � � � � �� �2 2 21 2 1 2 1 22
1 1 2 2 3 3 0l x x x x x x� � � � � � � ; (3.2.10') 

denoting � �1
1 1X x� , � �1

2 2X x� , � �1
3 3X x� , � �2

4 1X x� , � �2
5 2X x� , � �2

6 3X x� , the 
representative point P  must be in a part of the hyperquadric (which corresponds to the 
equality) 

� � � �2 2 2 2 2 2 2
5 51 2 3 4 6 1 4 2 3 62 0l X X X X X X X X X X X X� � � � � � � � � �   

 (3.2.10'') 
or even on this one. 

2.2.3 Degrees of freedom of a non-deformable mechanical system. Euler’s angles 

Let S  be a discrete mechanical system of n  free particles iP , 1,2,...,i n� . The 
position of a particle is determined by three arbitrary parameters (for instance, its co-
ordinates); we say, as in the previous subsection, that the system S  has 3n  degrees of 
freedom, because there are 3n  necessary arbitrary parameters to determine its position. 

If the discrete mechanical system is non-deformable (between the particles take place 
geometric constraints (finite internal constraints), which maintain invariant the mutual 
distances), then we notice that for 1n �  it has 3  degrees of freedom, for 2n �  it has 
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3 2 1 5� � �  degrees of freedom, while for 3n �  it has 3 3 3 6� � �  degrees of 
freedom. If we suppose that there are still 6  degrees of freedom for n  particles, then 
for 1n �  particles we have 3( 1) 3( 1) 6n n� � � �  degrees of freedom too (we take 
into account that the intervention of a supplementary particle introduces only 3  distinct 
constraints (Fig.3.23)); we have thus proved, by complete induction, that a non-
deformable discrete mechanical system, without external constraints, has 6  degrees of 
freedom for 3n � . 

 
Figure 3.23.  Degrees of freedom of a non-deformable discrete mechanical system. 

This result holds also in the case of a non-deformable continuous mechanical system, 
hence in the case of a rigid solid. It is sufficient to show that the position of a rigid solid 
is univocally determined with respect to a fixed frame of reference with the aid of six 
independent parameters. Let thus be a fixed frame 1 2 3O x x x� � � �  (having a known position 
in space) and a movable frame 1 2 3Ox x x , rigidly connected to the rigid solid 
(eventually, the pole O  is taken at the centre of mass of the solid); the pole O  is 
determined by three parameters (the co-ordinates 0 0 0

1 2 3, ,x x x  of its position vector). To 
determine the position of the rigid solid with respect to the fixed frame of reference, it 
is sufficient to specify the position of the movable frame with respect to the fixed one 
or with respect to a frame 1 2 3Ox x x  with the pole at O  and the axes parallel to the 
corresponding axes of the fixed frame (Fig.3.24). We denote by ON  (the line of nodes) 
the intersection of the planes 1 2Ox x� �  and 1 2Ox x . We give a positive rotation of angle 
0 2� �� �  to the axis 1Ox �  about the axis 3Ox  so as to coincide with ON  and a 
positive rotation of angle  0 2� �� �  to the ON -line about the axis 3Ox , so as to be 
superposed on 1Ox ; as well, we give a positive rotation of angle 0 2� �� �  to the 
axis 3Ox  about ON  so as to coincide with 3Ox . The axis 2Ox  is immediately 
obtained, observing that the frame 1 2 3Ox x x  must be a right-handed one. Starting from 
the frame 1 2 3Ox x x , the angles � , �  and � , set up in the mentioned order (one 
determines firstly the line ON , than the axis 3Ox  and the axis 1Ox , and finally the axis 

2Ox ), specify univocally the movable frame, hence they represent three independent 
parameters. The angles � , �  and �  are called Euler’s angles; the angle �  is the 
precession of the movable frame, the angle �  is the nutation of the movable frame, 
while the angle �  is the proper rotation of the movable frame, by analogy with the 
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parameters used in celestial mechanics to determine the position of a planet. 
Introducing the column matrices 

Figure 3.24.  Degrees of freedom of a rigid solid. Euler’s angles , ,� � � . 

1
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3
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,     
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i

 (3.2.11) 

of the unit vectors of the co-ordinate axes and the matrices 

cos sin 0

sin cos 0

0 0 1

� �

� �

$ %
* +

� �* +
* +
* +& '

E ,      

1 0 0

0 cos sin

0 sin cos

� �

� �

$ %
* +

� * +
* +

�* +& '

F , 

 

cos sin 0

sin cos 0

0 0 1

� �
� �

$ %
* +

� �* +
* +
* +& '

G , (3.2.11') 

which give the direction cosines of the movable frame axes after a rotation of angle � , 
�  or � , respectively, we may write 

��i iGFE . (3.2.11'') 

The matrix of the direction cosines of the movable frame axes ( jjk k� �� �i i ) will be of 
the form 
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cos cos cos sin sin cos sin cos sin cos sin sin

sin cos cos cos sin sin sin cos cos cos sin cos

sin sin sin cos cos
jk

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � �

$ %� �
* +

� � � � �$ % * +& '
* +

�* +& '

, 

 (3.2.11''') 

corresponding to a linear representation of the rotation group SO(3) . Thus, the 
position of a rigid solid is univocally determined by six independent parameters (the co-
ordinates 0

1x , 0
2x  and 0

3x  of the pole O  and Euler’s angles � , �  and � ); hence, the 
rigid solid has six degrees of freedom. 

We can state  
Theorem 3.2.1. Any free non-deformable mechanical system (without external 
constraints) has six degrees of freedom (excepting the cases of one particle (three 
degrees) or of two particles (five degrees)). 

2.2.4 Kinematic characterization of constraints 

In an inertial frame of reference, the infinitesimal constraints are expressed by 
relations between real displacements and the time interval dt  in which these 
displacements take place. We may write such a relation in the form 

� � � �1 2d ;d d ,d ,..., d ;d 0njf t f t� �r r r r , (3.2.12) 

using real displacements, in the case of a discrete mechanical system S . Developing 
into a power series, we have 

0 1 2 ... 0f f f f� � � � � , (3.2.12') 

where kf , 0,1,2,...k � , are homogeneous polynomials of degree k  in ( )
1d jx , ( )

2d jx , 
( )
3d jx , 1,2,...,j n� , and dt  (the dimensional homogeneity being ensured). If 

0 0f � , then kf , 1,2,...k � , can be neglected with respect to 0f , so that we get 

0 0f � ; in this case, the constraint is finite. If 0 0f �  but 1 0f � , then kf , 
2,3,...k � , can be neglected with respect to 1f , and one obtains 

1 0f � . (3.2.12'') 

If 0 0f � , 1 0f � ,…, 1 0jf � �  and 0jf � , then we may neglect kf , 
1, 2,...k j j� � � , with respect to jf , so that the relation (3.2.12') becomes 0jf � . 

In nature, we do not encounter constraints corresponding to 1j � , so that we will 
admit only constraints of the form (3.2.12''). In the case of a discrete mechanical system 
S , we express these constraints with the aid of a Pfaff differential form as follows 
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0
1

d d 0
n

iki k
i

t�
�

� � � r4 ,   1,2,...,k m� , (3.2.13) 

assuming that we have m  constraints; by the above reasoning, the coefficients ki4  and 

0k�  cannot depend on the velocities, so that � �;jki ki t�4 4 r , � �0 0 ;jk k t� �� r , 

being functions of class 1C . We notice that the relations (3.2.13) can be expressed in 
the form 

0
1

0
n

iki k
i

�
�

� � � v4 ,   1,2,...,k m� , (3.2.13') 

too, by introducing the real velocities d /di i t�v r . We put thus in evidence the 
kinematic nature of these constraints; the mechanical system S  cannot have arbitrary 
velocities, but only those allowed by the velocity restrictions (3.2.13'). We admit that 
the constraints of kinematic nature are distinct, as well as these of geometric nature. In 
this case too, we must have 3m n� , so that the motion be possible; the difference 

3r n m� �  constitutes the number of kinematic degrees of freedom of the mechanical 
system S . This number vanishes if 3m n� , and the velocities of the n  particles may 
be determined (eventually, not univocally), by solving a system of 3n  equations with 
3n  unknowns (the components of the velocities of the n  particles). If 3m n� , then 
the constraints are no more distinct, what was excluded from the very beginning. As in 
the case of finite constraints, the constraints considered above are bilateral ones; the 
unilateral constraints of a kinematic nature of the mechanical system S  may be 
expressed in the form 

0
1

d d 0
n

iki k
i

t�
�

� � � r4 ,   1,2,...,k m� , (3.2.14) 

or in the form 

0
1

0
n

iki k
i

�
�

� � � v4 ,   1,2,...,k m� . (3.2.14') 

If the equality cannot take place for one of the constraints, then that one is called a 
strict constraint; but the condition 3m n�  must still hold. 

Passing to the representative space 3nE , we use the notation (3.2.9), as well as 

0 0k kb� � ,   � �i
ki lkl�� i4 ,   � �

,3( 1)
i

k i lkl b� � �� ,   1,2,...,i n� ,  
1,2, 3l � ,   1,2,...,k m� . 

(3.2.9') 

The representative point P  verifies the conditions 

3

0
1

d d 0
n

jkj k
j
b X b t

�
� � ,   1,2,...,k m� , (3.2.13'') 
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or the conditions 

3

0
1

0
n

jkj k
j
b V b

�
� � ,   1,2,...,k m� , (3.2.13''') 

where d jX  are the generalized real displacements, while d /dj jV X t�  are the 
components of the velocity of the point P  (the generalized velocity) in the 
representative space 3nE , in the case of bilateral constraints. The unilateral constraints 
(3.2.14), (3.2.14') are expressed in the form 

3

0
1

d d 0
n

jkj k
j
b X b t

�
� � ,   1,2,...,k m� , (3.2.14'') 

or in the form 

3

0
1

0
n

jkj k
j
b V b

�
� � ,   1,2,...,k m� . (3.2.14''') 

Let i�) r  and i��) r  be two possible displacements which take place in the time 
interval t) ; the constraint relations may be written in the form 

0
1

d 0
n

iki k
i

t�
�

�� ) � � r4 ,   0
1

d 0
n

iki k
i

t�
�

��� ) � � r4 ,  1,2,...,k m� . 
 

Subtracting and taking into account the relation (3.2.2) which defines the virtual 
displacements, we state that the latter ones verify the relations  

1
0

n

iki
i�

� B � r4 ,   1,2,...,k m� . (3.2.15) 

Comparing with relations (3.2.13), we see once more that the virtual displacements 
correspond to a certain moment t  and don’t take place in time. Introducing the virtual 
velocities (3.2.1'), one may write these conditions also in the form 

1
0

n

iki
i

D

�
� � v4 ,   1,2,...,k m� . (3.2.15') 

If we start from possible displacements which satisfy unilateral constraints 

0
1

d 0
n

iki k
i

t�
�

�� ) � � r4 ,   0
1

d 0
n

iki k
i

t�
�

��� ) � � r4 ,   1,2,...,k m� , 
 

we see that the virtual displacements do not satisfy any constraint relation (by 
subtraction, one cannot obtain any conclusion concerning the inequalities), being 
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reversible. If in the relations concerning the possible displacements i��) r  there is only 
the sign “equal” (the constraints are bilateral), then the virtual displacements which are 
obtained verify the relations 

1
0

n

iki
i�

� B � r4 ,   1,2,...,k m� , (3.2.16) 

corresponding to unilateral constraints; one observes thus that, only in such a case, one 
may obtain unilateral constraints for virtual displacements which are irreversible. 
Analogously, one can express such constraints also in the form 

1
0

n

iki
i

D

�
� � v4 ,   1,2,...,k m� . (3.2.16') 

If jXB  are generalized virtual displacements (obtained as differences of generalized 
possible displacements jX�)  and jX��) ), we may write, for the representative point P  
in the space 3nE , the constraint relations in the form (bilateral constraints) 

3

1
0

n

jkj
j
b X

�
B � ,   1,2,...,k m� , (3.2.15'') 

or in the form 

3

1
0

n

jkj
j
b V D

�
� ,   1,2,...,k m� , (3.2.15''') 

where jV D  are generalized virtual velocities (which can be introduced as differences  of 

generalized possible velocities jV �  and jV �� ); in the case of unilateral constraints 
(obtained as we have seen above), we use the relations 

3

1
0

n

jkj
j
b X

�
B � ,   1,2,...,k m� , (3.2.16'') 

or the relations 

3

1
0

n

jkj
j
b V D

�
� ,   1,2,...,k m� . (3.2.16''') 

2.2.5 Case of a particle subjected to finite constraints 

Let be the case of a single particle P , of position vector r  and co-ordinates 
1 2 3, ,x x x , subjected to finite constraints 

� � � �1 2 3; , , ; 0k kf t f x x x t� �r ,   1,2k � ; (3.2.17) 
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hence, the particle can be on a surface (we have only 1k � ) or on a curve (at the 
intersection of two surfaces). A total differentiation with respect to time leads to 
conditions imposed to the velocity of the particle, in the form 

,
d

grad 0
d
k

jk k k j k
f

f f f v f
t

� � � � � �� �v ,  1,2k � ; (3.2.18) 

it results 

2 grad
grad

k
k k

k

f
f

f
� � �

�
v c ,   gradk kf?c ,   1,2k � . (3.2.18') 

The component of the velocity along the gradient (along the normal to the 
corresponding surface) is given by 

grad
kk

g
k

f
v

f
� �

�
,   1,2k � , (3.2.18'') 

while its component in a plane normal to the gradient is arbitrary; one obtains thus two 
components of the velocity. The total derivative of the relation (3.2.18) with respect to 
time leads to conditions imposed to the acceleration of the particle, given by 

2

22
d

grad D 0
d
k

k k
f

f f
t

� � � �a ,   1,2k � , (3.2.19) 

where we have introduced the notation 

2 , ,D j jk k jl l k j kf f v v f v f� � �� �� ; (3.2.19') 

we obtain thus the acceleration 

2
2

D
grad

grad
k

k k
k

f
f

f
� � �a c ,  gradk kf?c ,   1,2k � . (3.2.19'') 

Analogously, the component of the acceleration along the gradient is 

2D
grad

kk
g

k

f
a

f
� � ,   1,2k � , (3.2.19''') 

while its component in a plane normal to the gradient is arbitrary; we obtain thus two 
components of the acceleration. 

In the case of a unilateral constraint 

( ; ) 0kf t �r ,   1,2k � , (3.2.20) 
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the velocity and the acceleration are not subjected, in general, to any condition. If at a 
moment t  the constraint is bilateral ( ( ) 0kf t � ), and than it becomes strict 
( ( ) 0kf t t� ) � , 0t) � ), then we can use a development into a Taylor series 

2
2

2
d d1 1( ) ( ) ) ...

1! d 2! d
k k

k k
f f

f t t f t t t
t t

� ) � � ) � �) � ; 
 

in the frame of this hypothesis, we obtain, for 0t) � , the conditions d /d 0kf t � , 
which may be expressed also in the form 

grad 0k kf f� � ��v ,    1,2k � . (3.2.20') 

If the constraint is strict, then it acts only on the velocity by which the particle leaves 
the surface 0kf � , and not on the velocity by which it reaches the surface (because we 
have admitted that 0t) � ); the acceleration of the particle remains arbitrary. If we 
have d /d 0kf t �  at a moment t , then – by an analogous reasoning – we obtain the 
constraints 

2

22
d

grad D 0
d
k

k k
f

f f
t

� � � �a ,    1,2k � . (3.2.20'') 

2.2.6 Holonomic and non-holonomic constraints 

If the Pfaff differential form (3.2.13) is integrable, hence if the first member of the 
relation (3.2.13'') is a total differential with respect to the variables jX  and t , then the 
constraints have been denominated holonomic by Hertz; otherwise, they are called non-
holonomic. We see that the holonomic constraints expressed in the form (3.2.13) are not 
infinitesimal, but finite ones, and may be represented in the form (3.2.8); thus, a 
holonomic mechanical system is a system with finite constraints or with infinitesimal 
integrable constraints (which – in fact – are finite constraints). 

The finite holonomic constraints (3.2.8) may be expressed also by means of 
infinitesimal displacements in the form (relations of the form (3.2.13)). 

1 1
d grad d d d d 0

n n

i i i il l l l l
i i

f f f t f f t
� �

� � � � / � � � � �r r , (3.2.21) 

wherefrom 

� �
l

i jli l i
j

f
f

x
(

� / �
(

i4 ,   1,2,...,i n� ,  0l lf� � � ,   1,2,...,l p� . (3.2.21') 

The virtual displacements must verify the relations 

1
0

n

i il
i

f
�
/ � B � r ,   1,2,...,l p� . (3.2.21'') 
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Let be two neighbouring, possible, simultaneous (at the moment t ) positions ir  and 

i i� Br r , 1,2,...,i n� , of the same holonomic discrete mechanical system. The 
constraint relations are of the form ( ) 0jlf �r , ( ) 0j jlf � B �r r , 1,2,...,l p� . 
Developing into a Taylor series, we may write 

� �
1

... 0
n

j i il l
i

f f
�

� / � B � �r r ; 
 

neglecting the terms of higher order and taking into account the constraint relations, one 
obtains the conditions (3.2.21''). One can see once more that iBr  represent the 
differential displacements which must be effected by the particles of the mechanical 
system to pass from a position to another one, at the same moment t , being thus virtual 
displacements, corresponding to the relation of definition (3.2.2). 

The relations (3.2.21) lead to the conditions 

1
0

n

i il l
i

f f
�
/ � � � �v ,  1,2,...,l p� , (3.2.21''') 

which must be verified by the velocities of the particles of the system; obviously, in 
these relations only the components of the velocities along the corresponding gradients 
of the constraints are involved. For instance, let be the particles iP  and jP  at an 
invariable mutual distance (or two points of a rigid solid); the relation (see Fig.1.18) 

� �2 2 constj i ijr� � �r r  (3.2.22) 

takes place. Differentiating with respect to time (or applying the formula (3.2.21''')), we 
get 

ij i ij j� � �r v r v ; (3.2.22') 

hence, the projections of the velocities of two points of a non-deformable mechanical 
system along the straight line defined by them are equal. 

In what concerns the conditions imposed to the accelerations, we obtain 

2

22
1

d
D 0

d

n
l

i il l
i

f
f f

t �
� / � � � a ,    1,2,...,l p� , (3.2.23) 

where 

2 , ,
1 1 1

D
n n n

i j il l ij l i l
i j i

f f v v f v f
� � �

� � �  � �� ,   1,2,...,l p� . (3.2.23') 

Thus, in the case of the non-deformable two points system considered above, we may 
write 
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� � � �2 0ij j i j i� � � � �r a a v v . (3.2.23'') 

We notice that, in the case of holonomic constraints, the number of degrees of 
freedom s  given by the finite displacements is equal to the number of degrees of 
freedom r  given by the infinitesimal displacements (s r� ). 

The non-holonomic constraints are expressed by relations of the form (3.2.13'), 
which represent conditions which must be verified by the real velocities. The total 
derivative with respect to time puts into evidence the conditions which are to be 
verified by the accelerations of the non-holonomic discrete mechanical system, i.e., 

0

1 1

d d
0

d d

n n
ki k

i iki
i i t t

�
� �

� � � � � a v
4

4 ,   1,2,...,k m� ; (3.2.24) 

as in the case of the velocities, only the components of the accelerations along the 
parameters ki4  are involved in this case too. 

One can make analogous considerations in the representative space 3nE . Let be 

3

0
1

d d
n

jk kj k
j
b X b t�

�
� � ,   1,2,...,k m� ,   3m n� , (3.2.25) 

a differential form of the first degree, corresponding to the constraint relations 
(3.2.13''); these relations lead to a differential equation of the form 0k� � . The form 

k� ��  (for a fixed k ) is (locally) integrable if there exist two functions 0f �  and g  
so that df g� � ; the problem is thus reduced to the existence of an integrating factor 
for the considered differential equation. One may prove that the functions f  and g  do 
exist (in a sufficiently small neighbourhood) if and only if there exists a form of the 
first degree � , so that 

d� � �� H ,     d 0� �H � , (3.2.26) 

where we used the external product defined in the App., Subsec. 1.2.1. We introduce 
the matrices 

1

2

m

�
�

�

$ %
* +
* +�
* +
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F , (3.2.27) 
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where kj�  are forms of the first degree; the system of differential equations 0k� � , 
1,2,...,k m� , is completely integrable if there exist the functions kjf  and jg , so that 

1
d

m

jk kj
j
f g�

�
�   (3.2.28) 

or 

d� F GI , (3.2.28') 

F  being a non-singular matrix. One proves 
Theorem 3.2.2 (Frobenius). The system of forms (3.2.28) is completely integrable if 
and only if there exists a system of forms of the first degree kj� , so that 

d � HI F I ,   
1

d
m

jk kj
j

� � �
�

� H ,   1,2,...,k m� . (3.2.29) 

The conditions (3.2.29) may be expressed also in an equivalent form (particularly 
convenient for applications; the condition (3.2.26) is a particular case) 

1 2 ... d 0m k� � � �H H H H � ,   1,2,...,k m� . (3.2.29') 

In the particular case of the form 

� � � � � �1 1 2 3 1 2 1 2 3 2 3 1 2 3 3, , d , , d , , da x x x x a x x x x a x x x x� � � � , (3.2.30) 

the condition of integrability becomes 

1 2 3, d d d 0iijk k ja a x x x� H H � . (3.2.30') 

Indeed, the equation 0� �  is integrable if there exists an integrating factor 
� �1 2 3, ,x x x� �� , so that �a  be a gradient, hence so that curl( ) curl� ��a a  

grad�� 3 �a 0 ; a scalar product by a  leads to 

,curl 0iijk k ja a� �� �a a . (3.2.30'') 

By analogy to the considerations of Subsec. 2.2.2 for the holonomic case, we can 
state that the relations (3.2.13''') represent the conditions for the representative point P  
of a non-holonomic mechanical system to be at the intersection of m  non-holonomic 
hypersurfaces (hypersurfaces studied by Gh. Vr�nceanu) in the representative space  

3nE , hence on a non-holonomic manifold of dimension 3r n m� �  (equal to the 
number of degrees of kinematic freedom) of this space. 

In general, a mechanical system may be subjected to p  holonomic and to m  non-
holonomic constraints; in the case of a discrete mechanical system we must have 
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3p m n� � . The number of degrees of freedom will be 3 ( )n p m� �  (obviously, 
kinematic degrees of freedom, because the holonomic constraints have the same 
number of geometric and kinematic degrees of freedom). In the case of a non-
deformable mechanical system, one must have 6p m� � , and the number of degrees 
of freedom will be 6 ( )p m� � , the holonomic and non-holonomic constraints being – 
obviously – external. 

Figure 3.25.  Motion of a rigid skate AB. 

Let us consider, for instance, the motion of a rigid skate AB  on the ice plane, 
considered to be the plane 1 2Ox x ; let C  be the middle of the segment AB  (the 
theoretic point of contact between the curved sole of the skate and the ice). Obviously, 
the position of this segment is given by the co-ordinates 1 2,x x  of the point C  and by 
the angle �  made by the segment AB  with the axis 1Ox  (Fig.3.25). The parameters 

1 2,x x  and �  are independent at a moment t , hence the skate has three degrees of 
freedom in finite displacements. We notice that the trajectory of the point C  is tangent 
to AB ; because the displacement of the point C  (as well as its velocity) can take place 
only along the direction AB  (to avoid a skipping), we may write the relation 

2 1 tanx x ��� � , (3.2.31) 

linking the components of the velocity of the point C . Starting from the form 

1 2sin d cos dx x� � �� �  (3.2.31') 

and using the formula (A.1.55), we can write 

1 2d cos d d sin d dx x� � � � �� H � H ; (3.2.31'') 

hence, with the aid of the properties emphasized in App., Subsec. 1.2.1, one obtains 

2 2
1 2 1 2d sin d d d cos d d dx x x x� � � � � �H � � H H � H H  

1 2d d d 0x x �� � H H � , (3.2.31''') 

so that the constraint (3.2.31) is non-integrable, and the considered mechanical system 
is non-holonomic. We may also suppose that the plane 1 2Ox x  is inclined with respect 
to a horizontal one, taking the axis 1Ox  along the direction of maximal inclination. 

A sphere or a plane disk (in a vertical plane), which is rolling without sliding on a 
fixed horizontal plane may be other examples of mechanical systems subjected to  
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non-holonomic constraints. We notice that in such a case the number s  of degrees of 
freedom given by the finite displacements is greater than the number r  of degrees of 
freedom given by the infinitesimal ones (s r� ). 

The constraints considered above are bilateral ones; in the case of unilateral 
constraints, one can make analogous considerations, using – for instance – relations of 
the form (3.2.16) or of the form 

1
0

n

i il
i

f
�
/ � B � r ,   1,2,...,l p� . (3.2.16iv) 

2.2.7 Scleronomic and rheonomic constraints. Catastatic constraints 

If the temporal variable t  does not appear explicitly in the infinitesimal constraints 
(3.2.13) or (3.2.13') (stationary case), hence if 

ki
ki t

(
� �

(
� 0

4
4 ,   0 0k� � ,  1,2,...,i n� ,   1,2,...,k m� , (3.2.32) 

then these constraints are called scleronomic; otherwise they are called rheonomic (non-
stationary case). These conditions become 

0kj
kj

b
b

t
(

� �
(

� ,   0 0kb � ,   1,2,..., 3j n� ,   1,2,...,k m� , (3.2.32') 

in the representative space 3nE . 
Taking into account (3.2.21'), we observe that it is sufficient to have 

0lf �� ,   1,2,...,l p� , (3.2.33) 

so that these holonomic constraints be scleronomic too; they must be of the form 

� � 0jlf �r ,   1,2,...,l p� . (3.2.33') 

We may also write 

1
d 0

n

i il
i

f
�
/ � � r ,   1,2,...,l p� , (3.2.33'') 

as well as a relation of the form (3.2.21''). 
We notice that a constraint of the form (3.2.33') represents a fixed hypersurface; but 

a rheonomic constraint of the form (3.2.8) may represent a rigid surface, moving with 
respect to a rigid frame of reference, or a deformable surface. 

We mention that the two classifications of the constraints (holonomic or non-
holonomic and scleronomic or rheonomic) are independent; we may have, for instance, 
non-holonomic, rheonomic constraints (in the most general case) and holonomic, 
scleronomic constraints (in the most particular case). 
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Taking into account the relations (3.2.15) verified by the virtual displacements, we 
notice that – in the case of scleronomic constraints – the set of virtual displacements 
coincides with the set of possible displacements; as well, in this case the real 
displacements belong to the set of virtual displacements. But these properties take place 
also if one has only 

0 0 0k kb� � � ,   1,2,...,k m� . (3.2.32'') 

These conditions are sufficient; it is not necessary that the constraints be scleronomic. 
The constraints for which conditions of the form (3.2.32'') hold are called catastatic 
constraints. These conditions do not impose with necessity kl ��4 0  (or 0kjb �� ) if the 
constraints are non-holonomic; holonomic, rheonomic constraints which have these 
properties do not exist (in this case, the above condition holds too). 

One can make analogous considerations in the case of unilateral constraints. 
As examples of mechanical systems subjected to holonomic, scleronomic constraints 

one can mention the rigid solid (or a non-deformable discrete mechanical system), the 
points of which verify conditions of the form (3.2.22), the particle being constrained to 
stay on a fixed curve or surface etc. If the curve (surface) is moving, then the constraint 
is holonomic and rheonomic (for instance, a constraint of the form (3.2.10)); in general, 
in the case of a relative motion we have to do – in fact – just with such a constraint. The 
rigid solid with a fixed point or axis represents a holonomic and scleronomic 
mechanical system. We may consider also systems of rigid solids, subjected to mutual 
constraints (internal constraints), as well as to various external constraints. In a certain 
manner, each rigid solid behaves in the respective mechanical system as a particle, 
which has not three but six degrees of proper freedom. 

The non-holonomic constraints of the previous subsection (for instance, the 
constraint expressed by the relation (3.2.31)) are scleronomic constraints. 

2.2.8 Critical constraints 

If the number s  of the degrees of freedom given by the finite displacements is less 
than the number r  of the degrees of freedom given by the infinitesimal relations 
(s r� ), then we have to do with critical constraints. 

Let, for instance, be a mechanical system formed by two particles 1P  and 2P  linked 
by a rigid bar of length 2r  and constraint to be on a circle of radius r  (Fig.3.26,a). 
The constraint relations (holonomic and scleronomic) are of the form (in a fixed frame 
of reference Oxy ) 

2 2 2 2 2
1 1 2 2x y x y r� � � � ,    � � � �2 2 2

1 2 1 2 4x x y y r� � � � . (3.2.34) 

Because the four co-ordinates must verify three finite independent relations, it follows 
that the mechanical system has one geometric degree of freedom ( 1s � ) (in finite 
displacements). Indeed, we see that these co-ordinates may be expressed by means of 
the angle � , taken as an independent parameter, in the form 

1 2 cosx x r �� � � ,   1 2 siny y r �� � � . (3.2.34') 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 184 

By differentiation, one obtains 

1 1 1 1d d 0x x y y� � ,    2 2 2 2d d 0x x y y� � , 
� � � � � � � �1 2 1 2 1 2 1 2d d d d 0x x x x y y y y� � � � � � ; 

(3.2.34'') 

taking into account (3.2.34'), we notice that the last relation (3.2.34'') is a linear 
consequence of the first two relations. Between the four co-ordinates take thus place 
two differential relations, so that the considered mechanical system has two kinematic 
degrees of freedom ( 2r � ) (in infinitesimal displacements). The condition mentioned 
above (1 2� ) is thus fulfilled. One can put into evidence an infinitesimal rotation d�  
(Fig.3.26,b), corresponding to a finite rotation � , as well as an infinitesimal translation 
d�  (Fig.3.26,c), which has not any correspondent in finite displacements. 

 
Figure 3.26.  Critical system formed by two particles linked by a rigid bar and constrained to be 

on a circle (a). An infinitesimal rotation d�  (b) and an infinitesimal translation d�  (c). 

The fact that in case of critical constraints can take place infinitesimal displacements 
which do not have correspondence in finite displacements characterizes the respective 
constraints; indeed, this property corresponds to the above given definition. 

2.2.9 Virtual work of constraint forces. Ideal constraints 

We call system of possible accelerations of the particles iP , 1,2,...,i n� , of the 
considered mechanical system S  any system of accelerations ia  which satisfies, at a 
moment t , the relations (3.2.23), (3.2.23') and (3.2.24) (obtained from the holonomic 
and non-holonomic constraints, respectively, to which may be subjected the system S ), 
supposing that the position (the position vectors ir ) and the velocities iv  of the system 
S  verify the relations (3.2.8) and (3.2.13'), respectively. A system of accelerations 
which does not satisfy all these conditions is called a system of impossible 
accelerations. In the case of unilateral constraints analogous definitions can be given. 

If the mechanical system S  is free, then any particle iP  must satisfy an equation of 
the form 

i i im �a F ,    1,2,...,i n� , (3.2.35) 
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corresponding to Newton’s law (1.1.89), where iF  is the resultant of all the external 
and internal given forces which act upon the respective particle. In these conditions, if 
the accelerations ia  form a system of possible accelerations for the considered 
mechanical system S  with constraints, then the constraint relations represent particular 
integrals of the equations of motion, having to do with a particular case of motion of 
this mechanical system. In the case of a system of impossible accelerations, one must 
introduce also the constraint forces iR , unknown a priori and acting upon the particles 

iP , 1,2,...,i n� ; the equations of motion become 

i i i im � �a F R ,    1,2,...,i n� . (3.2.35') 

To obtain possible accelerations, one must determine the constraint forces 
correspondingly; the mechanical system S  becomes thus a free one, subjected to both 
given and constraint forces; in fact, this corresponds to the axiom of liberation from 
constraints. 

We notice that one must determine 6n  unknowns ( 3n  co-ordinates of the particles 
of the system S  and 3n  components of the constraint forces), with the aid of 3n  
scalar equations of motion (projections of the equations (3.2.35')) and p m�  
constraint relations (3.2.8), (3.2.13'); there are still necessary 
6 (3 )n n p m� � � � 3n  ( )p m� �  scalar equations (a number of relations equal to 
the number of degrees of freedom) to solve the problem. To do this, we introduce an 
important class of constraints: the class of ideal constraints. Thus, we call ideal 
constraints these ones for which the virtual work of the constraint forces, given by 
(3.2.7'), vanishes 

1
0

n

i i
i�

� B �R r  (3.2.36) 

for any system of virtual displacements of the considered mechanical system S . 
If the virtual displacements iBr  are arbitrary (we have not constraints), the relation 

(3.2.36) holds only if i �R 0 , 1,2,...,i n� . Indeed, because the virtual displacements 
are arbitrary, we may equate them to zero, unless one, let be jBr ; the relation (3.2.36) is 
reduced to 0j j� B �R r . But the direction of jBr  is arbitrary, so that j �R 0 ; taking 

1,2,...,j n� , one is led to the above conclusion. In this case, the system of equations 
of motion is sufficient to solve the problem. 

But if p  constraints of the form (3.2.21'') and m  constraints of the form (3.2.15) 
take place, we will use the method of Lagrange’s multipliers. Starting from the relation 
(3.2.36) and with the aid of the relations (3.2.21'') and (3.2.15), we may write 

1 1 1
0

pn m

i i il l k ki
i l k

f� �
� � �

� �� / � � B �	 

� �

  R r4 , 
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where l� , 1,2,...,l p� , and k� , 1,2,...,k m� , are non-determined scalars 
(Lagrange’s multipliers) and where we took into account that in a double finite sum one 
can invert the summation order; in components, we have 

� �
� �

� � � �

1 1 1
0

pn m
li i i

l kj jkji
i l kj

f
R x

x
� � �

� � �

� �(
� � B �	 
	 
(� �

   . 
 

We introduce the notations (3.2.9) and we put thus into evidence 3n  virtual 
displacements jXB , 1,2,..., 3j n� , which verify p m�  linear and distinct constraint 
relations (3.2.21''), (3.2.15), the matrix of the coefficients being of rank p m�  
(otherwise the constraint relations could not be distinct). We express the virtual 
displacements 1 2, ,..., p mX X X �B B B  (we always may choose them so as the determinant 
p m�)  of the respective coefficients of the constraint relations be non-zero) with the aid 

of the other 3 ( )n p m� �  virtual displacements, so that the latter ones may be 
considered as being independent. If we equate to zero the parentheses multiplying the 
first p m�  virtual displacements, then p m�  multipliers l�  and k�  are univocally 
determined (these multipliers are given by a system of p m�  linear algebraic 
equations with p m�  unknowns, of determinant 0p m�) � ). As in the case 
previously considered, the independent virtual displacements 1 2, ,...,p m p mX X� � � �B B  

3nXB  may all vanish, excepting only one, denoted by jXB ; because this non-zero 
displacement is arbitrary, it follows that the parenthesis multiplying it must vanish. If 
successively 1, 2,..., 3j p m p m n� � � � � , and if we take into account the 
previous result, then all the parentheses multiplying the virtual displacements must 
vanish; one obtains thus the 3 ( )n p m� �  supplementary relations searched to may 
solve the problem, so that the supplementary condition (3.2.36) introduced for the ideal 
constraints is sufficient. Finally, we may write 

1 1

p m

i il l k ki
l k

f� �
� �

� / � R 4 ,   1,2,...,i n� . (3.2.37) 

The motion of the mechanical system S  as well as the constraint forces are completely 
determined. 

By means of the expression (3.2.37) of the constraint forces and of the constraint 
relations (3.2.21), (3.2.13), we may write the real elementary work of the constraint 
forces in the form 

0
1 1

d d d
p m

R l l k k
l k

W f t t� � �
� �

� � � � . (3.2.37') 

If 0lf �� , 1,2,...,l p�  and 0 0k� � , 1,2,...,k m�  (which holds, in general, in the 
case of catastatic constraints or, in particular, in the case of scleronomic constraints, as 
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we have seen in Subsec. 2.2.7), then the real elementary work of the constraint forces 
vanishes; this result is justified also because the real displacements belong to the set of 
virtual displacements, the relation (3.2.36) implying d 0RW � . 

If, in the case of unilateral constraints of the form (3.2.16iv) or (3.2.16), the virtual 
work of the constraint forces given by the relations (3.2.37) verifies the inequality 

1
0

n

i i
i�

� B �R r , (3.2.36') 

then these constraints are ideal ones; in this case one can make similar considerations to 
the above ones too. 

To put into evidence the importance of the class of ideal constraints, we will show 
that a great number of mechanical systems belongs to this class. Let us consider a 
particle P  constrained to stay on a fixed curve C  (Fig.3.20,a) or on a fixed surface S  
(Fig.3.20,b); if we assume that the constraint is without friction, then the constraint 
force R  is normal to the curve or to the surface, respectively (a tangential component 
would correspond to a sliding friction). Because the virtual displacement Br  takes 
place along the tangent to C  or in a plane tangent to S , it follows that 0� B �R r ; 
taking into account (3.2.37), we notice that this relation is of the form (3.2.21''), 
corresponding to the condition to which is subjected a particle constrained to be on a 
fixed curve or surface, respectively. This affirmation holds also in the case of a 
movable or deformable curve or surface (non-stationary case), because the constraint 
force R  and the virtual displacement Br  correspond to a fixed moment t ; we mention 
that, in this case, 0� ) �R r , and the necessity to use virtual displacements instead of 
possible ones is put into evidence. The constraints considered above are constraints of 
contact. 

In the case of constraints at distance, for instance in the case in which the distance 
between two particles iP  and jP  is a function only on time ( ( )ij ijr r t� ), we have 
(Fig.1.18) 

� � � � � � � �22 2 2 0ij j i j i j i ij j irB � B � � � � B � B � � B � B �r r r r r r r r r ,  

because the virtual displacements do not take place in time; if the internal constraint 
forces are of the form ij ij��R r , ji ji��R r , ij ij� �R R 0 , �  being an 
indeterminate scalar, then the virtual work is given by 0ij i ji j� B � � B �R r R r . In the 
particular case in which constijr � , we can state that a non-deformable discrete 
mechanical system is subjected to ideal internal constraints. 

The ideal constraints may be introduced axiomatically with the aid of the relations 
(3.2.36), (3.2.36') in the case of a continuous mechanical system too, where the 
constraint forces iR  are applied at the points iP . As a consequence, a rigid solid is also 
subjected to ideal internal constraints. In what concerns the external constraints, we 
may consider various cases of such ones. Thus, a rigid solid with a fixed point leads to 
a constraint force R  applied at the very same point of position vector r , hence to  

0� B �R r  (because B �r 0 ). In the case of two fixed points P  and P �  of position 
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vectors r  and �r , respectively (a rigid solid with a fixed axis), we may write, 
analogously, 0� �� B � � B �R r R r . As well, in the case of a rigid solid sliding without 
friction on a fixed or movable curve (or surface), constraint forces normal to the curve 
(or surface) arise at the contact points of the rigid solid, while the corresponding virtual 
displacements are along the tangent (or in the tangent plane); the condition of ideal 
constraints is thus verified. The rigid solid which is rolling or pivoting without sliding 
on a fixed surface (it is subjected to a rotation about an instantaneous axis of rotation 
parallel or normal, respectively, to the tangent plane at the contact point), enjoys the 
same property; we suppose in these cases that the rolling and pivoting friction, 
respectively, vanishes. 

 
Figure 3.27.  Two rigid solids S  and  �  tangent along perfectly smooth surfaces (a). Case of an 

angular point (b). Representation of the simple support by a  
pendulum (c) or by a small cart (d). 

Let be a mechanical system formed by two rigid solids S  and � , constrained to 
remain tangent (one supposes that the surfaces in contact are perfectly smooth, the 
solids sliding one on the other); at the contact point ( )P r  arise the constraint forces 

S �N N  and � � �N N  (on the basis of the principle of action and reaction, 

S �� �N N 0 ), which are normal to the considered surfaces (Fig.3.27,a). The relative 
velocity of the two rigid solids at P  is S� �v v  (the difference between their 
velocities), so that the difference of two possible displacements (which are virtual 
displacements too) � �S S t� �) � ) � � )r r v v  lies in the common tangent plane; it 
follows that S S S S� � � �� B � � B � � ) � � ) �N r N r N r N r � �S� �� ) � )N r r  

0� . If the surfaces in contact are rough, the rigid solids rolling one on the other 
without sliding, then the relative velocity at the contact point vanishes ( S� � �v v 0 ); 
we also get � �S S S� � � �� B � � B � ) � )R r R r R r r  � �S t� �� � � )R v v 0� , 
because the constraint forces verify the relation S �� �R R 0 . Let be also the case in 
which the two rigid solids are linked by a hinge at ( )P r  (Fig.3.28,a). If we neglect the 
frictions, then the action of the rigid solid �  upon the rigid solid S  is reduce to a force 
SR  applied at P , while the action of the rigid solid S  upon the rigid solid �  is 

reduced to a force �R , applied at P  too; obviously, S �� �R R 0 . It follows that 
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S S � �� B � � BR r R r � �S �� � � BR R r  0� , because the point P  has the same 
virtual displacement S �B � B � Br r r , immaterial to which rigid solid it belongs. 

Figure 3.28.  Two rigid solids S  and �  linked by a hinge (a). Spherical hinge (b) represented 
by three non-coplanar pendulums (c) or by an idealized fixed support (d). 

In general, a mechanism is formed by a system of rigid solids, which are linked by 
hinges or by supports on perfectly smooth or rough surfaces; because there are not 
frictions, one may consider that this mechanical system is subjected to ideal constraints. 

In the case in which arises also a sliding, a rolling or a pivoting friction, then one 
must introduce the corresponding components of the constraint forces and one must 
make supplementary hypotheses to allow the determination of these components; the 
mathematical model of the system of constraints must be completed. One may thus 
consider the motion with friction of a particle along a curve or a surface, the motion 
with friction of a rigid solid on another one etc. 

We notice that the relation 0RWB � , corresponding to ideal constraints, may be 
written also in the equivalent form 

1
0

n

i i
i

D

�
� �R v , (3.2.36'') 

where we have put into evidence the virtual velocities of the points at which the 
constraint forces are applied. 

2.2.10 Ideal constraints of the rigid solid 

As we have seen, a free rigid solid has six degrees of freedom. If some external 
constraints appear, then the number s  of these degrees of freedom becomes smaller 
(there is no more necessary the same number of independent parameters to specify the 
position of the rigid solid); otherwise, applying the axiom of liberation of constraints, 
one must determine the unknown constraint forces which are introduced, hence p  
unknown scalars. If in a given rigid solid problem one has 6s p� � , then this one is, 
in general, determinate (excepting some particular cases in which it could be 
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indeterminate or impossible); we say that the respective mechanical system (in 
particular, the rigid solid) is statically determinate (isostatic). If 6s p� � , then the 
problem is indeterminate, the mechanical system being statically indeterminate 
(hyperstatic, with 6s p� �  degrees of statical indeterminacy). The unknowns of the 
problem cannot be determined in the case of a rigid solid, because of the limits of the 
mathematical model chosen for the solid; if we pass from a rigid to a deformable solid, 
closer to the physical reality, completing thus the considered mathematical model, then 
there appear supplementary relations which allow the complete solution of the problem. 
Finally, if 6s p� � , then the problem is impossible from the point of view of the rest 
with respect to a fixed frame of reference (in some particular cases, for special systems 
of given forces, the problem could be determinate); in this case, the mechanical system 
is a mechanism for which one has 6 ( )s p� �  degrees of freedom. In what follows, we 
pass in review some external constraints without friction, which are important in the 
case of a rigid solid. 

Let S  be a rigid solid, one of the points ( )P r  of which is constrained to stay on a 
perfect smooth fixed surface �  (we may suppose that this surface bounds another rigid 
solid which – for the sake of simplicity – will be denoted by �  too); we say that the 
rigid solid has a simple support (movable support) at P  (Fig.3.27,a). To state the 
position of the rigid solid, there are necessary only five scalar parameters (e.g., the co-
ordinates u  and v  of the point P  on the surface �  and the three Euler’s angles); 
hence, a simple support leaves out one degree of freedom of the rigid solid and can be 
replaced by a constraint force (a reaction) N , normal to the surface �  (as in the case 
of a particle constrained to stay on a given surface). If the surface �  has at P  a 
singular point (for instance, an angular point), then the direction of the constraint force 
is normal to the surface S  bounding the rigid solid S  (Fig.3.27,b); indeed, supposing 
that there are two rigid solids S  and � , simply leaning one on the other, there arise 
two constraint forces S �N N  and � � �N N , in conformity to the principle of action 
and reaction, the force �N  being normal to the surface S  (hence the force SN  too). 

Besides the constraints at a contact surface-surface or surface-point considered 
above, we mention the constraints at a contact surface-curve, curve-curve, curve-point 
or point-point. As well, we can conceive the constraints on a curve in the contact 
surface-surface, surface-curve or curve-curve and the constraints on a surface in the 
contact surface-surface. One can make analogous considerations in all these cases. 

The point of application as well as the support of the constraint force N  are known; 
one must determine only its magnitude and its direction (a scalar unknown N , 
corresponding to a left out degree of liberty; the unknown N  is obtained with the sign 
+ or –, as the direction arbitrarily chosen at the beginning is or not the correct one); in 
general, the problem is thus determinate. Hence, to fix a rigid solid there are necessary 
six simple supports; the six degrees of freedom are thus vanishing and one must 
introduce six unknown constraint forces. A simple support may be graphically 
represented by a pendulum, indicating the direction in which the possibility of 
displacement is suppressed (Fig.3.27,c) or by an idealized support (schematized by a 
small cart, Fig.3.27,d), which puts into evidence the directions in which the 
displacement is possible. We notice that the directions in which the possibility of 
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displacement is suppressed must verify certain conditions so that the rigid solid be 
fixed. Indeed, the constraint forces (reactions) jN , 1,2,...,6j � , will be given by a 
linear system of equations of the form 

6

0
1

0ij j i
j
a N a

�
� � ,   1,2,...,6i � ; (3.2.38) 

this system has a unique solution if and only if " #det 0ija � . To fulfill this condition, 
it is necessary that: i) the supports of any two reactions do not coincide; ii) the supports 
of any three reactions do not be coplanar and concurrent or parallel; iii) the supports of 
any four reactions do not be concurrent, parallel or do not belong to the same family of 
generatrices of an one-sheet hyperboloid; iv) the supports of any five reactions do not 
intersect two straight lines or do not intersect a straight line and be parallel to a plane or 
– in general – do not belong to a congruence of the first degree; v) the supports of the 
six reactions do not intersect the same straight line or do not be parallel to the same 
plane or – in general – do not belong to the same linear complex of the first degree. If 
one of these conditions is not fulfilled, then the rigid solid is no more fixed (the system 
(3.2.38) is no more compatible). In this case too, the rigid solid may be fixed for certain 
systems of forces, but the reactions are no more univocally determined (the rank of the 
matrix " #ija  remains smaller than six). If in a neighbouring position the rank of the 
matrix remains smaller than six, then we say that the rigid is not fixed; but if in such a 
position the rank is six, then the fixity takes place only for infinitesimal displacements, 
not for finite ones (the rigid solid is no more strictly fixed, having to do with critical 
constraints). 

The simple support may be a bilateral or a unilateral constraint, as the displacement 
is hindered or not in both directions of the normal to the surface in contact, 
respectively. 

Let S  be a rigid solid for which one of the points, ( )P r , is a fixed point of the 
space (with respect to a fixed frame of reference; eventually, the fixed point may belong 
to another rigid solid � ); we say that the rigid solid S  has a spherical hinge 
(articulation, fixed support) at P  (Fig.3.28,a). To determine the position of the rigid 
solid, there are necessary only three scalar parameters (e.g., the three Euler’s angles); 
hence, a spherical hinge suppresses three degrees of freedom of the rigid solid and may 
be replaced by a reaction R  of unknown direction and magnitude, applied at the point 
P  (in case of two rigid solids, the reactions S �R R , � � �R R , S �� �R R 0 , 
arise). Hence, the constraint force has three unknown scalars (the components 

1 2 3, ,R R R  of R  along three co-ordinate axes). Such a hinge may be obtained by a 
sphere of centre P  (the theoretical point of support), with which the rigid solid S  
penetrates in a spherical cavity of the rigid solid � ; hence, the possibility of 
displacement is suppressed, but the rotation is free (Fig.3.28,b). A spherical hinge is 
equivalent, from a mechanical point of view, to three simple supports at the same point, 
so that the directions in which the displacement is suppressed do not be coplanar; 
hence, a spherical hinge may be represented by three non-coplanar pendulums 
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(Fig.3.28,c) or by an idealized fixed support, denoting the impossibility of displacement 
(Fig.3.28,d). 

Figure 3.29.  Cylindrical hinge (a). Representation by a fixed axis (b). Plane case: two concurrent 
pendulums (c) or an idealized fixed support (d). 

Let us also consider a rigid solid S  for which a straight line passing through a fixed 
point P  of it (with respect to a fixed frame of reference) represents a fixed axis; in this 
case, the rigid solid S  has a cylindrical hinge (articulation) at P . Such a hinge may be 
obtained by a cylinder passing through the theoretical point of support P , with which 
the rigid solid S  penetrates in a cylindrical cavity of the rigid solid � ; hence, besides 
the possibility of displacement, the possibility of rotation about two axes normal to the 
fixed axis is hindered too. Remains only the possibility of rotation about the fixed axis; 
hence, only a scalar parameter is necessary to determine the position of the rigid solid 
(e.g., the rotation angle � , Fig.3.29,a). So that a cylindrical hinge suppresses five 
degrees of freedom and can be replaced by a reaction R  of unknown direction and 
magnitude, applied at P , and by a couple of moment M , applied at P  too, and 
contained in a plane normal to the fixed axis (the rotation about the fixed axis is not 
hindered by not one component of the couple); there are thus introduced five scalar 
unknowns (the components 1 2 3, ,R R R  of the reaction R  and the components 1 2,M M  
of the moment, supposing that the fixed axis is parallel to the axis 3Ox ). A cylindrical 
hinge is equivalent, from a mechanical point of view, to a spherical hinge at P  (three 
non-coplanar pendulums at the same point) and a support at a point P �  of the fixed 
axis, formed by two pendulums contained in a plane normal to the axis (Fig.3.29,b); the 
reactions at P  and P �  are reduced at P  to the torsor , -,R M  considered above (with 
M  normal to the fixed axis). 

If the given system of forces is plane, then a spherical hinge contained in this plane 
or a cylindrical hinge the axis of which is normal to this plane are replaced by a reaction 
R , which has only two components in the plane; in this case, the spherical hinge and 
the cylindrical one are equivalent, and we may denote the respective support a plane 
hinge (articulation). A plane hinge can be represented by two concurrent pendulums 
(Fig.3.29,c) or by an idealized fixed support (Fig.3.29,d). 

Taking into account the observations made for the simple supports, we may affirm 
that a rigid solid cannot be fixed by means of two spherical hinges (the supports of six 
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equivalent pendulums form two stars of concurrent straight lines); as well, the rigid 
solid cannot be fixed by a spherical hinge and three simple supports if the supports of 
the corresponding pendulums are concurrent or parallel or if they intersect the same 
straight line passing through the hinge, or if one of these supports passes through the 
hinge. We notice also that, in the case of a given system of forces contained in a plane, 
the rigid solid is not fixed by a hinge and a simple support if the support of the latter 
pendulum passes through the hinge (obviously plane). 

Figure 3.30.  Built-in support (a). Graphical representation (b). 

A support which suppresses all six degrees of freedom of a rigid solid S  is called a 
built-in (embedded) support (a rigid fixing). A built –in mounting may be obtained by 
an extremity of a rigid solid S  which penetrates in a rigid solid � , the latter one 
ensuring its fixity (Fig.3.30,a). On the whole surface of contact between the rigid solids 
S  and �  there appear constraint forces which cannot be determined in the frame of 
the rigid model considered; but the effect of this support may be replaced by the torsor 
of these forces at the theoretical point P  (in fact, an arbitrary point): a reaction R  and 
a couple of moment M  (six unknown scalars ,i iR M , 1,2, 3i � , corresponding to the 
three axes of co-ordinates). A built-in support is equivalent, from a mechanical point of 
view, to six simple supports on the contact surface, which verify the necessary 
conditions mentioned in this case to obtain the fixity of the rigid solid, hence it can be 
represented by six pendulums which satisfy these conditions. Graphically, one can 
represent a built-in support (Fig.3.30,b). In the case of a given system of forces 
contained in a plane 3 constx � , by suppressing the six degrees of freedom which 
remain one must introduce only three scalar unknowns ( 1R , 2R  and 3M M� ). 

Besides the basic supports of the rigid solid, considered above, one may conceive 
also other ones, which are obtained – in general – starting from those previously 
considered. All the supports represent ideal external constraints of the rigid solid, which 
verify the relation (3.2.36). 

But the rigid solid is a holonomic and scleronomic mechanical system, the external 
constraints being scleronomic too; in this case, the real elementary work of the 
constraint forces will vanish as well. We may write 
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where we took into account the formula (5.2.3') (see Chap. 5, Subsec. 2.1.1), which 
links the velocities of two points P  and jP  of the rigid solid, the sums (eventually, 
integrals) corresponding to all the points of the solid upon which act constraint forces; 
we put thus into evidence the resultant of the constraint forces, as well as their moment 
with respect to the theoretical point P  of support (the torsor of these forces at P ). 
Hence, the condition of ideal external constraints at the point P  is of the form 
( P �v v , P �M M )  

0i i i iR v M �� � � � � �R v M 7  (3.2.39) 

and may be verified in the considered particular cases. For example, in the case of a 
support on the plane 3 constx �  we have 3 0v �  and 1 2 1R R M� � 2M�  

3 0M� � ; hence, the condition (3.2.39) holds and the constraint force 3 0R �  is put 
in evidence. In the case of the coupling screw-nut, the advance being along the axis 

3Ox , we have 1 2 0� �� � , 1 2 0v v� �  and 3 ( /2 )v p � �� , where p  is the screw 
pitch, while 3 0� �� �  is the angular velocity (as one can see in Chap. 5, Subsec. 
1.3.3); we get thus 3 3( /2 )R p M� � �� " #3 3( /2 ) 0p R M� �� � � , and the 
constraint forces 1 2 3 1 2, , , ,R R R M M  and 3 3( /2 )M p R�� �  are put into evidence. 

Figure 3.31.  A thread acted upon by a tension T . 

All the constraints considered above are holonomic ones, of geometric nature, and 
the results obtained are useful in the static as well as in the dynamic case; various 
examples of non-holonomic constraints, of kinematic nature, have been presented in 
Subsec. 2.2.6. All these constraints have been bilateral ones; but we can imagine 
unilateral constraints too, obtained with the aid of threads. A thread is considered to be 
perfectly flexible and inextensible; hence, the distance between the ends of a thread 
may diminish, but cannot grow. If a rigid solid is linked to a fixed point by a thread 
perfectly stretched (threads passing over pulleys, rigid solids oscillating at the end of a 
thread etc.), then a constraint force T  (always of traction, it draws the rigid solid), 
arises along the latter one (Fig.3.31); this force is called tension, while �T  stretches 
the thread. The corresponding constraint suppresses one degree of freedom of the rigid 
solid and introduces only one scalar unknown (the tension of modulus T ), if the 
direction of the thread is fixed. 

2.2.11 Constraints with friction 

As we have seen in the case of a particle P  constrained to stay on a fixed smooth 
surface S  of equation � �1 2 3, , 0f x x x � , a normal constraint force grad f��N , 
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where �  is a scalar to be determined, arises. If the surface is rough, then the constraint 
is no more ideal, while the constraint force R  is no more normal to the surface; there 
appears a component T  of this force, contained in the plane tangent at P  to the surface 
and which has an opposite direction with respect to the component in this plane of the 
resultant of the given forces to which is subjected the particle P . To can determine the 
force of sliding friction (it hinders the sliding of the particle P  on the surface, hence 
the displacement of the particle in the frame of this constraint) one must make 
supplementary hypotheses. The most usual model which corresponds in many cases to 
the physical reality is that due to Coulomb; in this case, the modulus of the friction 
component is given by (experimentally established for the first time by Amonton in 
1699) 

T fN� , (3.2.40) 

the equality taking place in the limit case of rest (if the inequality takes place, then the 
particle P  is at rest on the surface). The numerical coefficient f , which depends only 
on the nature and the state (dry or wet) of the rough surface, and does not depend on the 
velocity v  of the particle if it begins to move, is called coefficient of friction 
(coefficient of static friction, unlike a dynamic one, which is of the form ( )f f v� ). 
We introduce also the angle of friction � , defined by the relation 

tanf �� . (3.2.41) 

Figure 3.32.  Particle P  on a surface S  (a) or on a curve C  (b) with friction. 

The relation / tan tanT N � �� �  leads to � �� , in this case (Fig.3.32,a); hence, 
for rest, the angle �  between the constraint force R  and its normal component N  
must be smaller or at the most equal to the angle of friction � . We are thus led to 
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construct a circular cone C  with the vertex at P  and the axis normal to the surface S , 
the vertex angle being 2�  (the cone of friction). For rest, in the case of a bilateral 
constraint, the support of the constraint force R  must be contained in the interior of the 
zone  �C  or of the zone  �C  of the cone C, or on the cone itself; if the constraint is 
unilateral, then we take into consideration only the zone  �C  (or  �C ) of the cone of 
friction, situated in the part of the surface S  in which the particle P  may be. 

In the case of a particle P  constraint to stay on a smooth curve C , of equations 
� �1 2 3, , 0if x x x � , 1,2i � , arises a constraint force 1 1 2 2grad gradf f� �� �N , 

contained in the plane normal to the curve at P , where 1 2,� �  are scalars which must 
be determined. As in the previous case, if the curve is rough, then we introduce a force 
of sliding friction T  of the form (3.2.40), along the tangent to the curve at P . For 
equilibrium, it is necessary and sufficient that the angle between the support of the 
constraint force R  and the tangent to the curve be greater or at least equal to /2� ��  
(Fig.3.32,b). We are thus led to consider a circular cone of friction C, the axis of which 
is tangent to the curve C  at P , the vertex angle being 2� �� . For rest, it is necessary 
and sufficient that the support of the reaction R  be situated in the exterior of the cone 
C  or on it. 

In both cases considered above, the problem of the position of rest is indeterminate; 
in fact, we specify only the corresponding limit positions. In the case of a discrete 
mechanical system S  of particles, subjected to constraints with friction, the degree of 
indetermination is greater, because neither the directions of the forces of friction are not 
known. To solve the problem, we must know the motion by which the system S  
reached the position of rest, to can determine the forces of friction sufficient to maintain 
it in this position, or we must search the forces of friction by which the system S  can 
pass once more from the state of rest in a state of motion. 

If the friction does not take place between a particle and a rigid surface (or curve), 
but between a particle and a fluid (liquid or gas), then we have to do with a viscous 
friction, and a coefficient of viscosity appears too. The constraint force is – in this case – 
a force of resistance. 

2.2.12 Constraints with friction of a rigid solid 

Let be the rigid solids S  and �  simply supported at P , considered at Subsec. 
2.2.10 (Fig.3.27,a). In reality, the solids are deformed in the neighbourhood of the point 
P , so that the contact is obtained on a small surface on which appear constraint forces 
(Fig.3.33,a); by reducing this system  of  forces  at  the  point  P ,  we obtain the 
corresponding torsor (the constraint force R  and the constraint couple of moment M ), 
which replaces the action of the solid �  upon the solid S  (Fig.3.33,b). The normal 
constraint force N  (ideal constraint), the constraint force T , contained in the tangent 
plane (corresponding to the sliding friction), the couple of moment pM , normal to the 
tangent plane (corresponding to the pivoting friction, which is opposed to the rotation 
about this normal), and the couple of moment rM , contained in the tangent plane 
(corresponding to the rolling friction, which is opposed to the rotation about an axis in 
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the tangent plane, passing through P ) (Fig.3.33,c) are thus put into evidence. Hence, in 
the case of the rigid solid, the friction phenomenon has a more complex aspect. 

  
Figure 3.33.  Zone of contact between the rigid solids S  and �  (a). The constraint force R  and 

the constraint couple of moment M  (b) and their components (c). 

Let us consider the rigid solids S  and �  in contact; as well, let Q  be the 
component of the given forces along the normal to the common tangent plane and 

� �N Q  the corresponding ideal constraint force (Fig.3.34,a); besides the component 
N  of the constraint force R , arises a tangential component too, which is opposing to 
the tendency of sliding of the solid S  with respect to the solid � . This component 
appears even if one of the solids does not slide with respect to the other one (because of 
the roughness of the surfaces in contact),  having  the  tendency  to  equate  to  zero  an 

Figure 3.34.  Two rigid solids S �  and �  in sliding friction contact: the case of friction (a); the 
angle of friction (b); the quadrangle of friction (c). 

eventual given tangential force which could produce such a sliding; in this case, we 
have to do with a friction of adherence (of adhesion), which is opposed to the tangential 
component of the given forces. In the limit case in which the solid S  begins to slide on 
the solid � , one obtains the force of sliding friction T  (the friction of motion); we 
suppose that this force is of Coulombian nature and is given by a formula of the form 
(3.2.40), where the coefficient f  of sliding friction (3.2.41) does not depend – in 
general – on the relative velocity of sliding of the two solids or on the magnitude of the 
surfaces in contact, but only on their nature (roughness). Numerical values of the 
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coefficient f  are given in Table 3.1. An example of dependence of the velocity (for 
greater values) is given in Table 3.2 for metal on metal. Also in this case, a cone of 
friction of vertex angle 2�  is introduced, and the resultant of the constraint forces must 
be in its interior or on it. If the given forces are contained in a plane passing through the 
point of contact P , then the problem has a plane character, the cone of friction being 
reduced to an angle of friction (the trace of the cone of friction on the considered plane) 
(Fig.3.34,b). Let us consider a rigid solid acted upon by coplanar forces and leaning 
with friction at the points 1P  and 2P  on the surfaces 1�  and 2� , respectively; the 
conditions 1 1 1T f N� , 2 2 2T f N�  are put. The angles of friction constructed at these 
points determine a quadrangle called the quadrangle of friction (Fig.3.34,c); the state of 
rest is possible if the point of piercing I  of the supports of the constraint forces 1R  and 

2R  is in the interior of the quadrangle or on it. If the system of given forces is not 
plane, then one can take into consideration the three-dimensional domain obtained by 
the intersection of the two cones of friction. 
 

Table 3.1 
wood on wood, dry …………. 0.25-0.50 leather on metals, dry ……….. 0.56 
wood on wood, soapy ………. 0.20 leather on metals, wet ……….. 0.36 
metals on oak, dry ………….. 0.50-0.60 leather on metals, greasy ……. 0.23 
metals on oak, wet ………….. 0.24-0.26 leather on metals, oily ………. 0.15 
metals on oak, soapy ……….. 0.20 steel on agate, dry …………… 0.20 
metals on elm, dry ………….. 0.20-0.25 steel on agate, oily …………... 0.107 
hemp on oak, dry …………… 0.53 iron on stone ………………… 0.30-0.70 
hemp on oak, wet …………… 0.33 wood on stone ………………. 0.40 
leather on oak ……………….. 0.27-0.38 earth on earth ……………….. 0.25-1.00 
metals on metals, dry ……….. 0.30 earth on earth, wet clay ……... 0.31 
metals on metals, wet ……….. 0.15-0.20 metals on ice ………………… 0.01-0.03 
smooth surfaces, best results ... 0.03-0.036 smooth surfaces, occasionally 

greased ……………………… 
 
0.07-0.08 

 
Table 3.2 

v (km/h) 0 10.93 21.08 43.5 65.8 87.6 96.48 
f 0.242 0.088 0.072 0.07 0.057 0.038 0.027 

To put into evidence the rolling friction we will consider the contact between a 
circular wheel of radius R  and a horizontal plane. The wheel can be acted upon by the 
afferent vertical given force Q , by a horizontal given force F  and by a turning 
moment M . If the local deformation is not taken into consideration, then there appears 
only the normal constraint force � �N Q  (Fig.3.35,a). In reality, in the neighbourhood 
of the point P  arise local deformations, hence constraint forces on a relatively small 
but finite surface (Fig.3.35,b); besides the normal constraint force, one can thus put into 
evidence the tangential constraint force � �T F  and the moment of rolling friction 
rM  of modulus rM Fr Ne� �  (in the absence of the turning moment) (Fig.3.35,c,d). 

This is the case of the drawn wheel. Because the position of rest can take place only for 
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limited values of the modulus of the force F , it follows that – in fact – rM  and e  take 
limit values; if maxe s� , then – with necessity – arises the condition 

Figure 3.35.  The case of rolling friction: without (a) and with (b) local deformations; the 
moment of rolling friction (c,d). 

rM sN� , (3.2.42) 

where s  is a coefficient of rolling friction and has the dimension of a length (the 
maximal parallel displacement of the support of the reaction N  with respect to the 
point of contact P , so as to oppose to the motion of rolling; it depends only on the 
nature of the solids in contact). But besides the friction of rolling arises a friction of 
sliding too, so that: if T fN� , rM sN�  (hence if /rM N fR s� �  or if 

/rM N s fR� � ), then the solid is in rest, if T fN� , rM sN�  (hence if 
/rs M N fR� � ), then the solid is rolling without sliding, if T fN� , rM sN�  

(hence if /rfR M N s� � ), then the solid is sliding without rolling, while if 
T fN� , rM sN�  (hence if /rfR s M N� �  or if /rs fR M N� � ), then the 
solid is sliding and rolling at the same time. In the case of a motive wheel intervenes a 
turning moment M  too; one can prove that, if the horizontal plane is too smooth (the 
coefficient f  is too small), then the wheel does not move, neither for a very great 
turning moment M . The problem of the contact of a circular wheel with an inclined 
plane may be studied analogously. 

Let us consider two solids S  and �  in contact; because of their local deformation, 
the contact takes place on a surface �  (Fig.3.36,a). We suppose that the solid S  is 
acted upon by a vertical force Q  and by a couple of moment M  along the common 
normal; this solid has the tendency to rotate about this normal, maintaining unchanged 
the surface of contact, hence the tendency of pivoting if M  is greater than a minimal 
value. In fact the pivoting is a sliding on the surface of contact � ; on an element of area 
d�  arises a force of sliding friction of magnitude d dT fn ��  ( d�n  is the reaction 
normal to the element of area d� , while f  is the coefficient of sliding friction), at a 
distance r  from P , in a direction normal to the vector radius (Fig.3.36,b); the moment 
of pivoting friction pM , of modulus pM , must verify the condition 

 dpM fnr
�

�� � ; (3.2.43) 
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if the force Q  is uniformly distributed on the surface of contact, then we have 
/ /n Q N� �� � , so that 

 dp
NM f r

�
�

�
� � , (3.2.43') 

where the integral is of the nature of a scalar geometric static moment. This condition is 
of the form 

pM aN� , (3.2.43'') 

Figure 3.36.  The case of pivoting friction: zone of contact (a); the local constraint (b). 

where a  is a coefficient of pivoting friction, having the dimension of a length (it 
depends only on the geometry and the nature of the surface of contact and not on the 
magnitude of this surface or on the velocity of the motion of pivoting). If the surface of 
contact is circular, of radius R , then one obtains 

2
3

a fR� ; (3.2.44) 

as well, 

3 3

2 2
2
3

e i

e i

R R
a f

R R
�

�
�

, (3.2.44') 

in the case of an annular surface of contact of external radius eR  and internal radius 
iR . 
Other cases of supporting with friction (e.g., friction in articulations, eye joints, 

bearings etc.) may be studied in an analogous manner, using the basic results 
considered above. 
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Chapter 4 

STATICS 

As we have seen, statics deals with the equivalence of the systems of forces (in 
particular, the equivalence to zero) which act upon a mechanical system; it is thus 
studied a particular case of motion, that is the case in which a mechanical system, 
subjected to the action of a system of forces, remains at rest with respect to a given 
(inertial) frame of reference. We will thus consider the statics of discrete or continuous 
mechanical systems, especially the problems which arise in the statics of rigid solids. 

1.  Statics of discrete mechanical systems 
In the study of the problems of discrete mechanical systems, we start from the case 

of a single particle; the results thus obtained may be extended to the case of other 
mechanical systems. 

1.1 Statics of the particle 
We deal successively with the case of a free particle and with the case of a particle 

subjected to constraints; as well, we make some considerations concerning the stability 
of the equilibrium of a particle. 

1.1.1 The free particle 
By free particle (material point) we understand that one which may take any position 

in the space; this position depends only on the forces acting upon the particle and is 
independent of any geometric or kinematic restriction. A free particle (in 3E ) has three 
degrees of freedom, its position being specified by three independent parameters (e.g., 
the co-ordinates jx , 1,2, 3j � , the components of the position vector r  of the 
corresponding geometric point). 

We consider a body which may be modelled as a particle. The forces iF , 
1,2,...,i n� , which act upon this body are – in this case – concurrent forces, and can 

be modelled as bound vectors (Fig.4.1,a). Applying to this system elementary 
operations of equivalence, we obtain the resultant 

1

n

i
i�

� F F , (4.1.1) 

201  
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which is an invariant of the respective system; hence, two systems of forces, which are 
acting upon the same particle, are equivalent if they have the same resultant F . 

Figure 4.1.  Statics of a free (a) or constraint (b) particle. 

Let be a free particle P  which is not acted upon by any force, at rest with respect to 
an inertial frame of reference. Let us suppose that this particle is then subjected to the 
action of a system of concurrent forces. The principle of the parallelogram of forces 
allows us to replace the given system of forces by its resultant, while the principles of 
inertia and of initial conditions allow us to affirm that the state of rest is maintained if to 
the particle is no more applied any force (or is applied a force equal to zero). If the 
system of concurrent forces has a zero resultant (it is equivalent to zero), then we say 
that this system of forces is in static equilibrium (if no confusion may occur, then it is 
sufficient to say that the system of forces is in equilibrium); in this case, the particle 
remains at rest with respect to the considered inertial frame of reference (sometimes we 
say that the particle is in equilibrium). In conclusion, the necessary and sufficient 
condition of equilibrium (of rest; here and in what follows we exclude the possibility of 
a rectilinear and uniform motion, foreseen by the principle of inertia) of a particle P , 
with respect to a given frame of reference, is written in the form 

�F 0  (4.1.2) 

or, in components, in the form 

0jF � ,   1,2, 3j � . (4.1.2') 

In the case of a system of forces which have the same support remains only one scalar 
condition, while in the case of a coplanar system of forces, two scalar conditions must 
be fulfilled. 

The first basic problem is that in which there are given the forces which act upon the 
particle, and one must search the position of equilibrium; the unknowns are – in this 
case – the parameters specifying the position of the particle (one, two or three 
parameters, as we are in a particular case – in 1E  or in 2E  – in what concerns the 
system of forces or, in the general case, in 3E ). If the system of equations of 
equilibrium is indeterminate, then there exists an infinity of possible positions of 
equilibrium, while if this system is impossible there is not one position of equilibrium. 

In the second basic problem, the position of equilibrium of the particle is given, 
while the forces which act upon the latter one to maintain this position must be 
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obtained. In this case, the unknowns are the magnitudes and the directions of the forces, 
the corresponding solution being – in general – indeterminate. If certain conditions are 
imposed to those forces in what concerns their number, directions or magnitudes, then it 
is possible that the solutions be determinate; it is necessary that the number of the scalar 
unknowns thus introduced be at the most equal to three (or to two in the case of 
coplanar forces). 

We notice also the case of the basic mixed problem, in which a part of the three 
unknowns are elements specifying the system of forces, the other unknowns being 
parameters which determine the position of equilibrium. 

Figure 4.2.  Heavy particle in equilibrium: free (a) or constraint (b) particle. 

To illustrate the considerations made above, let be, in a vertical plane, a particle P  
(materialized by a small annulus) of weight G , linked by two inextensible threads 
which pass over two small pulleys 1S  and 2S  and are tensioned by the weights 1Q  and 

2Q , respectively (Fig.4.2,a). Because the particle is free and subjected to a system of 
coplanar forces, we may choose as unknown parameters (we are in the case of the first 
basic problem) the angles 1�  and 2�  made by the two threads with the horizontal line, 
respectively. The threads are extended by the tensions 1T  and 2T , respectively, for 
which we have 1 1 1Q� �T Q  and 2 2 2Q� �T Q , respectively, so that the 
particle is acted upon by the forces G , 1T  and 2T , which must be in equilibrium. 
Projecting on the horizontal and the vertical, we get 

1 1 2 2cos cos 0Q Q� �� � ,     1 1 2 2sin sin 0Q Q G� �� � � ,  

wherefrom 

2 2 2
1 2

1
1

sin
2

G Q Q
GQ

� � �
� ,    

2 2 2
2 1

2
2

sin
2

G Q Q
GQ

� � �
� . (4.1.3) 

We notice that the conditions 2 2 2
1 2 12G Q Q GQ� � � , 2 2 2

2 1 22G Q Q GQ� � �  
must hold; the equalities never take place, because the pulleys 1S  and 2S  cannot be on 
the same vertical. These conditions may be written in the form 

1 2 1G Q Q G Q� � � � ,    2 1 2G Q Q G Q� � � �  (4.1.3') 
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too, corresponding to the conditions verified by the sides of a triangle (the polygon of 
the forces G , 1T  and 2T ); otherwise, the equilibrium is impossible, and the particle 
cannot remain at rest. The position of equilibrium depends, obviously, on the position 
of the pulleys 1S  and 2S ; for instance, if the pulleys 1S  and 2S  are on the same 
horizontal, then the conditions which must take place become 2 2 2

1 20 G Q Q� � �  

12GQ� , 2 2 2
2 1 20 2G Q Q GQ� � � � . 

The intervening threads do not introduce any restriction of geometric nature so that 
the above considered problem is that of a free particle. If the particle would be linked 
by one of the threads (considered inextensible) to a fixed point (a ring), then it should 
be on a circle, the centre of which is at this fixed point (Fig.4.2,b). 

1.1.2 The constraint particle 
If a particle P  is subjected to constraints, which will be considered scleronomic, 

then the latter ones have an influence on the conditions of equilibrium, hence on the 
position of rest, diminishing the number of degrees of freedom of the particle. As it was 
shown in Chap. 3, Subsec. 2.2.1, the axiom of liberation from constraints (the axiom of 
liberation, the axiom of constraints, the axiom of constraint forces) allows us to replace 
these constraints by constraint forces (reactions); in this case, the particle P  may be 
considered to be a free particle, subjected to the action of the given as well as of the 
constraint forces, so that one can use the considerations of the previous subsection. If 
R  is the constraint force applied to the particle P  (in fact, the resultant of all 
constraint forces acting upon this particle), which is subjected also to the action of the 
system of given forces iF , 1,2,...,i n� , then the necessary and sufficient condition of 
equilibrium (of rest with respect to a given frame of reference) is of the form (Fig.4.1,b) 

� �F R 0  (4.1.4) 

or, in components, of the form 

0j jF R� � ,   1,2, 3j � . (4.1.4') 

In the case in which the given and the constraint forces are coplanar, only two scalar 
conditions must be fulfilled, while if these forces have the same support, then only one 
scalar condition remains. 

The unknowns of the problem are of two kinds: unknowns corresponding to the 
parameters which specify the position of equilibrium and unknowns which 
determine the constraint force (the basic problem is thus a mixed one); some 
conditions which must be verified by the given forces so as the particle be at rest 
with respect to a given frame of reference there arise. If no condition is imposed to 
the constraint force, then the problem is indeterminate (the number of the 
components of the constraint force is equal to the number of the equations of 
equilibrium, but there intervene also the parameters specifying the position of 
equilibrium), excepting the case in which the particle is constrained to be at a 
certain fixed position in the space; in the latter  case, we have 
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� �R F ,   j jR F� � ,   1,2, 3j � . (4.1.5) 

To point out the restrictions which may be imposed to the constraint force R , we 
will effect the decomposition 

� �R N T , (4.1.6) 

Figure 4.3.  Heavy particle constraint to stay on a circle in a vertical  
plane: without friction (a), with friction (b). 

where the components N  and T  do not allow the particle to leave the constraint or to 
move in the frame of it, respectively. Let us consider, for instance, a particle P  of 
weight G , which may remain in equilibrium on a fixed circle, in a vertical plane 
(Fig.4.3,a); the component N  of the constraint force is in the direction of the normal to 
the circle, being the normal reaction, while the component T  is tangent to the circle, 
representing a constraint force with friction (the force of friction). The problem will be 
studied in Subsecs. 1.1.5 and 1.1.8. 

1.1.3 Geometry of a curve. Frenet’s trihedron 
Let be a curve C  defined by the parametric equations 

( )j jx x q� ,   " #0 1,q Q q q� � ,   1,2, 3j � , (4.1.7) 

where 3 ( )jx C Q� ; a point P  is specified by the position vector ( ) ( )j jq x q�r i  
(Fig.4.4). Introducing the derivative ( )q�r  and the differential dr , and taking into 
account the metrics of the space 3E , we may write 

2 2 2
1 2 3d d d dj jx x x q x x q s� � � � �� � � � �r , (4.1.8) 

where the curvilinear abscissa represents the length of the arc of curve 0P P , given by 

0 0

2 2 2
1 2 3( ) ( ) ( ) ( )d ( ) ( )d

q q
j jq q

s q x u x u x u u x u x u u� � � � �� � � �� � . (4.1.8') 
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A point of the curve C  for which the derivative of the position vector is non-zero is 
called an ordinary point; a non-ordinary point is called singular. In what follows we 
consider only ordinary points. An osculating circle at an ordinary point P  on the curve 
C  is the limit to which tends a circle defined by the point P  and two other 
neighbouring points if the latter ones tend to the point P ; the osculating circle is 
tangent to the curve at this very point and is an approach of the curve in the 
neighbourhood of the respective point. The plane normal to the tangent at this point is 
called normal plane; the straight lines which pass through the point P  and belong to 
this plane are normals to the curve C . The plane in which lays the osculating circle is 
called the osculating plane; this plane contains the tangent to the curve too. The centre 
of the osculating circle (called also the circle of curvature) lies on the normal to the 
curve at the point P , contained in the osculating plane; this normal is called the 
principal normal. The plane normal to the principal normal (which contains also the 
tangent to the curve) is called the rectifying plane; the normal contained in this plane is 
called binormal. Hence, the osculating plane is formed by the tangent and the principal 
normal, the normal plane is formed by the principal normal and the binormal, while the 
rectifying plane is defined by the binormal and the tangent. In the case of a plane curve, 
the osculating plane coincides with the plane of the curve. At the point P , we introduce 
a local frame of reference (a movable frame), that is the intrinsic Frenet’s trihedron 
(sometimes denoted as the Serret-Frenet trihedron); this one is a three-orthogonal 
trihedron, the unit vectors of the corresponding co-ordinate axes being defined as 
follows: the unit vector =  is tangent to the curve C  and has the direction in which the 
parameter q  (as well as the curvilinear abscissa) increases; the unit vector J  is along 
the principal normal and is directed towards the interior of the curve; the unit vector 5  
is along the binormal and is directed so that the scalar triple product ( , , ) 0�= J 5  (to 
have a right-handed trihedron) (Fig.4.4). 

Figure 4.4.  Frenet’s trihedron. 

Taking into account (4.1.8) and noting that dr  has the direction of the tangent to the 
curve C  at the point P , we get 

( )d
( )

d ( ) ( )
j j

k k

x q
s

s x q x q

�
�� � �

� �
=

ir r . (4.1.9) 
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Noting that the derivative of a vector of constant modulus is normal to it and that the 
unit vector =  is contained in the osculating plane to the curve at the point P , we may 
write 

d 1( )
d

s
s �

�� �
=

= J ; (4.1.10) 

the scalar 1/ 0� �  is the curvature of the curve at the point P , while �  is the radius 
of curvature (the radius of the osculating circle to the curve at the very same point P ). 
We have thus (d /d ) 0s� �5 5 , because 2 1�5 , while the orthogonality relation 

0� �= 5  leads to (d /d ) 0s� �= 5 , where we took into account the relation (4.1.10) 
and the condition of orthogonality 0� �J 5 . We may write 

d 1( )
d

s
s �

�� �
�

5
5 J ; (4.1.10') 

the scalar 1/� �  is the torsion of the curve at the point P , while � �  is the radius of 
torsion at the very same point. Differentiating � 3J 5 =  with respect to the curvilinear 
abscissa s  and taking into account (4.1.10), (4.1.10'), as well as the vector products 

� 3= J 5  and � 35 = J , we may write 

d 1 1( )
d

s
s � �

�� � � �
�

J
J = 5 . (4.1.10'') 

The formulae (4.1.10)-(4.1.10'') are called Frenet’s formulae (sometimes, the Serret-
Frenet formulae). 

Starting from the formula (4.1.10), we get (1/ ) (1/ ) (d /d )s� �3 � � 3= J 5 = = ; 
taking into account (4.1.9) and the modulus in both members, we obtain 

2
3

1 1( ) ( ) d d
d

s s
s�

� ��� 3 � 3r r r r . (4.1.11) 

The scalar product of the relation (4.1.10'') by 5 , leads to 1/ (d /d )s� � � � �5 J ; 
taking into account (4.1.10), we may compute ( )s�J , while the vector product 

� 35 = J  leads to two mixed products, one of which vanishes. Using once more the 
relation (4.1.10), as well as the relation (4.1.11), we may write 

� � � �2 21 ( ), ( ), ( ) ( ), ( ), ( )s s s s s s� �
�

� �� � �� ���� � � �
�

r r r= = =  

� �
" #

� �
� �

2 3

2 22

d ,d ,d( ), ( ), ( )
( ) ( ) d d

s s s
s s

� �� ���
� � � �

� ��3 3

r r rr r r
r r r r

. (4.1.12) 
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1.1.4 Geometry of a surface. Darboux’s trihedron 
Let be a surface S , defined by the parametric equations 

( , )j jx x u v� ,   ( , )u v D� ,   1,2, 3j � , (4.1.13) 

where 2 ( )jx C D� , D  being a given two-dimensional domain; a point P  is specified 
by the position vector ( , ) ( , )j ju v x u v�r i , where u  and v  are curvilinear co-
ordinates on the surface (Fig.4.5,a). If one or the other one of the two curvilinear co-
ordinates is constant, then one obtains two families of co-ordinate lines 

Figure 4.5.  Co-ordinate lines on a surface (a). Darboux’s trihedron (b). 

0( , )u v�r r ,   0( , )u v�r r ,   0 0, constu v � , (4.1.14) 

where the vectors d /du u� �r r , d /dv v� �r r  have the same directions as the tangents 
to these curves. Through a point � �0 0,u v  of this surface passes only one co-ordinate 
line of each family. The directions specified by the derivatives u�r , v�r  are distinct if 
u v� �3 �r r 0 , and the parametric representation (4.1.13) effectively defines a surface. In 

this case, if 0u v� �� �r r , then the co-ordinate lines form an orthogonal system. The 
vectors u�r  and v�r  define the tangent plane to the surface at the point � �0 0,u v . A point 
� �0 0,u v  which is an ordinary point for each of the two co-ordinate lines passing 
through it and for which the condition u v� �3 �r r 0  holds is called an ordinary point of 
the surface; a point which is not ordinary is called singular. 

In this case too, we introduce a local system of reference (a movable frame), that is 
the intrinsic Darboux’s trihedron (called also the Darboux-Ribaucourt trihedron); the 
unit vectors of the co-ordinate axes of this three-orthogonal trihedron are defined as 
follows: the unit vector =  is tangent to a curve C  on the surface and is directed so that 
its curvilinear abscissa increases; the unit vector g  is along the tangential normal 
(normal to C  at P , belonging to the tangent plane to S at P ); the unit vector n  is 
along the normal to the surface, its direction being so that � �, , 0u v� � �r r n . The 
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direction of the unit vector g  is chosen so that the trihedron be right-handed 
( � �, , 0�g n= ) (Fig.4.5,b). We suppose that P  is an ordinary point. 

If we introduce the mappings ( )t u t� , ( )t v t� , " #0 1,t t t� , then the point P  
describes a curve C  on the surface S ; the tangent to this curve is given by 
d d du vu v� �� �r r r . Starting from 2 2d d d ds� � �r r r , we may write the element of 
arc in the form 

2 2 2d d 2 d d ds E u F u v G v� � � , (4.1.15) 

where 

2
uE �� r ,   u vF � �� �r r ,   2

vG �� r ; (4.1.15') 

this expression represents the first basic quadratic form of the surface and was 
introduced by Gauss. Taking into account Lagrange’s identity (2.1.33) and noting that 
P  is an ordinary point, we find the condition 

� �22 2 0u vH EG F� �� 3 � � �r r ; (4.1.15'') 

hence, this quadratic form is positive definite in all the ordinary points of the surface. 
The properties of a surface S  which depend only on the coefficients of the first 
quadratic form (and of the partial derivatives of these coefficients) are called intrinsic 
properties of the surface. 

The element of area, that is the area of the curvilinear parallelogram obtained with 
the vectors du u�r  and dv v�r , is given by 

d d d d du vS u v H u v� �� 3 �r r . (4.1.16) 

We notice that the tangents to all the curves passing through P  are contained in the 
plane defined by u�r  and v�r ; the unit vector n  of the normal to the surface at the point 
mentioned above is – in this case – given by 

1 d d
d

u v
u v u v

u v

u v
H S

� �3 � � � �� � 3 � 3
� �3

r rn r r r r
r r

, (4.1.17) 

its direction being specified by � �, , 0u v� � �r r n . 
Projecting the first formula of Frenet (4.1.10) on the unit vector n , we get 

2 2 2cos d d 2 d d ds L u M u v N v�
�

� � � , (4.1.18) 

where ( , )� � � n J , and 
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� �1 , ,u u uu u v uuL
H

� � �� � � ��� � � � � �r n n r r r r , 

� �1 , ,u v v u uv u v uvM
H

� � � � �� � � ��� � � � � � � � �r n r n n r r r r , 

� �1 , ,v v vv u v vvN
H

� � �� � � ��� � � � � �r n n r r r r , 

(4.1.18') 

with the notations /u u� � ( (n n , /v v� � ( (n n , 2 2/uu u�� � ( (r r , 2 /uv u v�� � ( ( (r r , 
2 2/vv v�� � ( (r r ; the expression in the second member of the relation (4.1.18) 

represents the second basic quadratic form of the surface.  
Let be a curve C  on the smooth surface S  and a point P  on this curve; the radius 

of curvature of this curve at the point P  will be denoted by � . The plane determined 
by the unit vectors =  and n  pierces the surface S  by a curve nC , called the normal 
section associated at P  to the curve C , the unit vector of the corresponding principal 
normal being nJ ; the curvature 1/ n�  of the normal section nC  associated at P  to the 
curve C  is called the normal curvature of the curve C  at P  and is positive or negative 
as ( , ) 0n �� n J  or ( , )n ��� n J , respectively. We state thus 
Theorem 4.1.1 (Meusnier). The normal curvature of a curve C  on a surface S  is the 
projection of the curvature vector /�J  on the unit vector n  of the normal to the 
surface S  

1 cos
n

�
� �

� . (4.1.19) 

A unit vector =  to which corresponds a zero normal curvature defines an asymptotic 
direction; the curves on the surface for which the tangent to each point is an asymptotic 
direction are called asymptotic lines of the surface. On a smooth surface S  there exist 
two families of asymptotic lines determined by the differential equation 

2 2d 2 d d d 0L u M u v N v� � � ; (4.1.20) 

hence, through a point ( , )P u v  of the surface pass two asymptotic lines. If a straight 
line lays on a surface, then this one is obviously an asymptotic line. The projection of 
the curvature vector /�J  on the tangent plane to a surface S  at the point P  is called, by 
definition, the geodesic curvature of the curve C  at the point P  and is given by 

� � � �1 sin ( ), ( ), ( ) ( ), ( ), ( )
g

s s s s s s�
� �

� � ��� � 2 � 2= = n r r n ; (4.1.21) 

one can prove that the geodesic curvature at a point P  of a curve C  laying on the 
surface S  is equal to the curvature of the projection of the curve C  on the tangent 
plane to the surface at the very same point P . The radius g�  is called radius of 
geodesic curvature (or tangential). The geodesic curvature of the curve C  at a point P   
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is an intrinsic invariant of the surface S . Let be a curve C  for which the principal 
normal J  coincides with the normal n  to the surface; in this case, the osculating plane 
to the curve at the point P  is normal to the surface at this point, and we have 
sin 0� � , hence the geodesic curvature vanishes. The curves on the surface for which, 
at any point, the geodesic curvature vanishes are called geodesic lines; the geodesic 
lines of a smooth surface S  are determined by the differential equation 

� �2d ,d , 0�r r n , (4.1.22) 

so that through an ordinary point P  of it passes an infinity of geodesic lines. A 
geodesic line passing through two points of the surface S  represents the shortest way 
between these two points; it is a property of variational nature. For instance, the 
geodesic lines on a sphere are its great circles. We introduce also the geodesic torsion 
of the curve C  at the point P  

1 1 d
dg g s
�

� �
� �

�
, (4.1.23) 

where g� �  is the radius of geodesic torsion; we notice that the geodesic torsion of a 
curve C  at a point P  of the surface is equal to the torsion of the geodesic line tangent 
to this curve at the point P . 

Returning to Darboux’s trihedron and introducing also Frenet’s trihedron, which 
corresponds to a curve C  on a surface S , we may write 

cos sin� �� �J 5n ,   sin cos� �� �J 5g , (4.1.24) 

wherefrom 

sin cos� �� �J g n ,   cos sin� �� � �5 g n . (4.1.24') 

Starting form the Frenet’s formulae (4.1.10)-(4.1.10''), using the formulae (4.1.24), 
(4.1.24'), and introducing the normal curvature (4.1.19), as well as the geodesic 
curvature (4.1.21) and the geodesic torsion (4.1.23), we may write the derivatives of the 
unit vectors of Darboux’s trihedron with respect to the arc s  in the form 

d 1 1( )
d n g

s
s � �

�� � �
=

= n g , 

d 1 1( )
d g g

s
s � �

�� � � �
�

=
g g n , 

d 1 1( )
d n g

s
s � �

�� � � �
�

=
n n g . 

(4.1.25) 
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1.1.5 Particle subjected to ideal constraints 
The ideal (smooth, frictionless) constraints are these constraints for which �T 0 ; in 

this case, the relation (3.2.36) takes place (the virtual work of the constraint forces 
vanishes). In reality, such constraints do not exist; but there exist curves and surfaces 
(constraints of contact) for which the force of friction can be neglected in a first 
approximation. In this case, the reaction 

�R N  (4.1.26) 

is along the normal to the surface or is contained in the plane normal to the curve, 
respectively, at the point at which stays the particle. Taking into account the condition 
of equilibrium (4.1.4) and the relation (4.1.26), we may state 
Theorem 4.1.2. A particle constrained to stay on a fixed smooth surface (curve) (ideal 
constraints) is in equilibrium if and only if the resultant of the given forces acting upon 
it is directed along the normal to the surface or is contained in the plane normal to the 
curve, respectively, at the point which represents the position of equilibrium. 

In the case of the particle subjected to ideal constraints, there appear unknowns 
concerning the position of equilibrium and unknowns corresponding to the constraint 
forces. The system of equations (4.1.4') is – in general – sufficient to solve the 
equilibrium problem; but in some particular cases, this system can be indeterminate or 
impossible, thus existing an infinity of such positions or none. 

 
Figure 4.6.  Particle in rest on a surface (a) or on a curve (b). 

If the particle P  is constrained to stay on a fixed smooth surface S  (Fig.4.6,a), of 
equation (given in an implicit form) 

� �1 2 3( ) , , 0f f x x x� �r , (4.1.27) 

then the constraint force, normal to the surface, is of the form 

grad f��R ,   ,j jR f�� ,   1,2, 3j � , (4.1.27') 

where the scalar �  is a parameter which must be determined; we get the equations of 
equilibrium 

grad f�� �F 0 ,   , 0j jF f�� � ,   1,2, 3j � . (4.1.27'') 
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The system of equations (4.1.27''), considered in the unknown � , is compatible if and 
only if 

1 2 3

,1 ,2 ,3

F F F
f f f

� � ; (4.1.27''') 

these equations, together with (4.1.27), specify the position of equilibrium, while the 
parameter �  (hence, the constraint force (4.1.27')) is given by the system (4.1.27''). 

If the equation of the surface S  is given in the explicit form 

� �3 1 2,x x x�� , (4.1.28) 

then we get the equations which determine the constraint force 

1 ,1 0F ��� � ,   2 ,2 0F ��� � ,   3 ,3 0F ��� � , (4.1.28') 

while the conditions specifying the position of equilibrium are 

1 2
3

,1 ,2

F F
F

� �
� � � . (4.1.28'') 

Analogously, if the surface S  is given by the parametric equations 

� �,i ix x u v� ,   " #1 2,u u u� ,   " #1 2,v v v� ,   1,2, 3i � , (4.1.29) 

then the conditions of equilibrium become 

� � � � � �
1 2 3

2 3 3 1 1 2, , ,
det det det

( , ) ( , ) ( , )

F F F
x x x x x x
u v u v u v

� �
( ( ($ % $ % $ %

* + * + * +( ( (& ' & ' & '

, (4.1.29') 

where we have put into evidence the director parameters of the normal in the form of 
functional determinants, while the constraint force is given by the equations 

� �,1
det 0

2 ( , )
j k

i ijk
x x

F
u v

�
($ %

� � �* +(& '
,   1,2, 3i � , (4.1.29'') 

where ijk�  is Ricci’s symbol. Using Darboux’s local frame of reference, we notice that 
0gR R� � � , nR R� , so that 

0F� � ,   0gF � ,   nR F� � ; (4.1.30) 

the first two relations (4.1.30) state the position of equilibrium, while the last relation 
specifies the constraint force. 
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If the particle P  lies on a fixed smooth curve C  (Fig.4.6,b) of equations (in an 
implicit form) 

� �1 2 3( ) , , 0k kf f x x x� �r ,   1,2k � , (4.1.31) 

then one obtains the constraint force (in the plane normal to the curve C , specified by 
the normals to the surfaces passing through this curve) 

1 1 2 2grad gradf f� �� �R ,   1 1, 2 2,j j jR f f� �� � ,  1,2, 3j � , (4.1.31') 

where the scalars k� , 1,2k � , are parameters to be determined, and the equations of 
equilibrium 

1 1 2 2grad gradf f� �� � �F 0 ,   1 1, 2 2, 0j j jF f f� �� � � ,  1,2, 3j � . (4.1.31'') 

The system of linear equations in the unknowns 1� , 2�  is compatible if and only if 

1 1,1 2,1

2 1,2 2,2

3 1,3 2,3

0

F f f

F f f

F f f

� , (4.1.31''') 

obtaining thus the condition which, together with (4.1.31), specifies the position of 
equilibrium; the parameters 1� , 2�  (hence, the constraint force (4.1.31')) are 
subsequently determined by the system (4.1.31''). 

If the equations of the curve C  are given in the explicit form 

� �3 1 2,x x x�� ,   � �3 1 2,x x x�� , (4.1.32) 

then we get the equations which give the constraint force in the form 

1 1 ,1 2 ,1 0F � � � �� � � ,   2 1 ,2 2 ,2 0F � � � �� � � ,   3 1 2 0F � �� � � , (4.1.32') 

the condition specifying the position of equilibrium being 

� � � � � �1 ,2 ,2 2 ,1 ,1 3 ,1 ,2 ,2 ,1 0F F F� � � � � � � �� � � � � � . (4.1.32'') 

Analogously, for the parametric form of the curve C  

( )i ix x q� ,   " #1 2,q q q� ,   1,2, 3i � , (4.1.33) 

the components of the constraint force must fulfil the condition (the constraint force is 
contained in the plane normal to the curve C , hence it is normal to the tangent of 
director parameters ( )ix q� , 1,2, 3i � ) 

( ) 0i iR x q� � . (4.1.33') 
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This relation is identically fulfilled if 

i jijk kR x� ��� ,   1,2, 3i � , (4.1.34) 

where j� , 1,2, 3j � , are arbitrary parameters; the equations of equilibrium become 

0i jijk kF x� �� � � ,   1,2, 3i � , (4.1.33'') 

and are compatible if 

( ) 0i iF x q� � . (4.1.33''') 

The condition (4.1.33''') determines the values of the parameter " #1 2,q q q� , which 
correspond to the position of equilibrium. In this case, the system (4.1.33'') leads to  

1
3

j
i i ijk

k

F
kx

x
� �� � �

�
,   1,2, 3i � , (4.1.34') 

where k  is an indeterminate parameter; replacing in (4.1.34), we find the constraint 
forces in the form 

i iR F� � ,   1,2, 3i � . (4.1.34'') 

Using Frenet’s frame of reference, we notice that 0R� � , so that 

0F� � ,   R F� �� � ,   R F� �� � ; (4.1.35) 

the first of these relations gives the position of equilibrium, while the other two 
relations specify the constraint force. 

In the particular case of a heavy particle P , constrained to stay on a fixed smooth 
circle in a vertical plane (Fig.4.3,a), we have to do with an ideal constraint; the 
constraint force is reduced to the normal component ( �T 0 ), and the equation of 
equilibrium is of the form 

� �G N 0 . (4.1.36) 

Taking into account the Theorem 4.1.2, there results that the positions of equilibrium 
are the points 1P  and 2P ; the normal reaction is given by 

� �N G . (4.1.36') 

In general, as it was shown in Chap. 3, Sec. 2.2, the particle P  is subjected to 
holonomic, scleronomic constraints of the form 

� �1 2 3, , 0lf x x x � ,   1,2l � , (4.1.37) 
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or to scleronomic, non-holonomic ones of the form 

d 0k � �r4 ,   1,2k � ; (4.1.37') 

the total number of constraints may be at the most two. If we should have three 
constraints, then the particle would be at a fixed point. We notice also that the particle 
may be subjected only to holonomic constraints (as it was considered above) or only to 
non-holonomic constraints or to a holonomic constraint and to a non-holonomic one. In 
the case of ideal constraints, the virtual work of the constraint forces vanishes 

0RWB � � B �R r , (4.1.38) 

while the constraint force is given by the formula (3.2.37) in the form 

2 2

1 1
gradl l k k

l k
f� �

� �
� �  4R . (4.1.38') 

We notice that the first sum corresponds to the cases in which the particle is constrained 
to stay on a fixed smooth surface or curve; the constraint force is expressed only with 
the aid of the second sum if only non-holonomic constraints appear. The equations of 
equilibrium are of the form 

1 1 2 2 1 1 2 2grad gradf f� � � �� � � � �4 4F 0 , (4.1.39) 

and only one or two of the four indetermined parameters 1� , 2� , 1� , 2�  (the vector 
coefficients of the other three or two parameters are equal to zero, because the 
corresponding constraints do not take place) are involved. In the general case, the 
problem is solved as it was shown above (the cases in which only one indeterminate 
parameter �  is involved or only two indeterminate parameters 1� , 2�  are involved). 

1.1.6 Particle subjected to unilateral ideal constraints 
We admitted, in the previous subsections, that the constraints are bilateral. 

Analogously, the unilateral holonomic, scleronomic constraints of a particle may be 
expressed in the form 

� �1 2 3, , 0lf x x x � ,   1,2l � , (4.1.40) 

and the unilateral non-holonomic, scleronomic ones in the form 

d 0k � �4 r ,   1,2k � , (4.1.40') 

their total number being at the most equal to two; if three constraints should be, then the 
particle would be at a fixed point, and all the relations would be equalities. As in the case of 
bilateral constraints, the particle may be subjected only to holonomic or only to non-
holonomic constraints or to a holonomic constraint and to a non-holonomic one. As  
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it was shown in Chap. 3, Subsec. 2.2.9, in the case of unilateral constraints, the virtual 
work of the constraint forces given by the formula (4.1.38') is non-negative 

0RWB � � B �R r . (4.1.41) 

To solve the problem of equilibrium of a particle subjected to unilateral ideal 
constraints, the positions of equilibrium are firstly determined, supposing that the 
constraints are bilateral (equality in relations (4.1.40), (4.1.40')); then, the direction of 
the resultant F  is analysed for each of these positions. If this direction ensures the 
constraint, then the position of equilibrium is possible; otherwise, the positions of 
equilibrium thus obtained do not correspond to the imposed constraints. 

In the case of a particle which verifies a condition of the form 

� �1 2 3, , 0f x x x � , (4.1.42) 

the constraint force is given by 

grad f��R ,   0� � , (4.1.42') 

and is directed along the normal to the surface � �1 2 3, , 0f x x x � , in the direction in 
which the function f  is increasing, as well as its gradient (to respect the imposed 
unilateral constraint). As it is shown by the condition (4.1.4), for equilibrium one must 
have 0� �F R , so that 

grad 0f� �F  (4.1.42'') 

or, in components, 

, 0i iF f � . (4.1.42''') 

In general, in the case of unilateral constraints (4.1.40), (4.1.40'), the equation of 
equilibrium (4.1.39) leads, on the same way, to the conditions 

� �2 2 1 1 2 2 1grad grad 0f f� � �� � � � �4 4F , 
� �1 1 1 1 2 2 2grad grad 0f f� � �� � � � �4 4F , 

(4.1.43) 

� �1 1 2 2 2 2 1grad grad 0f f� � �� � � � �4 4F , 
� �1 1 2 2 1 1 2grad grad 0f f� � �� � � � �4 4F , 

(4.1.43') 

where 1 2 1 2, , , 0� � � � �  (in fact, only two of these conditions take place, because one 
can have only two unilateral constraints). 

Let be, for instance, the case of a particle of weight G , linked by a flexible and 
inextensible thread of length l  to a fixed point O  and constrained to stay on the 
vertical plane 1 2Ox x  (Fig.4.3,a); hence, the particle must be on a circle in this plane or 
in its interior, satisfying the condition 
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� � 2 2 2
1 2 1 2, 0f x x l x x� � � � . (4.1.44) 

Noting that 1 3 0F F� � , 2F G� � , assuming that the constraint is bilateral and 
associating the constraint relation 3 0x � , the condition (4.1.31''') reads 

1

2 1

0 2 0

2 0 2 0

0 0 1

x

G x Gx

�

� � � � � , 

 

so that the positions of equilibrium are the points 1 (0, , 0)P l  and 2 (0, , 0)P l�  (the same 
positions as in the previous subsection); the condition (4.1.42''') becomes 2 0Gx � , and 
is verified only at the point 2P , which is the only position of equilibrium corresponding 
to the unilateral constraint. 

1.1.7 Notions concerning the stability of equilibrium 

Let P  be a particle of position vector ( )t�r r . If 0t t�  is an initial moment, then 

we say that const� �
������

r c  is a position of equilibrium if � �0t �r c , 
� �0 ( )t t� � ��r 0 r c ; hence, if the particle P  is at the mentioned position with zero 

velocity, then it remains at any moment at this position. Taking into account the form 
(1.1.95) of the force F , Newton’s equation (1.1.89) leads – in this case  – to 

( , ; )t �F c 0 0  (4.1.45) 

for a free particle. If this force depends on time, then the equation (4.1.45) has not, in 
general, a constant solution (the same for any t ); if the force does not depend on time, 
then the equation (4.1.45) represents the necessary and sufficient condition of 
equilibrium and one can obtain the vector c . 

We say that the position of equilibrium is stable if 0, 0� ��� � � , 0, 0� � �K � � , 
so that � �0t �� �r c , � �0 ( )t t� ��� � � ��r r c , ( )t ����r , 0t t� � ; hence, 
perturbing the position of equilibrium in a sufficiently small neighbourhood with a 
sufficiently small velocity, this position remains at any moment in a previously given 
neighbourhood, and its velocity is not greater than a certain limit, previously given too. 
Otherwise, the position of equilibrium is instable, and can be labile or, at the limit, 
critical; in the latter case, the equilibrium can be indifferent (any position of the particle 
is a position of equilibrium). 

For instance, in the particular case considered in Subsec. 1.1.2, one finds easily that 
1P  represents a labile position of equilibrium, while 2P  is a stable one (Fig.4.3,a); if, 

passing to the limit ( l � � ), the circle becomes a horizontal straight line, then any 
position is a position of equilibrium (the equilibrium is indifferent). We notice that, in 
the considered case, the particle has a minimal, maximal, or stationary 2x  – co-ordinate,  
as we are in a stable, labile, or indifferent case, respectively; we are thus led to  
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Theorem 4.1.3 (E. Torricelli). The position of equilibrium of a particle subjected only 
to the action of a given uniform gravitational field is a stable, labile or indifferent 
position of equilibrium as this one has a minimal, maximal, or stationary applicate, 
respectively (with respect to a frame of reference for which one of the axes is parallel to 
the considered field, opposite to its direction). 

Let P  be a free particle subjected to the action of a conservative force of the form 
(1.1.82). The condition of equilibrium (4.1.2) becomes 

, 0iU � ,   1,2, 3i � , (4.1.46) 

corresponding thus to the necessary conditions to have an extremum of the potential 
function U . When passing to the curvilinear co-ordinates iq , 1,2, 3i � , by relations 
of the form (A.1.32), we may write ( � �� � � �1 2 3 1 2 3, , , ,U q q q U q q q�r ) 

,d grad d d d grad di i j
j

U U U x U q
q
(

� � � � � � � �
(

rF r r , d di
i j j

j j

x UU q q
q q
( (

�
( (

; 

hence, the conditions of equilibrium (4.1.46) are equivalent to the conditions 

0
j

U
q
(

�
(

,   1,2, 3j � , (4.1.46') 

in curvilinear co-ordinates. 
In the particular case considered above, the gravity force G  is conservative and 

derives from the potential 2U Gx� �  (the additive constant is taken equal to zero). 
With the aid of Torricelli’s theorem, we notice that the minimal applicate of the particle 
P  corresponds to a maximum of the potential U , while the maximal one corresponds 
to a minimum of it; if the applicate of the particle is stationary, then the potential U  
enjoys this property too. We may state 
Theorem 4.1.4 (Lagrange-Dirichlet). The position of equilibrium 0P  of a particle P  
subjected to scleronomic, holonomic constraints, acted upon by a field of conservative 
forces, the potential of which has an isolated maximum at the point 0P , is a position of 
stable equilibrium. 

This theorem may be proved with the aid of the theorem of energy. Intuitively, let us 
suppose that the potential U  of a free particle P  has an isolated maximum equal to 0U  
at the point 0P ; 0U U�  in the neighbourhood of 0P , so that the equipotential surface 

0U U �� � , 0� �  sufficiently small, is a closed surface surrounding the point 0P  
and reducing, by continuity, to this very point if 0� �  (Fig.4.7,a). The force 

gradU�F  is normal to the potential surface at each point of it and is directed in the 
growing direction of U , hence towards the interior of the surface; the considered force 
does not allow the particle P  to move away from the position 0P , so that this one is a 
position of stable equilibrium. 
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Otherwise, if  – at a point 0P  – U  reaches an isolated minimum 0U , then the 
equipotential surface 0U U �� � , 0� �  sufficiently small, surrounds this point, 
while the force F  is normal to the mentioned surface, in the direction of the growing 
U , hence towards the exterior (Fig.4.7,b); this force has the tendency to move away the 
particle P  form the point 0P , so that it represents a position of labile equilibrium. 

Figure 4.7.  Stable (a) and labile (b) positions of equilibrium.  
Conical point of a level surface (c). 

Let us suppose that the three equations (4.1.46) or (4.1.46') are verified at the point 
0P , but the potential U  has neither an isolated maximum, nor an isolated minimum. In 

the neighbourhood of this point there exist two regions 0P  and 0P , so that in 0P  the 
function U  takes values greater that 0U  (the value of U  at 0P ), while in 0P  it takes 
values smaller than 0U ; these regions are separated by a level surface �  for which 

0U U�  and which, obviously, passes through 0P , where it has a conical point 
(Fig.4.7,c). The force F  has the tendency to carry the particle P  at the point 0P , in 
the region 0P , while in the region 0P  the respective force has the tendency to move 
away the particle from this position; because an arbitrary perturbation of the position of 
equilibrium 0P  may lead the particle P  in the region 0P , it follows that this one is an 
instable position of equilibrium (labile or critic equilibrium). 

We notice that Torricelli’s theorem is a particular case of the Lagrange-Dirichlet 
theorem. 

Let be the case of a particle P  constrained to stay on a fixed smooth surface S  
(Fig.4.6,a), given by the equations (4.1.29). The given force F  must be normal to the 
surface at the respective point, hence to each of the co-ordinate curves constv �  and 

constu � ; the conditions of equilibrium are thus of the form ( 1Q  and 2Q  are called 
generalized forces) 

1 ( , ) ( , ) 0i
i

x
Q u v F u v

u u
((

� � � �
( (

rF , 

2 ( , ) ( , ) 0i
i

x
Q u v F u v

v v
((

� � � �
( (

rF , 
(4.1.47) 

obtaining thus the values of the parameters u  and v  corresponding to the searched 
positions. An interesting case is that in which 1 2d dQ u Q v�  is a total differential of a 
function ( , )U u v ; this function is thus given by 
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( , ) ( , )d ( , )i iU u v F u v x u v� � . (4.1.47') 

The positions of equilibrium correspond to the points for which the function U  of two 
independent variables has an extremum, hence for which 

0U
u

(
�

(
,   0U
v

(
�

(
. (4.1.47'') 

In particular, if the force F  derives from a potential ( ,i iF U� , 1,2, 3i � ), then the 
latter one can be obtained in the form 

1 2 3 1 2 3( , , ) ( , , )di iU x x x F x x x x� � ; (4.1.47''') 

the transformation relations (4.1.29) lead to ( ( , )) ( , )U u v U u v�r , the conditions of 
equilibrium being of the form (4.1.47''). In general, the equipotential surface U  passing 
through a position of equilibrium 0P  is tangent at the very same point to the given 
surface S , because the given force F  must be normal both to this surface and to the 
equipotential surface. To justify – in this case – the Lagrange-Dirichlet theorem, we 
may study the form of the curves 0U U �� 2 , 0� �  sufficiently small, on the surface  
S , 0U  corresponding to the position of equilibrium. 

Let us consider a particle P  constrained to stay on a fixed smooth curve C  
(Fig.4.6,b), given by the parametric equations (4.1.33). The condition of equilibrium 
(4.1.33''') (the given force is normal to the curve at the point corresponding to the 
position of equilibrium) is of the form (Q  is called generalized force) 

d
( ) ( ) ( ) 0

d i iQ q F q x q
q

�� � � �
rF , (4.1.48) 

obtaining thus the parameter q  which corresponds to the searched positions. Taking 
into account the function 

( ) ( )d ( ) ( )di iU q F q x q Q q q� �� � , (4.1.48') 

the positions of equilibrium correspond to the values of q  for which the derivative 
vanishes 

d ( )
0

d
U q
q

� , (4.1.48'') 

hence, for the points of extremum of this function. If the force F  is conservative, then 
the potential ( )U r  is given by (4.1.47'''), while the transformation relations (4.1.33) 
lead to ( ( )) ( )U q U q�r , the condition of equilibrium being of the form (4.1.48''). The 
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study of the tendency of displacement of the particle on the curve in the neighbourhood 
of the position of equilibrium may justify the Lagrange-Dirichlet theorem. 

1.1.8 Particle subjected to constraints with friction 
As we have seen, in general, the constraint force which acts upon a particle can be 

decomposed in the form (4.1.6); in the case of an ideal constraint, the component N  
which hinders the particle to leave the constraint is sufficient. If the constraint is with 
friction, then the component �T 0  hinders the particle to move along this constraint. 
In what follows, we use the Coulombian model introduced in Chap. 3, Subsec. 2.2.11 
for the constraint force, supposing that the constraints are scleronomic and holonomic. 
We notice that this force is tangent to the rough surface or curve on which the particle 
is constrained to stay; its direction is opposite to the sliding tendency, while its modulus 
verifies the relation (3.2.40), the particle remaining in equilibrium. 

In the case of constraints with friction, a supplementary unknown (the tangential 
component T ), for the determination of which we dispose of the inequality (3.2.40), is 
thus introduced; in general, the corresponding problems are indeterminate (there are 
regions on the surface or on the curve in which the equilibrium is possible). The limit 
positions at which a particle remains in equilibrium may be determined in the case of a 
rough curve, the inequality (3.2.40) becoming an equality; but in the case of a rough 
surface, the limit positions of equilibrium are curves on this surface (in fact, the force 
T  has two unknown components in this case). 

If the particle P  is subjected to constraints with friction, then the equation of 
equilibrium is written in the form 

� � �F N T 0 ; (4.1.49) 

we associate to it the equation of the rough surface S  (for a particle constrained to stay 
on this surface) and the inequality (3.2.40). We dispose thus of five scalar equations for 
the unknowns N , T  and 0

ix , 1,2, 3i � , which specify the constraint forces and the 
position of equilibrium 0P . Taking into account (3.2.40), the relation (4.1.49) leads to 

2 2 2 2 2 2( ) 2T F N f N� � � � � � �F N F N ; projecting on the external normal n  to 
the surface, one obtains 0nF N� � , as well as nF N� �F N . There results 

� �2 2 21N f F� � ; the region of equilibrium on the surface S  is thus specified by the 
data of the problem in the form 

� �2 2 21nF f F� � . (4.1.50) 

Noting that 2 2 2cosnF F �� , where �  is the angle made by the force F  (or the total 
constraint force R ) with the normal to the surface at the position of equilibrium 0P , 
and introducing the angle of friction given by (3.2.41), we obtain the geometric 
condition � �� ; hence, the support of the force F  (or of the constraint force R ) 
must be in the interior or on the frontier of the cone of friction of vertex angle 2�  
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(Fig.3.32,a). If the constraint is unilateral, of the form (4.1.42), then the cone of friction 
has only one sheet. 

If the particle P  is constrained to stay on a rough curve C , then we must associate 
the equations of the curve to the equation of equilibrium (4.1.49) and to the inequality 
(3.2.40); we dispose thus of six scalar relations for the unknowns N  (equivalent to two 
unknowns, the components of N  in the normal plane to the curve), T  and 0

ix , 
1,2, 3i � , which give the constraint forces and the position of equilibrium 0P . Taking 

into account (3.2.40), from (4.1.49) we get 2 2 2 2( ) 2N F T� � � � � �F T F T  
2 2/T f� ; projecting on the tangent to the curve, we obtain 0tF T� � , as well as 

tFT� �F T . The region of equilibrium on the curve C  is thus specified by the data of 
the problem in the form 

� �2 2 2 21tF f f F� � . (4.1.51) 

Because 2 2 2costF F �� , where �  is the angle made by the force F  (or by the 
total constraint force R ) with the tangent to the curve at the position of equilibrium 

0P , we find the condition 2 2 2cos sin cos ( /2 )� � � �� � � , hence the geometric 
condition /2� � �� � , where �  is the angle of friction given by (3.2.41); hence, the 
support of the given force F  (or of the constraint force R ) must be in the exterior or 
on the frontier of the cone of friction of vertex angle 2� ��  (Fig.3.32,b). In the case 
of unilateral constraints, only one sheet of the mentioned zone corresponds to the 
positions of equilibrium. 

A synthesis of the above results is given by 
Theorem 4.1.5. A particle constrained to stay on a fixed rough surface or curve 
(constraints with friction) is in equilibrium if and only if the resultant of the given 
forces which act upon it is contained in the interior of the cone of friction of vertex 
angle 2�  or in the exterior of the cone of friction of vertex angle 2� �� , respectively, 
or on the frontier of the cone (the case of limit equilibrium). In the plane case, the cone 
of friction becomes an angle of friction. 

Let be a particle P  of weight G  subjected to stay on a circle of radius l , 
2 2 2
1 2x x l� � , in a vertical plane 3 0x �  (Fig.4.3,b). Noting that 1 1 2 2l x x� �n i i  and 

2G� �G i , we get 2 /nF Gx l� � � �G n ; we may use the formula (4.1.50), which 
leads to � � � �2 2 2 2 2

2 / 1G x l f G� � . Hence, the positions of equilibrium are on the 

arcs of circle 1 1P P� ��  and 2 2P P� �� , specified by the relations 

2 21
l

l x
f

� � � �
�

,   221
l

x l
f

� �
�

, (4.1.52) 

respectively; because tanf �� , we may write 

2 cosl x l �� � � ,   2cosl x l� � �  (4.1.52') 
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too. The two arcs on which takes place the equilibrium are contained in an angle of 
vertex O  and which is equal to 2� . 

1.2 Statics of discrete systems of particles 
Let us consider, in what follows, free or constraint discrete mechanical systems, 

hence the case of a finite number of particles; We introduce the principle of virtual 
work in the case of ideal constraints. The general results thus obtained may be used in 
the case of continuous mechanical systems too. 

1.2.1 Free discrete mechanical systems 

Let S  be a free discrete mechanical system, hence a finite system of n  free particles 
, -, 1,2,...,iP i n� �S . We suppose that a particle iP  of position vector ir  is acted 

upon by a given external force iF  (the resultant of all given external forces acting upon 
this particle) and by the given internal forces ijF , j i� , , 1,2,...,i j n� ; we notice 
that the internal forces verify the axiomatic relation (1.1.81). The forces acting upon 
this mechanical system are modelled by bound vectors, hence we say that the system of 
particles is at rest with respect to a given frame of reference (the system of given forces 
is in equilibrium or the free discrete mechanical system is in equilibrium) if the system 
of bound vectors is equivalent to zero (using the principles of mechanics, as in the case 
of a single particle), hence if 

1

n

i ij
j �

� �F F 0 ,   j i� ,   1,2,...,i n� . (4.1.53) 

A finite system of free particles is in equilibrium if any of its particles is in equilibrium; 
hence, any subsystem of the considered system will have this property (any particle 
which forms this subsystem is in equilibrium). We may thus state 
Theorem 4.1.6 (theorem of equilibrium of parts). If a free discrete mechanical system 
S  is in equilibrium under the action of given external and internal forces, then any of 
its parts (any subsystem S . S ) will be in equilibrium too under the action of the 
given forces corresponding to the respective part. 

Computing the torsor of the given forces and noting that the torsor of the internal 
forces is equal to zero (as it was shown in Chap. 2, Subsec. 2.2.8, , -ijO= �F 0 ), it 
follows that 

, -iO= �F 0 ; (4.1.54) 

hence, a necessary condition of equilibrium is obtained by equating to zero the torsor of 
the given external forces with respect to an arbitrary pole. In Chap. 2, Subsec. 2.2.2 it 
was shown that, in the case of a non-deformable mechanical system, the forces are 
modelled with the aid of sliding vectors; taking into account the conditions in which a 
system of forces modelled by sliding vectors is equivalent to zero, it follows that, in the 
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case of a non-deformable discrete mechanical system, the condition (4.1.54) is a 
sufficient condition of equilibrium too. This condition may be written in the form 

1

n

i
i�

�F 0 ,   
1

n

i i
i�

3 � r F 0 . (4.1.54') 

The condition (4.1.54) has a great advantage, i.e. it does not contain the internal forces. 
We may state 
Theorem 4.1.7 (theorem of rigidity). Supposing that a free discrete mechanical system 
S  becomes rigid, the conditions of equilibrium of this new mechanical system 
represent necessary conditions of equilibrium for the initially given mechanical system. 

The first basic problem is that in which the forces acting upon the free discrete 
mechanical system S  are given, and one must determine its position of equilibrium. In 
the second basic problem, the positions of equilibrium of the particles which form the 
free discrete mechanical system S  are given, and one asks to determine the forces 
which act upon this system. In general, one may enunciate a mixed basic problem with 
respect to the above mentioned questions. The conditions of equilibrium (4.1.53) are 
equivalent to 3n  scalar relations; in the case in which the considered mechanical 
system is plane (from the point of view of the positions of the particles, the forces 
which are acting being coplanar too), the number of these relations is reduced to 2n , 
while if the mechanical system is linear (all the particles as well as the forces are on the 
same support), we may write only n  scalar relations. 

1.2.2 Constraint discrete mechanical systems 

Let us consider a discrete mechanical system S, hence a finite system of n  particles 
, -, 1,2,...,iP i n� �S  subjected to m  scleronomic and holonomic or non-

holonomic constraints. As in the previous case, we admit that a particle iP  of position 
vector ir  is acted upon by the external force iF  and by the internal forces ijF , i j� , 
, 1,2,...,i j n� ; using the axiom of liberation from constraints, we introduce the 

external constraint force iR  (the resultant of all the external constraint forces which act 
upon this particle) and the internal constraint forces ijR , i j� , , 1,2,...,i j n� , which 
verify the axiomatic relation (1.1.81) too. All the forces which act upon the mechanical 
system are modelled by bound vectors; we may say (as in the case studied in the 
previous subsection) that the system of particles is at rest with respect to a given frame 
of reference (in equilibrium) if 

� �
1

n

i i ij ij
j �

� � � �F R F R 0 ,   j i� ,   1,2,...,i n� . (4.1.55) 

Because each particle must be in equilibrium, we may state 
Theorem 4.1.6' (theorem of equilibrium of parts). If a constraint discrete mechanical 
system S  is in equilibrium under the action of given and constraint forces, then any of 
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its parts (any subsystem S . S ) will be in equilibrium too, under the action of the 
given and constraint forces corresponding to the respective part. 

Noting that the torsor of the internal given and constraint forces vanishes we obtain a 
necessary condition of equilibrium in the form 

, - , -i iO O= � = �F R 0  (4.1.56) 

or in the form 

� �
1

n

i i
i�

� � F R 0 ,   � �
1

n

i i i
i�

3 � � r F R 0 . (4.1.56') 

In these conditions, which are also sufficient for a non-deformable discrete mechanical 
system, the internal forces do not intervene; this is an important advantage for 
computation. Hence, we state 
Theorem 4.1.7' (theorem of rigidity). Supposing that a constraint discrete mechanical 
system S  becomes rigid, the conditions of equilibrium of the new mechanical system 
represent necessary conditions of equilibrium for the initially given mechanical system. 

The basic problem which arises is, in general, a mixed problem, in which the 
constraint forces acting upon the given discrete mechanical system must also be 
determinate. If the constraints are expressed by m  distinct scalar relations, then the 
number of independent parameters which specify the position of equilibrium is equal to 
3n m� ; these parameters may be obtained in an explicit form in the case of 
holonomic constraints, which are thus eliminated from the computation. The system of 
3n  scalar relations (4.1.55) allows to determine the position of equilibrium of the 
mechanical system as well as the constraint forces; but this system of equations is not 
always compatible and determinate. 

A discrete mechanical system of n  particles for which the equations (4.1.55) lead to 
a finite and determinate solution (we have 3 0n m� � ) is called a statically 
determinate (isostatic) system; in the case of equality, the mechanical system is at rest, 
whatever given forces are acting upon it. If the system of equations is indeterminate 
(the number of the unknowns of the problem is greater that the number of equations, 
3 0n m� � ), then the mechanical system is statically indeterminate (hyperstatic). 

1.2.3 Principle of virtual work 

Let S  be a discrete mechanical system subjected to ideal constraints (for which the 
virtual work of the constraint forces (3.2.36) vanishes). Starting from the necessary and 
sufficient conditions of equilibrium (4.1.55), written in the form ( iF  and iR  are the 
resultants of all given and constraint forces, respectively, immaterial if they are external 
or internal) 

i i� �F R 0 ,   1,2,...,i n� , (4.1.57) 
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performing a scalar product by the virtual displacements iBr , summing for all the 
particles of the system S  and taking into account the relation of definition of the ideal 
constraints (3.2.36), we obtain the relation 

1
0

n

i i
i

W
�

B � � B �F r , (4.1.58) 

which represents a necessary condition of equilibrium. 
Supposing that the condition (4.1.58) is fulfilled and that p  constraints of the form 

(3.2.21'') and m  constraints of the form (3.2.15) take place, one can use the method of 
Lagrange’s multipliers; we may thus write 

1 1 1
0

pn m

i i il l k ki
i l k

f� �
� � �

� �� / � � B �	 

� �

  F r4 , 
 

where l� , 1,2,...,l p� , k� , 1,2,...,k m� , are scalars to be determined (the 
Lagrange’s multipliers) and where we notice that in a finite double sum one can invert 
the order of summation. By a reasoning analogous to that given in Chap. 3, Subsec. 
2.2.9, we obtain 

1 1

p m

i il l k ki
l k

f� �
� �

� / � � F 04 ,   1,2,...,i n� . (4.1.59) 

We find again the relations (3.2.37), which give the constraint forces; hence, the 
relations (4.1.59) are equivalent to the relations (4.1.57). We may state (the relation 
(4.1.58) is now a sufficient condition too) 
Theorem 4.1.8 (theorem of virtual work). The necessary and sufficient condition of 
equilibrium of a discrete mechanical system subjected to ideal constraints and acted 
upon by a system of given forces is obtained by equating to zero the virtual work of 
these forces for any system of virtual displacements. 

Taking into account the equivalence between the relation (4.1.58), which represents 
the theorem of virtual work, and the relations (4.1.57), which represent the form taken 
by Newton’s principle (3.2.35') in the static case (equating to zero the accelerations 
ia ), it follows that the theorem of virtual work may be considered as being a principle 

(the principle of virtual work or the principle of virtual displacements), because, 
starting from it, one can solve the basic problems of statics. 

In contradistinction to the necessary condition (4.1.56) or to the necessary conditions 
(4.1.56'), where the internal forces do not appear, but the constraint forces do intervene, 
in the necessary and sufficient condition (4.1.58) are involved all the given forces 
(external and internal), but the constraint forces are absent; it is an advantage for the 
computation, because one can specify the position of equilibrium even if the constraint 
forces are not determined. 

The equations (4.1.59) are called Lagrange’s equations of equilibrium of the first 
kind. 
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Introducing the virtual displacements (3.2.1'), we may write the condition (4.1.58) in 
the form 

1
0

n

i i
i

D

�
� �F v , (4.1.58') 

so that the above considered principle may be called the principle of virtual velocities 
too. 

 
Figure 4.8.  Equilibrium of two heavy bodies on inclined plains. 

Let be, for instance, two solids of weights 1Q  and 2Q , respectively, staying on two 
planes inclined by the angles 1�  and 2� , respectively, with respect to a horizontal line, 
and linked by an inextensible thread, which passes over a small pulley (Fig.4.8). 
Between the two bodies (which may be modelled as two particles) and the inclined 
planes arise the external constraint forces 1N  and 2N , respectively, while in the thread 
appear the tensions 1T  and 2T , respectively (internal constraint forces for the 
considered mechanical system); we admit that do not appear frictions (the considered 
constraints are ideal). The principle of virtual work is written in the form 

1 1 2 2 1 1 1 2 2 2sin sin 0Q Q� �� B � � B � � B � B �Q r Q r r r ;  

noting that 1 2B � Br r , there results the necessary and sufficient condition of 
equilibrium 

1 1 2 2sin sinQ Q� �� , (4.1.60) 

which is independent of the constraint forces. 
A particle P  constrained to stay on a fixed smooth surface S  is specified by the 

position vector ( , )u v�r r , where u  and v  are co-ordinates on the surface; the 
principle of virtual work 

1 2( , ) ( , ) 0u v Q u v u Q u v v
u v
( (

� B � � B � � B � B � B �
( (

r rF r F F   

yields conditions of equilibrium of the form (4.1.47) for the generalized forces 1Q  and 

2Q . If the particle P  is constrained to stay on a fixed smooth curve C , being specified  
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by the position vector ( )q�r r , where q  is a parameter, then we may write the 
principle of virtual work in the form 

( ) 0q Q q q
q
(

� B � � B � B �
(

rF r F ;  

we find thus again the condition of equilibrium (4.1.48) for the generalized force. 
In the case of unilateral ideal constraints of the form (3.2.16iv) or of the form 

(3.2.16), the virtual work of the constraint forces verifies the inequality (3.2.36'). The 
principle of virtual work will be expressed in the form 

1
0

n

i
i

W
�

B � � B �F r  (4.1.61) 

for any system of virtual displacements, representing the necessary and sufficient 
condition of equilibrium of a discrete mechanical system subjected to unilateral ideal 
constraints; in this case too, one may make considerations analogous to those made 
above. 

2.  Statics of solids 
Among the continuous mechanical systems, we consider – in what follows – only the 

solids, that is rigid solids and deformable ones. Concerning the latter ones, we deal only 
with perfect flexible, torsionable and inextensible threads, as well as with bars and 
systems of bars; the general study of deformable solids needs more complex 
mathematical models. 

2.1 Statics of rigid solids 
We start with the general problem of equilibrium of free and constraint rigid solids; 

the results thus obtained are then applied to various particular cases (the rigid solid with 
a fixed point or axis, the rigid solid subjected to constraints with friction etc.). The 
systems of rigid solids are taken into consideration too. 
 
 

2.1.1 Statics of the free rigid solid 
Let be a free rigid solid, hence a non-deformable continuous mechanical system 

subjected to a system of given forces , -, 1,2,...,i i n�F ; these forces are external 
ones. The internal forces are due to the constraints (the cohesion forces between the 
particles which constitute the rigid solid) and do not intervene in computation; 
moreover, the work effected by these forces vanishes. 

A free rigid system may have any position in space that depends only on the system 
of forces acting upon it. As we have seen in Chap. 2, Subsec. 2.2.2, the forces are 
modelled by means of sliding vectors in the case of a non-deformable mechanical 
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system. The necessary and sufficient condition of equilibrium of a free rigid solid acted 
upon by the given forces , -iF  is written in the form 

, -iO= �F 0 ,   
1

n

i
i�

� �R F 0 ,   
1

n

i iO
i �

� 3 �M r F 0 ; (4.2.1) 

one can thus state 
Theorem 4.2.1. A free rigid solid subjected to the action of a system of given forces is 
at rest (in equilibrium) with respect to a fixed frame of reference if and only if the 
torsor of these forces with respect to an arbitrary pole vanishes. 

Projecting the condition (4.2.1) on the co-ordinate axes, we get six conditions of 
equilibrium 

1
0

n

j ij
i

R F
�

� � ,   ( )

1
0

n
i

Oj jkl ilk
i

M x F
�

� � � ,   1,2, 3j � . (4.2.1') 

We notice that these scalar conditions may be replaced by other equivalent scalar 
conditions. Thus, a free rigid solid is in equilibrium if and only if the sum of the 
moments of all the given forces with respect to each of the edges of a non-degenerate 
tetrahedron (the six straight lines do not belong to the same complex of first degree) 
vanishes. Obviously, these conditions are necessary. Let us suppose that they hold for a 
tetrahedron 1 2 3OA A A . Because the sum of the moments with respect to the edges 1OA , 

2OA , 3OA  is zero, it follows that the moment with respect to the pole O  is zero too; in 
this case, the given forces are in equilibrium or have a unique resultant, which passes 
through O . This reasoning may be repeated for all the vertices of the tetrahedron, so 
that the given forces must be in equilibrium, because there cannot exist a unique 
resultant passing through all four vertices; hence, the above mentioned conditions are 
sufficient too. But these equations are not independent, hence they are not conditions of 
equilibrium for the free rigid solid if: three of the straight lines are concurrent or 
parallel and coplanar at the same time (in particular, two of the straight lines are 
parallel, while a third one is the straight line at infinity of the plane defined by the first 
two ones or three of these straight lines are concurrent straight lines at infinity), four of 
the straight lines are generatrices of the same family of a ruled quadric (in particular, 
they can be concurrent or parallel), five of the straight lines intersect two other straight 
lines or intersect a same straight line and are parallel to the same plane (they belong to a 
linear congruence) or the six straight lines intersect the same straight line or are parallel 
to the same plane (they belong to a linear complex). 

In particular, in the case of a system of coplanar forces acting upon the free rigid 
solid, three of the equations (4.2.1') are identically verified; there remain two equations 
for the resultant R  (projections on two non-parallel axes in the plane of the forces) and 
an equation of moment with respect to an axis normal to the considered plane. 
Corresponding to the results in Chap. 2, Subsec. 2.2.6, we may replace these equations 
by three equations of moment with respect to three non-coplanar axes, normal to the 
plane of forces; as well, we may use two equations of moment with respect to two axes 
normal to the plane of forces and an equation of projection of their resultant on an axis 
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contained in this plane and which is not normal to the plane of the other two axes. If the 
above mentioned conditions are not fulfilled, then one of the scalar equations is a linear 
consequence of the other two ones. 

Corresponding to the results in Chap. 2, Subsec. 2.2.7, in the case of a system of 
parallel forces, one can use for the resultant an equation of projection on the common 
direction of the forces and one may write two equations of moment with respect to two 
non-parallel axes, normal to this direction; we can use also three equations of moment 
about three non-concurrent and non-parallel axes, contained in a plane normal to the 
direction of the forces. 

If 1,2,...,6n � , then one can put into evidence some necessary conditions of 
equilibrium of the free rigid solid, which must be verified a priori and which depend on 
the geometric configuration of the given system of forces. So, a system formed of only 
one non-zero force cannot be in equilibrium. A system of two forces can be in 
equilibrium only if the forces have the same support; as well, a system of three forces is 
in equilibrium only if their supports are concurrent or parallel and coplanar. For 4n �  
it is necessary that the supports belong to the same linear series of straight lines (e.g., 
generatrices of the same family of a ruled quadric – in particular, concurrent or parallel) 
to be in equilibrium. A necessary condition of equilibrium for 5n �  is the belonging 
of the supports of the forces to the same congruence of the first degree (for instance, 
they intersect two straight lines or they intersect a straight line and are parallel to a 
plane). A system of six forces is in equilibrium (necessary condition) if their supports 
belong to the same complex of first degree (e.g., an intersection with the same straight 
line or the parallelism to a same plane). 

In the first basic problem, the forces which act upon the free rigid solid are 
given, and one asks the position of equilibrium. As we have seen in Chap. 3, 
Subsec. 2.2.3, a free rigid solid has six degrees of freedom; in this case, the 
unknowns are the six parameters (eventually, the co-ordinates of a point of the rigid 
solid and the three Euler’s angles), which specify the position of the rigid solid. If 
the system of six equations of equilibrium is indeterminate, then there exists an 
infinity of possible positions of equilibrium, while if this system of equations is 
impossible, then such a position does not exist. These observations may be put in 
connection with the considerations previously made, concerning the cases in which 
one cannot have equilibrium or in which some necessary conditions of equilibrium 
have been emphasized. 

The second basic problem is that in which the position of equilibrium of the free 
rigid solid is given, and the forces which must act upon it to maintain this position are 
searched; obviously, one supposes that this system of forces depends on a certain 
number parameters, which are the unknowns of the problem (the magnitudes and the 
directions of the forces). The solution of the problem is, in general, indeterminate; if 
certain conditions, which limit the number of the unknowns to six, are imposed, then it 
is possible that the solution of the problem be determinate. 

We mention the mixed basic problem too, in which the position of equilibrium of the 
rigid solid is partially known, as well as the system of forces; in this case, the position 
of equilibrium and the system of forces are searched. 
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2.1.2 Statics of the rigid solid with ideal constraints 
The six degrees of freedom of a free rigid solid may be partially or totally annulled 

by the introduction of some constraints, which we suppose to be ideal. Applying the 
axiom of liberation from constraints, there appear constraint forces (reactions); 
supplementary unknowns are thus introduced, but less scalar parameters are necessary 
to determine the position of equilibrium. Let us suppose that the rigid solid with ideal 
constraints is acted upon by a system of given forces , -, 1,2,...,i i n�F  and a system 
of constraint forces , -, 1,2,...,j j m�R ; in this case, the necessary and sufficient 
condition of equilibrium reads 

, - , -i iO O= � = �F R 0 ,   � �R R 0 ,   OO � �M M 0 , (4.2.2) 

where we have introduced the torsor of given forces in the form 

1

n

ik k
i

R
�

� � R i F ,   
1
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i iO Ok k
i

M
�

� � 3M i r F , (4.2.2') 

while the torsor of constraint forces is given by 

1

m

jk k
j

R
�

� � R i R ,   
1

m
O Ok j jk

j
M

�
� � 3M i r R . (4.2.2'') 

We may thus state 
Theorem 4.2.1'. A rigid solid subjected to ideal constraints is at rest (in equilibrium) 
with respect to a fixed frame of reference if and only if the sum of the torsors of given 
and constraint forces with respect to the same arbitrary pole vanishes. 

Projecting on the co-ordinate axes, we get six conditions of equilibrium 

1 1
0

n m

ik jk
i j
F R

� �
� �  ,  ( ) ( )

1 1
0

n m
i j
p piq jqkpq kpq

i j
x F x R

� �
� � � �  ,  1,2, 3k � . (4.2.2''') 

The basic problem is, in general, a mixed problem in which both the unknown 
position of equilibrium and the constraint forces are searched. Let p  and q  be the 
number of unknown scalars necessary to determine the constraint forces and the 
position of equilibrium, respectively. If in such a problem we have 6p q� � , then 
this one is, in general, determinate (however, it is possible that in some particular cases 
(critical cases) be indeterminate), and we say that the rigid solid is statically 
determinate (isostatic). If 6p q� � , then the problem is indeterminate, the rigid solid 
being statically indeterminate (hyperstatic). We are limited by the mathematical model 
chosen for the solid, so that the unknowns of the problem cannot be determined; if we 
consider a deformable solid, closer to physical reality, completing thus the mathematical 
model, then there arise supplementary relations which allow the complete solving of the 
problem. If 6p q� � , then the problem is, in general, impossible from the point of 
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view of the rest with respect to a fixed frame of reference, and we have to do with a 
mechanism (in some particular cases, for certain systems of forces, the equilibrium 
could be possible). In what follows, we deal only with statically determined rigid solids. 

Figure 4.9.  Polygon of sustentation. 

Among the ideal constraints frequently encountered, we mention: the simple support, 
the hinge (equivalent to three or two simple supports) and the built-in support 
(equivalent to six simple supports), introduced in Chap. 3, Subsec. 2.2.10; taking into 
account the above mentioned equivalences, we may consider the case of the rigid solid 
on several simple supports too (in particular, the case of six simple supports), case 
considered in the same subsection. Let thus be a rigid solid leaning on the plane 

3 0x �  at the points � � � �� �1 2, , 0i i
iP x x , 1,2,...,i n�  (Fig.4.9). The equations of 

equilibrium are of the form 

1 2 0R R� � ,   3
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i
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i

M N x
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2 1
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i

M N x
�

� � ,   3 0OM � , 

 

where iN , 1,2,...,i n� , are the unknown constraint forces. Hence, the external given 
forces must verify the conditions 1 2 3 0OR R M� � � , so that the rigid solid be in 
equilibrium; these forces must reduce to a resultant 3R , normal to the plane 3 0x � , 
because the scalar of the torsor vanishes ( 0i OiR M � ). The other three equations 
determine the constraint forces, and the problem is indeterminate if the number of the 
points of support is greater than three. If 3n � , then the given force 3R  must be 
decomposed in three components of supports parallel to this force. We can mention, 
e.g., the tripod of a painter or of a shoemaker; in case of a four-legged stool ( 4n � ), 
the problem is statically indeterminate (excepting the case in which the force 3R  acts at 
the middle of the square 1 2 3 4P P P P ). The solution of the problem is determined if, for 

3n � , the points 1P , 2P  and 3P  are not collinear; otherwise, the solution is 
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indeterminate if the force 3R  pierces the straight line on which are the three points or 
impossible if it does not pierce it. Hence, the rigid body simple supported on more than 
two points, the reactions of which have supports parallel and coplanar, constitutes a 
hyperstatic mechanical system. If the supports mentioned above are unilateral 
constraints (as it happens in most cases), then 0iN � , 1,2,...,i n� ; these reactions 
are modelled by a system of parallel sliding vectors, their resultant 3R  being along the 
central axis, which pierces the plane 3 0x �  at the point C  of co-ordinates 

� �
1

1
1

1

n
i

i
i
n

i
i

N x

N
� �

�

�



,   

� �
2

1
2

1

n
i

i
i
n

i
i

N x

N
� �

�

�



. 

 

There results that � � � �
min max
i i

kk kx x�� � , 1,2k � ; hence, the point C  is in the interior of 
a convex polygon, which contains in its interior or on its contour the points iP , 

1,2,...,i n� . The polygon of minimal area which fulfils these conditions is called 
polygon of sustentation. Hence, to have equilibrium, the resultant of the external given 
forces must pierce the plane of support (case of unilateral constraints) in the interior of 
the polygon of sustentation. 

Another important constraint, put in evidence in Chap. 3, Subsec. 2.2.10, is the 
constraint by threads. This constraint is unilateral, introducing only one unknown (the 
tension in the thread) if the direction of the thread is fixed. If the direction of the thread 
may be anyone, then the constraint force has three unknown components; in this case, it 
is possible that the thread does not introduce geometric restrictions (no constraints) for 
the rigid solid (Fig.4.2,a) or may constrain the point of fixing of the same rigid solid to 
stay on a curve or on a surface (Fig.4.2,b). 

In the case of a system of coplanar given forces (e.g., contained in a plane 
3 constx � ) remain only three conditions of equilibrium 
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(4.2.3) 

Analogously, if the rigid solid is acted upon by a system of parallel given forces (e.g., 
with supports parallel to the axis 3Ox ), then the equations of equilibrium read 

3 3
1 1

0
n m

i j
i j
F R

� �
� �  ,   � � � �

1 1
0

n m
ji

p piq jqkpq kpq
i j

x F x R
� �
� � � �  ,   1,2k � . (4.2.4) 

As in the case of a free rigid solid, the conditions of equilibrium may be expressed also 
in other forms, equivalent to those above. 
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Figure 4.10.  Equilibrium of a homogeneous heavy straight bar, which  
leans on a vertical wall and at a fixed point. 

Let be, for instance, a homogeneous straight bar of length 2l , which leans at A  on a 
vertical wall and at a fixed point B , at a distance from the wall, which is acted upon 
only by its own weight G  (Fig.4.10). We introduce the constraint forces N  and H , so 
that the bar be in equilibrium under the action of the given and constraint forces; for 
equilibrium, the supports of the three forces must be concurrent. We write two 
equations of moments with respect to the points A  and B  and an equation of 
projection of the forces on the vertical (we eliminate thus a constraint force from each 
equation), in the form 

sin 0
sin
aN Gl �
�

� � ,   cot ( sin ) 0Ha G l a� �� � � ,   sin 0N G� � � ,  

Figure 4.11.  Equilibrium of a homogeneous heavy straight bar, leaned on  
a body bounded by a semispherical surface. 

where �  is the angle made by the bar with the horizontal (the generalized co-ordinate, 
which determines the position of equilibrium); we get 

3 lN G
a

� ,   � �233 1
l a

H G
a l
$ %

� �* +
& '

,   3sin a
l

� � , (4.2.5) 
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obtaining thus the constraint forces (because , 0N H � , it results that the directions of 
these forces have been correctly chosen) and the position of equilibrium. We notice that 
the condition a l�  must hold; in the limit case, the equilibrium is labile, and N G� , 

0H � . 
We suggest to the reader the solving of the problem (Fig.4.11) (the equilibrium of a 

homogeneous heavy straight bar leaned on a body bound by a semispherical surface). 
In the general case of a rigid solid subjected to constraints without friction takes 

place a relation of the form (3.2.39); interesting particular cases have been considered 
in Chap. 3, Subsec. 2.2.10. 

2.1.3 Statics of a rigid solid with a fixed point or axis 
Let be a rigid solid with a fixed point (which may be a spherical hinge), subjected to 

the action of given forces of torsor , - , -,iO O= �F R M ; without losing anything from 
the generality, we may assume that the pole O  is at the fixed point (Fig.4.12). One has 
only one constraint force R  at this point, so that the equations (4.2.2) lead to the 
conditions 

Figure 4.12.  Equilibrium of a rigid solid with a fixed point. 

O �M 0 , (4.2.6) 

which must be fulfilled by the given forces and which determines the position of 
equilibrium, and to the constraint force 

� �R R . (4.2.6') 

If the fixed point is just the centre of gravity (C O� ), while the rigid solid is subjected 
only to the action of its own weight G , then the condition (4.2.6) is identically 
fulfilled, and we have � �R G ; the rigid solid is thus in equilibrium in any position, 
the respective property being characteristic for the centre of gravity. 

Let us consider a rigid solid which, besides the fixed point O , admits another fixed 
point O � ; in this case, the axis OO �  is a fixed one, and we have to do with a rigid solid 
with a fixed axis (taken as axis 3Ox ) (Fig.4.13). The two fixed points at which, due to 
the system of given forces, appear the constraint forces R  and �R , may be spherical 
hinges. The equations (4.2.2) read 

�� � �R R R 0 ,   O �� 3 �M h R 0 , (4.2.7) 



www.manaraa.com

Statics 237 

where OO � �
�����

h , h  being the distance between the two fixed points; in a developed 
form, we may write 

1 1 1 0R R R�� � � ,   2 2 2 0R R R�� � � ,   3 3 3 0R R R �� � � , 

21 0OM hR�� � ,   12 0OM hR �� � ,   3 0OM � . 
(4.2.7') 

For the equilibrium of a rigid solid with a fixed axis it is necessary and sufficient that 
the resultant moment of the system of given forces with respect to this axis be equal to 
zero ( 3 0OM � ). As the corresponding equation of condition is compatible 
(determinate or indeterminate) or incompatible, the rigid solid admits positions of 
equilibrium (determinate or indeterminate – equilibrium in any position) or does not 
allow such a position. Such a condition is fulfilled if the supports of all the given forces 
intersect the fixed axis (e.g., the rigid solid with a fixed axis, the centre of gravity of 
which is on this axis (C OO �� ), if it is acted upon by its own weight). 

Figure 4.13.  Equilibrium of a rigid solid with a fixed axis. 

The components of the constraint forces are given by 

2
1 1

OMR R
h

� � ,   1
2 2

OMR R
h

� � � ,   2
1

OMR
h
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OMR
h

� � ; (4.2.7'') 

the other components ( 3R  and 3R� ) are linked by the third relation (4.2.7') and cannot 
be obtained independently, but only by renouncing to the hypothesis of rigidity (hence, 
using another mathematical model of the solid). Indeed, one can apply at O  a force F  
along the fixed axis and at O �  an analogous force �F , without any influence on the 
mechanical phenomenon (in the case of the rigid solid, the forces are modelled by 
sliding vectors); consequently, the components of the constraint forces along the 3Ox –
axis are modified. Hence, the considered mechanical system is hyperstatic. To can 
determine the constraint forces 3R  and 3R � , a supplementary relation is necessary, 
which may be obtained only by considerations concerning the deformation of the solid, 
hence admitting another mathematical model of it. On the other hand, if at one of the 
fixed points, for instance at O � , we replace the spherical hinge by a cylindrical one, 
along the fixed axis, then the problem becomes statically determinate (indeed, we have 
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3 0R � � , hence 3 3R R� � ). If we impose the condition that the constraint force at O �  
be equal to zero for any position of equilibrium, then we get 1 2 0O OM M� � ; hence, 
the system of given forces must be reduced to a resultant passing through the fixed 
point O  (in this case, the rigid solid with a fixed axis behaves as a rigid solid with a 
fixed point). 

2.1.4 Statics of the rigid solid with constraints with friction 
We have seen in Chap. 3, Subsec. 2.2.12 that, in reality, the solids are deformed in 

the vicinity of the theoretical point of contact, so that the constraint forces which arise 
have also tangential components, appearing moments (couples) too; thus, the 
constraints with friction are put into evidence. The general case (Fig.3.33) leads to the 
sliding friction (which hinders the displacement in the tangential plane), the pivoting 
friction (which hinders the rotation about the normal to the tangential plane) and the 
rolling friction (which hinders a rotation about an axis in the tangent plane). 

The conditions of equilibrium will be, in general, of the form (4.2.2)-(4.2.2''), but as 
in the case of one particle, the sign “=” is replaced by the sign “� ”, so that the 
equalities become inequalities in the formulae (4.2.2). Thus, a certain zone of 
equilibrium is emphasized, as well as a domain of variation of the given forces for these 
positions of equilibrium. Practically, one considers firstly the case of the limit 
equilibrium; then, one passes to the case indicated by the inequality which is modelling 
the mechanical phenomenon. The three types of friction mentioned above have many 
applications in technique; we consider some of these ones in what follows, especially 
those which have interesting theoretical implications. 

Concerning the sliding friction, we mention – especially – the possibility to use a 
quadrangle of friction to study the equilibrium of a rigid solid leaning at two points on 
other two solids and acted upon by forces coplanar with these points. In what concerns 
the pivoting friction, we have considered the fundamental case of a vertical shaft of 
circular or annular section (a rigid solid of cylindrical form) on a bearing. One may thus 
study the case of an axially symmetric axle tree, the supports of which have analogous 
properties; this last problem is much more difficult, its solution requiring some 
supplementary hypotheses (a certain mathematical modelling). 

A fundamental case of rolling friction is that of the drawn wheel (of radius R  and 
weight G ) of a vehicle by the horizontal force F  (Fig.4.14,a). The imposed 
conditions of equilibrium lead to N G� , T F� , rM FR� , fN� � T � fN , 

rsN M� �  sN� , where f  is the coefficient of sliding friction, while s  is the 
coefficient of rolling friction; hence, we have determined the normal constraint force 
N , the sliding constraint force T  and the rolling moment rM , and we have 
emphasized the possibility of sliding and rolling in both directions. The conditions of 
equilibrium will be thus of the form fG F fG� � �  and 

( / ) ( / )G s R F G s R� � � ; as a matter of fact, one must fulfil the condition for 
which the limits are the closest. The wheel begins to move by sliding or by rolling if 
the force F  does not verify the first of those conditions, and we have /f s R� , or 
the second one, and we have /f s R� , respectively. 



www.manaraa.com

Statics 239 

Analogously, we may consider the motive wheel (of radius R  and weight G ), acted 
upon, besides the traction force F , by the turning couple of moment M  (Fig.4.14,b). 
From the conditions of equilibrium, we get N G� , T F� , rM M FR� � , 
F fN� , rsN M sN� � � , where we have emphasized the two tendencies of rolling 
and only one of sliding, in an opposite direction with respect to the turning couple. We 
obtain thus F fG�  and sG M FR sR� � � �  or " #( / )F G s R R M� �  

" #( / )F G s R R� � . Therefrom, we get the minimal turning couple M  
" #( / )F G s R R� �  necessary to put the wheel in motion; the maximal traction force 

is F fG� . If F  is greater than this magnitude (hence, if the horizontal plane is too 
smooth – the coefficient too small), then the traction is not possible, no matter how 
much greater is the turning couple M . 

Figure 4.14.  The drawn (a) and the motive (b) wheel on a horizontal plane. 

The case of the drawn wheel of a vehicle on a plane inclined by the angle �  with 
respect to the horizontal (Fig.4.15,a) may be studied in the same manner. Thus, one can 
show that if /f s R�  or /f s R� , tanf �� , then the wheel begins to move by 
sliding or by rolling, respectively; but the force F  must not verify the condition of 
equilibrium 

sin( ) sin( )
cos cos

G F G
� � � �
� �
� �

� � , 
 

or 

� � � �sin cos sin coss sG F G
R R

� � � �� � � � ,  

respectively. If a turning couple of moment M  is introduced (Fig.4.15,b), then the 
conditions of equilibrium are 

sin( )
cos

F G
� �
�
�

�  
 

and 
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� � � �sin cos sin coss sF G R M F G R
R R

� � � �$ % $ %� � � � � �* + * +& ' & '
;  

the latter inequality specifies the minimal turning couple for which the towage is 
possible, while from the first inequality one obtains the maximal traction force. 

Figure 4.15.  The drawn (a) and the motive (b) wheel on an inclined plane. 

A hinge allows a rigid solid to effect a motion of rotation about an axis which passes 
through the centre of this constraint; experimentally, one states that, applying to the 
rigid solid a couple in a plane normal to the axis of rotation, the solid begins to rotate 
only if this couple attains a certain limit value, because of the forces of friction which 
arise. One emphasizes thus a couple of friction in the hinge, fM , which must verify the 
condition of equilibrium 

fM f rR�� , (4.2.8) 

where r  is the radius of the hinge journal (we assume a cylindrical hinge), R  is the 
total reaction in the hinge, while f �  is a dimensionless coefficient of friction in the 
hinge. The circle of radius f r� , the centre of which is at the centre of the hinge, is 
called circle of friction; for equilibrium, it is necessary that the reaction R  do pierce 
the circle of friction or, at the limit, be tangent to it. 

Cylindrical hinges intervene in technique especially in the form of bearings. Thus, 
the wheels of a machine are fixed on axle trees, which lean on bearings. The parts of 
the axle trees which are in contact with bearings are called journals and are special 
disposed. Because of the friction in bearings appears a moment fM , which is difficult 
to be determined; indeed, the respective mechanical phenomenon is particularly 
complex. Adopting the simplified hypotheses of a dry friction, one may find formulae 
of the form (4.2.8), which are upper limits of the moment fM ; here, r  is the radius of 
the journal, R  is the frictionless reaction in the axle tree, while f �  is a coefficient of 
friction which depends on the type of the axle tree. 

In the case of a sliding bearing we distinguish between a bearing without clearance 
(Fig.4.16,a) or with clearance (Fig.4.16,b). In the first case, if we write the equation of 
moment of the tangential friction forces with respect to a point of the journal axis, then 
we get 
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i
i

ff N
R

� �  , (4.2.9) 

where iN  is the normal reaction at the arbitrary point iP  of contact between the journal 
and the bearing, while f  is the corresponding coefficient of sliding friction. In the 
second case, from equilibrium conditions too, we get 

sf f
r

� � � , (4.2.9') 

where s  is the coefficient of rolling friction between the journal and the bearing. In the 
case of a ball contact bearing (Fig.4.16,c) one obtains a coefficient of friction f �  
smaller that those obtained above; analogously, one can show that 

Figure 4.16.  Sliding bearing without (a) or with (b) clearance. Ball contact bearing (c). 

1

12
i

i

s s Nsf
r r R
�� �� � �	 


� � , (4.2.9'') 

where iN  is the normal reaction at a point iP  of contact between the journal and the 
ball, r  and 1r  are the radii of the journal and of the ball, respectively, while s  and 1s  
represent the coefficients of rolling friction between the journal and the ball and 
between the ball and the bearing, respectively. 

Obviously, other cases of constraints with friction, imposed by the practice, may be 
put in evidence; but all these cases reduce to a sliding, pivoting, or rolling friction or to 
a combination of them. 

2.1.5 Statics of systems of rigid solids 

A mechanical system S constituted by a finite number of rigid solids represents a 
system of rigid solids (which are considered to be n ); we assume – in general – that the 
system is subjected to constraints. Thus, the system of rigid solids may be acted upon 
by given and constraint external forces (we apply the axiom of liberation from 
constraints), as well as by given and constraint internal forces (between the various 
component rigid solids). In general, the constraints between the rigid solids can be 
simple supports, hinges, built-in supports and constraints with friction. 
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If l , 0 6l n� � , is the number of degrees of freedom of the system, en  and in , 
0 6e in n n� � � , are the number of the unknowns introduced by the external and 
internal constraint forces, respectively, while e , 0 6e n� � , is the number of 
equations of equilibrium which may be written, then a necessary condition to determine 
the statical or the instantaneous (for a mechanism) equilibrium, respectively, is of the 
form 

e il n n e� � � . (4.2.10) 

To specify the number of degrees of freedom of a mechanism is, in general, a 
sufficiently difficult problem. This is a basic problem in the theory of mechanisms, but 
we do not deal with it in what follows; we will suppose that the system of rigid solids is 
statically determinate (the equations of static equilibrium are sufficient to determine the 
constraint forces and the position of equilibrium). If the number e  of equations is not 
sufficiently great, then the mechanical system is hyperstatic, and we cannot determine 
all the unknowns of the problem; as for the rest, the mathematical model of rigid bodies 
is – in this case – no more sufficient, and we must use a model of deformable body. 

We notice that the notion of system of rigid solids is a conventional one; indeed, a 
system is constituted of subsystems (parts of the system), and a subsystem S . S  
may be considered as an independent system, if only this one is of interest. Thus, the 
notions of “external force” and “internal force” are relative; indeed, an internal force of 
a system may be external one for a subsystem. If upon a system of rigid solids do not 
act external forces, then we say that the system is isolated. 

Figure 4.17.  Gerber bar. 

A system of rigid solids is at rest (in equilibrium) with respect to a fixed frame of 
reference if any constituent rigid solid of the system is in equilibrium under the action 
of all the given and constraint forces (all these forces are, for a particular rigid solid, 
external forces) which act upon it. For example, let be a bar with hinges (a Gerber bar) 
(Fig.4.17,a), which may be considered as being formed by two simply supported bars 
(Fig.4.17,b); the Gerber bar is in equilibrium only if each of the simply supported bars 
is in equilibrium. Obviously, this result is valid for any subsystem of an arbitrary 
system, so that we may state 
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Theorem 4.2.2 (theorem of equilibrium of parts). If a system S  of rigid solids is in 
equilibrium under the action of a system of given and constraint forces, then any of its 
parts (any subsystem S . S ) is in equilibrium too under the action of the given and 
constraint forces corresponding to the respective part. 

Noting that the torsor of the internal given and constraint forces vanishes, we obtain 
a necessary condition of equilibrium of the whole mechanical system in the form 

, - , -i iO O= � = �F R 0 , (4.2.11) 

where the torsor operator is applied to all the external forces which are acting upon this 
system. In this condition, which is also sufficient in the case of a non-deformable 
mechanical system, the internal forces do not intervene, and that is an important 
advantage for the computation. We may thus state 
Theorem 4.2.3 (theorem of rigidity). Assuming that a given system of rigid solids with 
constraints becomes rigid, the conditions of equilibrium of the new mechanical system 
represent necessary conditions of equilibrium for the given mechanical system. 

 
Figure 4.18. System of four bars: with four articulations (a), with one vertex  

built-in (b) or with all vertices built-in (c). 

It results that a deformable or non-deformable system of rigid solids, which is in rest 
under the action of a given system of forces, remains further at rest if it becomes rigid 
by introducing supplementary internal constraints. Thus, e.g., if a system of four 
articulated bars (Fig.4.18,a) is in equilibrium under the action of the forces 1 2 3, , ,F F F  
then it remains in equilibrium if the articulation of one vertex is replaced by a built-in 
support (Fig.4.18,b), or if all four vertices are built-in (Fig.4.18,c). 

The basic problem is – in general – a mixed problem, in which the position of 
equilibrium and the constraint forces which act upon the mechanical system are 
searched. If the constraints are specified by e in n m� �  independent parameters 
(corresponding to m  degrees of freedom which are cancelled), then the number of 
independent parameters which specify the position of equilibrium will be equal to 
6n m� ; in general, in the case of a statically determinate mechanical system, these 
parameters may be obtained explicitly. 

In the case of a system of rigid solids subjected to constraints with friction, other 
problems may arise too. Let thus be the case of a system constituted of n  rigid solids, 
which has only one degree of freedom and is subjected to the action of two active given 
forces: the motive force mF  and the resistent force rF  (one may have couples of 
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moments mM  and rM , respectively). There exist, in general, two tendencies of 
displacement, corresponding to the increasing or the decreasing of the parameter which 
is fixing the position of the mechanical system. We call direct motion that one which 
corresponds to the direction of displacement due to the motive force and inverse motion 
that one which corresponds to the direction of displacement of the resistent force. One 
determines the magnitudes of the motive force corresponding to the two tendencies of 
displacement from the position of equilibrium; these two limit magnitudes depend on 
the resistent force rF  (or on the couple rM ), on the geometry of the static position of 
equilibrium of the mechanism (distances or angles), on the fixed geometric elements 
(independent of the configuration of the mechanism) and on the coefficients of friction. 
The two limit magnitudes coincide if we do not take into account the phenomenon of 
friction. 

We say that a system of rigid solids is subjected to a phenomenon of self-fixing (or 
self-braking), the position of equilibrium being maintained if the motive mechanical 
element is no more acting ( mF  or mM ), but the resistent mechanical element ( rF  or 
rM ) still acts. We can say that the system is in equilibrium under the limit (or at the 

limit) of sliding, rolling or pivoting, in the opposite tendency of a direct motion; to have 
a motion in this case, mF  (or mM ) must change of direction. Analogously, a system of 
rigid solids is subjected to a phenomenon of self-locking if, to obtain a tendency of 
direct motion, in a certain configuration of the system, the motive mechanical element 
( mF  or mM ) must tend to infinity. The first of these phenomena may be useful in 
practice, but the second one must be avoid; thus, the study of those phenomena has a 
particular importance. 

Using the above exposure, we may emphasize three important methods of 
computation. Thus, in the method of isolating the solids, each rigid solid of the system 
is isolated by introducing the corresponding constraint forces and the conditions of 
equilibrium (the torsor of the system of given and constraint forces with respect to an 
arbitrary pole vanishes); there are obtained 6n  equations of equilibrium for the 6n  
unknowns of the problem (corresponding to the position of equilibrium and to the 
constraint forces). In the plane case, there remain only 3n  equations of equilibrium. 
Taking into account the principle of action and reaction, some of the unknowns may 
affect two solids in linkage. The solving of the system of 6n  equations may – 
sometimes – require a very arduous computation. 

In the method of equilibrium of parts, subsystems of the considered system are 
isolated, introducing the corresponding external and internal given and constraint 
forces, and necessary conditions of global equilibrium (the torsor of the external given 
and constraint forces with respect to an arbitrary pole vanishes) are written for each 
subsystem. Choosing conveniently the subsystems, one can obtain thus some constraint 
forces (selecting the forces which we wish to determine) from a system of equations 
with a smaller number of unknowns. In the method of rigidity (which is, in fact, a 
particular case of the previous method, corresponding to the case in which the part is 
the whole system), only six equations of equilibrium are written, which may be 
sufficient to obtain the external constraint forces of the given mechanical system; the 
application of this method as a first attempt to compute is thus justified. We notice that 
the equations which are obtained by the method of equilibrium of parts or, in particular, 
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by the method of rigidity are linear combinations of the equations obtained by the 
method of isolating the solids; the mechanical interpretations given above may be very 
useful in computation. We notice too that the equations obtained by the method of 
rigidity may be equations of verification after the method of isolating the solids has 
been applied. 

Figure 4.19.  System of rigid solids (a) having an arborescent graph (b). 

In practice, it is convenient to determine first the parameters defining the 
configuration of equilibrium of the system of rigid solids; this depends on the structure 
of the considered system. Conventionally, we may represent a solid of the system by a 
point, while the linkage between two solids is represented by a segment of straight line, 
which joins the corresponding points. A graph is thus obtained – a schema 
corresponding to the structure of the system; hence, the method of graphs may be used 
too. 

To the system of rigid solids in Fig.4.19,a there corresponds the graph in Fig.4.19,b, 
while to the system in Fig.4.20,a does correspond the graph in Fig.4.20,b; the fixed 
element has been denoted by 0 . A cycle of a graph is a succession of its lines, which 
forms a closed polygon. A graph which has not one cycle is called arborescent. Thus, 
the graphs are of two classes: arborescent graphs (as that in Fig.4.19,b) and graphs with 
cycles (as that in Fig.4.20,b, which has three cycles). In the first case, one may write the 
equations  which  have  as  unknowns  only   independent    parameters,  specifying   
the 

Figure 4.20.  System of rigid solids (a) having a graph with cycles (b). 

configuration of equilibrium (in the considered case, four parameters). In the second 
case, the problem can be reduced to the previous one if one transforms the given system 
in a system of rigid solids with arborescent graphs, by removing some internal 
connections, each of them interrupting a cycle; because there exist several possibilities, 
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it is – obviously – recommendable to remove the linkages which introduce the smallest 
number of scalar unknowns (for instance, between a simple support and a hinge, it is 
preferable to eliminate the simple support). 

2.1.6 Applications. Simple devices 
In what follows, we deal – shortly – with applications of statics of rigid solids to 

some well known mechanical devices, called – usually – simple devices; these ones are 
used in their simplest form or in the construction of various machines or equipments. 
They are rigid solids or systems of rigid solids and are subjected to two categories of 
forces: motive forces, which try to put the system in motion, and resistent forces, which 
are opposed to the motion. The systems of forces which act upon these devices must be 
in equilibrium. In general, a simple device allows to overcome a resistent force of 
greater intensity by means of a motive force of smaller intensity. Sometimes, if the aim 
of the mechanical device is to change the direction of the motive force or a better 
equilibration from statical point of view, then it is possible to have the same intensity 
for the resistent force as for the motive one (or the intensity of the latter one may be 
smaller). We deal only with simple devices with a single degree of freedom, 
characterized by only one parameter of geometric nature, which specifies the position 
of equilibrium. One must find the relation between the modulus of the motive force and 
the modulus of the resistent force for equilibrium. In general, the own weight of these 
devices is neglected, because it is small with respect to the magnitude of the considered 
forces. 

Although they are numerous, the simple devices can be divided in two great classes: 
simple devices of the class of the inclined plane (the inclined plane, the wedge, the 
screw) and simple devices of the class of the lever (the lever, the systems of articulated 
levers, the apparatuses of weight, the hoists and the pulleys). 

Figure 4.21.  Inclined plane without friction. 

The inclined plane is a simple device which allows to move up or down the solid 
bodies, through the agency of a force materialized, for instance, by a cable. Let be such 
a body, modelled by a particle P  of weight G  which leans frictionless on an inclined 
plane of angle �  (Fig. 4.21); one must determine the force F  which must be applied at 
the point P , so that this one be at rest. Writing the equations of equilibrium along the 
inclined plane and the normal to it, we get 

cos sinF G� �� ,   sin cosF N G� �� � ,   0N � ,  
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where �  is the angle made by the force F  with the inclined plane, while N  is the 
normal reaction. The second equation determines the constraint force, while the first 
one specifies the force F ; we notice that the solution is not unique (indeed, we have 
obtained only a relation between the modulus of the force F  and the direction, 
characterized by the angle � ). Because 0 /2� �� � , there results 0 cos 1�� �  
and /2 /2� � �� � � , as well as the condition sinF G �� . We may also write 

cos( )sec 0N G � � �� � � , wherefrom /2 /2� � � �� � � � . In particular, for 
0� �  we obtain sinF G �� , cosN G �� , for /2� � �� �  we have 0N � , 

F G� , while for � �� �  there results tanF G �� , secN G �� . In the limit case 
0� �  (horizontal plane) we get /2� �� � , N G F� � , the modulus F  being 

arbitrary, or /2� �� , N G F� � , F G� ; in the limit case /2� ��  we obtain 
secF G �� , tanN G �� � , /2 0� �� � � . Between the motive force of modulus 

mF F�  and the resistent force of modulus rF G�  the relation 

sin
cosm rF F

�
�

�  (4.2.12) 

takes place; if 0� � , we notice that m rF F� , and the motive force necessary to move 
up a body of weight G  is smaller than the resistent force. For 0� � , this relation of 
order takes further place only if 

2
�� �� � . (4.2.12') 

Figure 4.22.  Inclined plane with friction, which hinders the particle to “move down” (a) 
 or to “move up” (b). 

If the material point P  stays with friction on the inclined plane, the coefficient of 
friction being tanf ��  (Fig.4.22), we distinguish two cases, as the force of sliding 
friction has a direction or another one, contrary to the tendency of sliding of the 
considered body. The equations of equilibrium will be (along the inclined plane and the 
normal to it) 

cos sinF T G� �2 � ,   sin cosF N G� �� � ,   0 T fN� � ,  
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N  being the normal reaction (the condition 0N �  is included above). The first two 
equations determine the constraint forces; by replacing in the third relation, one obtains 
two inequalities, which put into evidence a relation between the modulus of the force F  
and its direction, characterized by the angle � . If the force T  hinders the particle to 
“move down” along the inclined plane (Fig.4.22,a), then we obtain the condition 
0 sin cos ( cos sin )G F f G F� � � �� � � �  or sin cosG F� �� , as well as 

sin( ) cos( )G F� � � �� � � ; if the force T  hinders the particle to “move up” along 
the inclined plane (Fig.4.22,b), then we obtain the condition 0 cos sinF G� �� �  

( cos sin )f G F� �� �  or cos sinF G� �� , as well as sin( )G � ��  
cos( )F � �� � . We consider now the particular case 0 � �� � . If the particle tends 

to slide down along the inclined plane, then we are in the first case. Noting that 
sin( ) 0� �� � , the second condition is fulfilled for cos( ) 0� �� �  or 

/2 /2� � � � �� � � � � ; analogously, the first condition is fulfilled for cos 0� � , 
hence for /2� � �� � � �  or /2� � �� � . It follows that for /2� �� �  

/2� �� � � , F  arbitrary, the equilibrium takes place. If /2 /2� � � �� � � � , 
then the condition sin secF G � ��  must hold too. For /2� � � �� � � � �  and 

/2� � �� �  we have cos( ) 0� �� � , and cos 0� � , hence the condition 
sin( )F G � �� � � sec( )� ��  is sufficient. For /2 /2� � � �� � �  we have 

cos 0� � , so that we associate also the condition sin secF G � �� . Noting that 
sin( )sec( )� � � �� � �  sin sec� � , hence sin( )cos sin cos( )� � � � � �� �� , 
as we have cos( ) 0� �� � , there result two subcases (we remember that � �� ): if 

/2 /2� � � � �� � � �  then we have sin secF G � �� , while if /2� ��  
/2� �� � , then the condition sin( )sec( )F G � � � �� � �  is imposed. In 

conclusion, the equilibrium takes place for /2� � � �� � � � �  or /2� ��  
� �� � , sin( )sec( )F G � � � �� � �  for /2 /2� � � �� � � � � , F  arbitrary, 

and for /2 /2� � � �� � � � , sin secF G � �� . If the particle tends to slide up 
along the inclined plane, then we are in the second case. Noting that we cannot have 
cos 0� �  and that the second condition is verified if cos( ) 0� �� � , we have 
equilibrium for /2 /2� � � �� � � � � , sin secF G � �� . As well, for /2� �� �  
� � � /2� , sin sec sin( )sec( )G F G� � � � � �� � � �  we have equilibrium too; 
because sin sec sin( )sec( )� � � � � �� � �  only if cos( ) 0� �� � , it follows that 
this condition holds only for /2 /2� � � � �� � � � � . We have thus obtained all 
the possibilities of equilibrium for 0 � �� � , immaterial of the tendency of sliding of 
the particle. Effecting an analogous study for all the possible values of the angle � , the 
following conditions of equilibrium are obtained (immaterial of the tendency of sliding) 

0 � �� � :   
2
�� � �� � � � �  or  

2
� � � �� � � ,   

sin( )
cos( )

F G
� �
� �
�

�
�

, 
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2 2
� �� � �� � � � � � , F  arbitrary, 

2 2
� �� � �� � � � � ,   

sin( )
cos( )

F G
� �
� �
�

�
�

; 

2
�� �� � :   

2 2
� �� � �� � � � � � ,   

sin( )
cos( )

F G
� �
� �
�

�
�

, 

                
2 2
� �� � �� � � � � ,   

sin( ) sin( )
cos( ) cos( )

G F G
� � � �
� � � �
� �

� �
� �

. 

 

If the material point is in equilibrium for 0F �  (hence if it is acted upon only by the 
force G ), then one obtains the phenomenon of self-fixation. If the equilibrium takes 
place for an arbitrary F  (no matter how great), then the phenomenon of self-locking is 
obtained. 

If the inclined plane is used to move up a body of weight G , then the relation 

�
�

�
sin( )
cos( )m rF F

� �
� �

 (4.2.13) 

takes place. We notice that m rF F�  if 

� � �2
2
�� � � ,   �� � , (4.2.13') 

or if the relation (4.2.12') holds for �� � . If � 0� , then the force which moves up 
the body along the inclined plane has a modulus less than the force necessary to move it 
along the vertical if  

� �2
2
�� � . (4.2.13'') 

If the inclined plane is used to move down the heavy bodies, then the tendency of 
sliding is the descending one. The formula (4.2.12) remains, further, valid; in the case 
of a sliding friction, the relation 

�
�

�
sin( )
cos( )m rF F

� �
� �

 (4.2.14) 

takes place. We notice that for �� � , � � �0 /2� � � , we have � 0mF , while 
the body is self-fixed on the plane; the forces of friction are sufficient to ensure this 
equilibrium. 

The wedge is a dismountable simple device (a device of fixed joining), having the 
form of a triangular or trapezoidal prism, which is introduced between two pieces, 
acting upon them by pressure and friction forces. In the case of a symmetric wedge 
(with double inclination), of vertex angle 2�  (Fig.4.23), we may write 
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� � 2(sin cos ) i
i

P f N� � , 

� � (cos sin ) i
i

Q f N� � , 

 

where iN  is the normal reaction at the point iP  of the lateral surface, P  is the force by 
which the wedge is beaten, Q  ( ?Q P ) is the force by which the wedge pushes 
laterally each piece, while � tanf �  is the coefficient of sliding friction. Noting that 

�mF P , �rF Q , there results 

sin cos
2 2 tan( )

cos sinm r r
f

F F F
f

� � � �
� �
�

� � �
�

. (4.2.15) 

Figure 4.23.  The equilibrium of a wedge. 

We observe that one obtains a great pressure Q  with the aid of a small force P , if �  
and �  are small angles. If the wedge is pulled out, then the direction of the friction 
force is changing and one obtains the relation 

2 tan( )m rF F � �� � . (4.2.15') 

If � 0mF , hence if �� � , then the wedge remains self-fixed. 
The asymmetric wedge with a simple or a double inclination can be studied 

analogously. 
The screw is a simple device used for detachable installings with clamping, for the 

transmission of motion (by transforming the motion of rotation in a motion of 
translation and inversely), for the adjustement of the relative position of two pieces or 
for the elimination of wear plays, as well as for the measuring of the lengths. On the 
lateral surface of a right circular cylinder is cut a screw thread in the form of a circular 
helix; developing the lateral surface of the cylinder, it is easy to verify that the slope of 
the helix is given by the relation 

tan
2
p
r

�
�

� , (4.2.16) 
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where p  is the pitch of the helix, while r  is the radius of the cylinder. The screw is 
thread in the nut, its relative motion with respect to it being a particular helical motion, 
called a screw motion. It is possible that the nut be fixed, the screw having a helical 
motion or the screw be fixed and the nut having such a motion or the nut have a  motion  

Figure 4.24.  The equilibrium of a screw. 

of rotation and the screw a motion of translation or – finally – the screw have a motion 
of rotation and the nut a motion of translation. In the first of these cases, at one of the 
extremities acts upon the screw a turning (motive) couple of moment mM Pl� , where 

�mF P  is the intensity of the force which acts at the end of a lever arm of length l ; at 
the other extremity is acting a resistent force �rF Q  along the screw axis, with a 
direction opposite to that of the screw driving. In any point iP  of contact with the nut 
fillet arises a force representing its action of component of modulus iN , normal to the 
fillet, and of component of modulus �i iT fN , tangent to this one, guided in a direction 
opposite to the direction of displacement of the screw fillet with respect to that of the 
nut (Fig.4.24). 

The equations of equilibrium (projection on the screw axis and moment about the 
same axis) lead to 

� � (cos sin ) i
i

Q f N� � ,     � � (sin cos )m i
i

M r f N� � ,  

wherefrom 

sin cos
tan( )

cos sinm
f

M Qr Qr
f

� � � �
� �
�

� � �
�

, (4.2.17) 

where � tanf �  is the coefficient of sliding friction. By unscrewing, the direction of 
the friction forces is changing, so that one must have 
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tan( ) tan( )mQr M Qr� � � �� � � �  (4.2.17') 

for equilibrium. We notice that for � � /2� � �  the turning moment mM  (hence, the 
motive force mF ) must be sufficiently great to can obtain the clamping of the screw; it 
is the case of self-locking. As well, for �� �  it is necessary to act with a turning 
moment Mm  of a direction opposite to that of the clamping for screwing, independent 
of the force Q ; in this case, the screw is self-fixed. 

The level is a simple device formed by a rigid solid with a fixed point or axis, acted 
upon by two forces: a motive force of intensity �mF P  and a resistent force of 
intensity �rF Q . The supports of these forces are contained in a plane normal to the 
axis of rotation of the rigid solid and do not pierce this axis. 

Neglecting the frictions, the equation of moments with respect to the fixed point or 
axis leads to Archimedes’ relation 

�m r
bF F
a

, (4.2.18) 

where a  is the level arm of the motive force, while b  is the level arm of the resistent 
force. 

Figure 4.25.  The level of first (a), second (b) or third (c) order. 

As a function of the position of the articulation O  with respect to the points of 
application A  and B  of the motive and resistent force, respectively, the levels may be 
of three kinds. At the level of first order, the hinge O  is between the points A  and B  
(Fig.4.25,a); if �a b , then it results �m rF F  (the case of the balance with equal 
arms), if �a b , then it results �m rF F  (case in which motive force is saved), and if 

�a b , then one obtains �m rF F  (non-economic case). The levels of second order are 
those for which the point B  of application of the resistent force is between the points 
O  and A  (Fig.4.25,b); in this case, �a b , hence �m rF F  (motive force is saved). In 
the case of the levels of third order the point A  of application of the motive force is 
between the points O  and B  (Fig.4.25,c); in this case �a b , hence �m rF F  (non-
economic case). 
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Taking into account the friction in the bearing, we may use the formula (4.2.8), 
obtaining the equation of equilibrium 

�� �Pa Qb f Nr , (4.2.19) 

where r  is the hinge journal radius, �f  is the corresponding coefficient of friction, 
while N  is the modulus of the reaction, given by 

� � �2 2 2 cosN P Q PQ � , (4.2.19') 

�  being the angle formed by the forces P  and Q . There result the extreme values of 
the motive force mF  (for equilibrium) 

� �� � �� � 2 � � �
��

2 2 2 2 2 2 2
2 2 2 cos 2 cos sinr

m
FF ab f r f r a b ab f r

a f r
� � � . 

 (4.2.20) 

In the particular case � 0�  ( P Q� ), we get 

�m r
bF k F
a

; (4.2.21) 

the ratio /b a  in the formula (4.2.18) is thus multiplied by the coefficient 

�
�

� ��
�

1
1

1

f r
bk
f r
a

. (4.2.21') 

Hence, a motive force greater than that used if there are not frictions is necessary. 
To obtain scale ratios greater than /a b  (corresponding to a single level), one may 

use systems of articulated levels. 
The level is the basic element for weighting apparatuses. We mention thus the 

balance with equal arms, the Roman balance, the decimal balance, the Roberval 
balance etc. 

Figure 4.26.  Equilibrium of a cable hoist. 
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The cable hoist is a simple device used to raise the weights. The simple hoist is 
formed by a cylindrical drum of radius r , on which a cable is rapped up; an extremity 
of the cable is fixed to the drum, while by the other extremity the weight (the resistent 
force) �F Qr , which must be raised, is hanging down. On the drum is fixed a wheel 
of radius R , on which the motive force �F Pm  is tangentially applied (Fig.4.26). The 
equation of moment with respect to the rotation axis leads to 

�m r
rF F
R

. (4.2.22) 

To maintain � constmF  when taking into account the own weight of the cable too, 
one may use a truncated cone drum (regulator cable hoist). Sometimes, a hoist with a 
vertical axis is called a capstan. In the case of a differential hoist, the drum is 
constituted of two cylindrical sections of different radii, on which a cable is rapped up, 
in distinct directions, raising a weight Q  with the aid of a pulley. 

 
Figure 4.27.  Equilibrium of a pulley. 

The pulley is a simple device constituted of a circular disk of radius R , on the 
circumference of which passes a cable (chain); the axle of the pulley is fastened by a 
fork with a hook. The fixed pulley has a fixed axle, while the movable pulley has a 
shifting one. 

At the two extremities of the cable of a fixed pulley (Fig.4.27), the forces �F Pm  
and �F Qr  are acting so that, in the absence of frictions, we have 

�m rF F . (4.2.23) 

Taking into account the friction in the bearing, we may write 

�� �( )P Q R f Nr , (4.2.24) 

where r  is the radius of the pulley journal, �f  is the coefficient of friction of the 
bearing, while N  is the modulus of the reaction, given by a formula of the form 
(4.2.19'). We get 

� �� � �� � 2 �
��

2 2 2 2 2 2 2 2
2 2 2 cos 2 cos sin

2 2
r

m
FF R f r f r R f r

R f r
� �� .     (4.2.25) 
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In the particular case � 0�  ( P Q� ), there results � �N P Q , and we may write 

�m rF kF , (4.2.26) 

the multiplicative coefficient k  being given by 

��
� �

��

1
1

1

rf
Rk rf
R

. (4.2.26') 

 
Figure 4.28.  Influence of the rigidity of the cable in the equilibrium of a pulley. 

In general, the cable is supposed to be perfectly flexible; in reality, the cable has a 
certain rigidity, so that in the zones �AA  and �BB  it nears by Ae  the pulley axle or 
moves to a distance Be  from this one, the curvature having a continuous variation 
(Fig.4.28). The equation of moments yields a relation of the form (4.2.26) too, where 

�� �
� �

�� �
2

1 BA

A

e e f r
k

R e f r
; (4.2.26'') 

neglecting Ae  with respect to R , we can also write 

�
� � �

��
2

1
f r

k
R f r

� , (4.2.27) 

where the influence of the rigidity is given by 

�
�

��
BAe e

R f r
� . (4.2.27') 

Because � 1k , we have �m rF F , and the simple fixed pulley has now the rôle to 
change the direction of transmission of the force (in fact, its support). 

The movable pulley allows to raise a weight Q  using a force P  of a smaller 
intensity ( �m rF F ). For instance, in the case of the movable pulley for which P Q�  
(Fig.4.29) we have 
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�
1
2m rF F , (4.2.28) 

Figure 4.29.  Equilibrium of a movable pulley. 

the tension in the cable being � /2T P . If we take into account the frictions and the 
rigidity of the cable, we may use the coefficient k  introduced above, so that 

�mF kT ,   � �m rF T F ,  

wherefrom 

�
�1m r
kF F
k

. (4.2.29) 

Figure 4.30.  Equilibrium of exponential pulley blocks. 

By means of fixed and movable pulleys, we may constitute systems of pulleys. We 
mention thus the exponential pulley block (Fig.4.30,a), formed by a fixed pulley and n  
mobile ones, for which we have 
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�
�

�

1

(1 )

n

m rn
kF F
k

 (4.2.30) 

or, neglecting the frictions and the rigidity of the cables, 

�
1
2m rnF F . (4.2.30') 

Analogously, for another exponential pulley block (Fig.4.30,b) we obtain 

� � ��
� �

1
1

11 1
m rnF F

k

 (4.2.31) 

or 

��
�1

1
2 1

m rnF F . (4.2.31') 

Figure 4.31.  Equilibrium of a pulley block with n  fixed and n  movable pulleys. 

In the case of the pulley block with n  fixed and n  movable pulleys (Fig.4.31), there 
results 

�
�

�

2

2
( 1)

1

n

m rn
k k

F F
k

 (4.2.32) 
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or 

�
1

2m rF F
n

. (4.2.32') 

With the aid of a hoist and of a mobile pulley we may obtain a differential pulley 
block too. 

2.1.7 Efforts in bars 
The notion of bar has been introduced in Chap. 1, Subsec. 1.1.10. Let thus be a 

curved bar (the axis of which must be – in general – a skew curve) in equilibrium under 
the action of a system F  of given and constraint external forces. A cross section (plane 
and normal to the bar axis) divides the bar in two parts, and the internal forces which 
arise on the two faces thus obtained are put into evidence (Fig.4.32,a,b). Thus, the part I 
is acted upon by the subsystem 

 1F  of given forces and reactions and by the system 

 12F  of forces with which the part II is acting upon this one; analogously, the part II is 
acted upon by the subsystem  

 2F  of given forces and reactions, as well as by the 
system 

 21F  of forces with which the part I is acting upon it. The global condition of 
equilibrium and the theorem of equilibrium of parts allow us to write 

 
Figure 4.32.  Equilibrium of a curved bar (a). Influence of the internal forces (b).  

Resultant efforts on a cross section (c). 

, -
  1 2�� � 0F F F ,   , -

  1 12� � 0F F ,   , -
  2 21� � 0F F , (4.2.33) 

wherefrom 

, -
  12 21� � 0F F , (4.2.33') 

corresponding to the principle of action and reaction; as well, we get 

  21 1�F F ,   
  12 2�F F  (4.2.33'') 
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too, so that we may state 
Theorem 4.2.4. The system of internal forces by which a part of a bar acts upon the 
other part is equivalent to the system of external (given and constraint) forces, 
corresponding to the first part. 

Applying the operator torsor (usually, at the centre of gravity of the cross section) to 
the relations (4.2.33''), we get 

, - , -
  21 1= � =F F ,   , - , -

  12 2= � =F F ; (4.2.34) 

the pole with respect to which has been made the computation was considered to be the 
same for the two systems of forces (before the detachment of the two parts), so that we 
did not put it in evidence. It is suitable to consider the torsor of the system of internal 
forces corresponding to the face which is encountered the first by getting over the bar 
axis. Frequently, one does it from left to right (part I), so that one has to do with the 
torsor , -

 12= F , corresponding to the left face. The components of the resultant R  and 
of the resultant moment M  are applied at the centre of gravity of this cross section 
(Fig.4.32,c) and are called efforts (three forces and three moments); usually, Frenet’s 
intrinsic trihedron is considered, the direction of the unit vector =  of the tangent 
coinciding with the direction of getting over the bar axis. The components of the 
resultant R  are: The axial force N , along the tangent = , and the shearing (cross, 
transverse) force T , contained in the normal plane (of components T�  and T�  along 
the principal normal and the binormal, respectively) (Fig.4.33,a). As well, the 
components of the resultant moment M  are: the moment of torsion (twisting moment) 
Mt , along the tangent, and the bending moment Mb , contained in the normal plane (of 
components M�  and M�  along the corresponding  unit  vectors)  (Fig.4.33,b).  By 

 
Figure 4.33.  Efforts on a cross section of a curved bar: force components (a)  

and moment components (b). 

convention, the scalars of these vector components are positive if they have the same 
directions as the unit vectors of the axes of the intrinsic trihedron. We may thus write 

� � �R N T T� �= J 5 ,   � � �M tM M M� �= J 5 . (4.2.35) 

The variation of the six efforts , , , , ,tN T T M M M� �� �  along the bar axis may be 
represented by diagrams of efforts, which put in evidence their values in each section; 
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obviously, it is necessary to specify also some laws of variation of those efforts. To do 
this, we consider an element of the bar axis of length ds , reducing thus all the forces 
with respect to the axis’ points, corresponding to the cross sections on which act these 
forces; as well, we suppose that the bar is acted upon only by distributed forces pds  
and by distributed moments mds , for which 

� � �p p p p� � �= J 5 ,    � � �m tm m m� �= J 5 . (4.2.35') 

 
Figure 4.34.  Equilibrium of an element of bar. 

Equating to zero the torsor of all the forces which act upon this bar element (Fig.4.34), 
we obtain 

� � � � �R R R p 0( d ) ds ,     

� � � � � 3 � � 3 ��M M M m R R p 0
d

0
( d ) d ( d ) ( d ) ( ) ( )d

s
s s � � �= = . 

 

Applying a mean value formula to the above integral and neglecting the terms of higher 
order, there results 

� �
R p 0d

ds
,     � 3 � �

M R m 0d
ds

= . (4.2.36) 

Taking into account Frenet’s formulae given in Subsec. 1.1.3, we get 

� � �
d 1 0
d
N T p
s � ��

,     � � � �
�

d 1 1 0
d
T N T p
s
�

��� �
, 

� � �
�

d 1 0
d
T

T p
s
�

� ��
, 

(4.2.37) 

d 1 0
d
tM M m
s � ��

� � � ,     d 1 1 0
d t
M M M T m
s
�

�� �� �
� � � � �

�
, 

� � � �
�

d 1 0
d
M

M T m
s
�

� � ��
. 

(4.2.37') 

With the aid of the first two equations (4.2.37) one can express the efforts T�  and T�  
as functions of the given external loads and the normal force N ; replacing in the third 
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equation, we get a differential equation of the third order in N , which may determine 
the latter effort. Analogously, the equations (4.2.37') lead to a differential equation of 
the same order for the moment of torsion tM  which contains the axial force N  too, 
now known; we mat determine thus all six efforts. 

In the case of a plane curved bar � �1/ 0� , 5  being the unit vector normal to the 
plane of the bar; we get 

� � �
d 1 0
d
N T p
s � ��

,    � � �
d 1 0
d
T N p
s
�

��
,    � �

d
0

d
T

p
s
�

� , (4.2.38) 

d 1 0
d
tM M m
s � ��

� � � ,     d 1 0
d t
M M T m
s
�

���
� � � � , 

� � �
d

0
d
M

T m
s
�

� � . 
(4.2.38') 

One of the efforts N  and T�  may be eliminated between the first two equations 
(4.2.38), obtaining thus a differential equation of the second order in the other effort; 
the third equation allows the computation of the shearing force T� . These efforts being 
obtained, one can make analogous considerations for the subsystem (4.2.38'). 

If the plane curved bar is acted upon by forces contained in its plane, then one has 
� 0p� , � � 0m m� � , and, taking into account the Theorem 4.2.4 (the resultant of 

the external forces is contained in the plane of the bar axis, while the resultant moment 
of these forces is normal to this plane) one gets � 0T� , � � 0tM M�  too; the 
remaining equations are 

� � �
d 1 0
d
N T p
s � ��

,    � � �
d 1 0
d
T N p
s
�

��
,    � � �

d
0

d
M

T m
s
�

� � , (4.2.39) 

and one makes observations analogous to those above. 
If the plane curved bar is acted upon by forces normal to its plane, then we have 
� � 0p p� � , � 0m� , and, on the basis of the same theorem (the external forces 

constitute a system of parallel forces), we obtain � 0N , � 0T� , � 0M� ; the 
system of equations becomes 

� �
d

0
d
T

p
s
�

� ,  d 1 0
d
tM M m
s � ��

� � � ,  d 1 0
d t
M M T m
s
�

���
� � � � ,    (4.2.40) 

and may be analogously studied. 
Starting from the two particular cases considered above, we obtain the solution 

corresponding to the general case, by superposing the effects. 
In the case of straight bars, the direction of the binormal and the direction of the 

principal normal are not determined; it is convenient to use a right-handed fixed 
orthonormed frame of reference 1 2 3Ox x x , the axis 3Ox  being along the bar axis 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 262 

( �1/ 0�  and � 3d ds x ). Corresponding to the conventions in technical mechanics 
of deformable solids (strength of materials), the components of the torsor of internal 
forces are of the form (Fig.4.35,a,b) 

Figure 4.35.  Efforts on a cross section of a straight bar: force components (a)  
and moment components (b). 

� � � �R i i i2 1 1 2 3T T N ,    � � �M i i i1 1 2 2 3 3M M M , (4.2.41) 

and the external load is given by 

�p ij jp ,    �m ij jm , (4.2.41') 

where i j , � 1,2, 3j , are the unit vectors of the co-ordinate axes. We obtain the 
relations 

� �R p 0,3 ,    � 3 � �M i R m 0,3 3  (4.2.42) 

or, in components, 

� �2,3 1 0T p ,   � �1,3 2 0T p ,   � �,3 3 0N p , (4.2.42') 
� � �1,3 1 1 0M T m ,   � � �2,3 2 2 0M T m ,   ,3 3 0tM m� � . (4.2.42'') 

Eliminating the shearing forces, we get 

� � �1,33 1,3 2 0M m p ,   � � �2,33 2,3 1 0M m p . (4.2.43) 

In the case of external loads contained in the plane 1 3Ox x , we have �2 0p , 
� �1 3 0m m ; there results 

�1,3 0T ,   � �1,3 1 0M T ,   ,3 0tM � ,  
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wherefrom 

� �0
1 1 constT T ,   � �0 0

1 1 3 1M T x M ,   �0
1 constM ,   0 constt tM M� �  

 (4.2.44) 

and 

�2,3 1T p ,   � �2,3 2 2M T m ,   � �2,33 1 2,3M p m . (4.2.44') 

If we have too �2 0m , then we may write 

�2,3 1T p ,   �2,3 2M T , (4.2.45) 

so that 

�2,33 1M p . (4.2.45') 

In this case, the diagrams of efforts are, e.g., (Fig.4.36), where we have put into 
evidence the correspondence between the point of extremum for the bending moment 
and the point at which the shearing force vanishes; we notice also the correspondence 
between the inflexion point of the diagram of bending moments, the point of extremum 
of the diagram of shearing forces and the point at which the diagram of normal loadings 
vanishes, as well as the correspondence between the point of inflexion of the diagram of 
shearing forces and the point of extremum of the diagram of normal loadings. 
Sometimes, the positive part of the diagram of bending moments is plotted under the 
axis (to be in concordance with the deflection line of the bar axis). 

Figure 4.36.  Diagrams of efforts in a straight bar acted upon by loads in a plane. 

In the case of loads contained in the plane 2 3Ox x  ( �1 0p , � �2 3 0m m ) we can 
make analogous observations. 

We notice that, in all considerations made in this subsection, the bar is reduced to 
its axis; as a matter of fact, so it is for all problems concerning the efforts on the 
cross section. This is a mathematical model, which is used currently in technical 
mechanics of solids. 
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In the case of external concentrated loads (e.g., concentrated forces), the above 
relations remain valid if the usual functions are replaced by distributions, the operations 
of differentiation being effected in the same sense too. For instance, in the case of a 
straight bar acted upon by a concentrated force 

� � � �� B � 0
1 3 3 3p x P x x  (4.2.46) 

at the point of co-ordinate 0
3x , the equations (4.2.45) lead to 

� � � �0 0
2 3 3 3 2T x P x x T�� � � ,   

� � � � � �0 0 0 0
2 3 3 3 3 3 2 3 2M x P x x x x T x M�� � � � � ; 

(4.2.46') 

the shearing force and the bending moment at the cross section �3 0x  are thus put in 
evidence. 

2.1.8 Articulated systems 
An articulated system is a structure of bars (a system of rigid solids) linked by 

articulations, so as to form a non-deformable system from a geometric point of view (not 
a mechanism); the loads are supposed to be applied at the nodes. 

By definition, for a bar between two articulations, all the given and constraint forces, 
can be reduced to resultants at each extremity of it; for equilibrium, the two resultants 
must be directed along the straight line connecting the articulations, having the same 
modulus and opposite directions. Hence, from a statical point of view, a bar requires 
only one unknown: the corresponding axial force. 

The theoretical articulations at the nodes cannot be practically realized. The nodes 
are more or less rigid in the case of constructions in concrete or metal; these rigidities 
introduce secondary efforts, which may be computed separately. As well, if the bars are 
acted also transversally (for instance, by their own weight), one calculates the resultants 
at the nodes, while the effect of the other efforts (for instance of bending) are separately 
computed. 

Starting from the most simple non-deformable geometric construction formed by 
articulated bars (the triangle, which has three nodes and three bars), one can constitute a 
plane articulated system. By complete induction, one can show that between the number 
b  of bars and the number n  of nodes takes place the relation 

� �2 3n b , (4.2.47) 

which represents a necessary condition for the geometric non-deformability of the plane 
articulated system; thus, a plane articulated system 1-2-…-6, constructed starting form a 
basic triangle 1-2-3, is shown in Fig.4.37. On the other hand, a system must be 
analysed, from case to case, to see if it is not a system of critical form (at least partially), 
the form of which may be lost under the action of a particular system of external loads; 
we will not deal with such articulated systems. 
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A free articulated system, as that considered above, can be fixed in its plane with the 
aid of three simple constraints (a hinge and a simple support or three simple supports of 
non-concurrent directions at the nodes. Because a simple support is equivalent to a 
pendulum (a bar), the relation (4.2.47) has the more general form 

Figure 4.37.  The setting up of a plane articulated system. 

� �2n b s ,   � 3s , (4.2.47') 

where s  is the number of simple supports. If � 3s , then the plane articulated system 
(structure) constitutes a single geometrically non-deformable body, by suppressing the 
supports, and is called a free articulated system (structure). 

If we are isolating each node (sectioning all the bars around the node), then the given 
and the constraint forces, as well as the efforts in bars form a system of concurrent 
forces; writing two equations of equilibrium for each node we obtain 2n  equations. If 
the relation (4.2.47') holds, then the articulated system is statically determinate (on the 
basis of the Kronecker-Capelli theorem for systems of linear algebraic equations); if 

� �2n b s , then the articulated system is statically indeterminate, while if 
� �2n b s , then the system is a mechanism (geometrically deformable). 

 
Figure 4.38.  Rectangular system (a), trapezoidal system (b), triangular system (c)  

and K  lattice (d) framework. 

A plane articulated system may – often – play, in its totality, the rôle of a bar, which 
is called truss (framework). The bars of the contour (excepting the lateral ones) are 
called flanges; according to their positions, we distinguish between superior and 
inferior flanges. The bars linking the flanges are called members (lattices); the vertical 
lattices are called vertical members, while the inclined ones are called diagonals. We 
denote the axial force in the bar of the framework by , ,S I V  or D  if this one is a 
superior or inferior flange, a vertical member or a diagonal, respectively. According to 
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the form of the contour, the frameworks may be frameworks with parallel flanges 
(Fig.4.38,a) or frameworks with polygonal flanges (Fig.4.38,b). 

Among the simple articulated systems, we mention: rectangular system trusses 
(Fig.4.38,a), trapezoidal system trusses (Fig.4.38,b), triangular system trusses 
(Fig.4.38,c) and K  lattice trusses (Fig.4.38,d). If over a primitive system of bars is 
introduced a supplementary system, then one obtains a compound articulated system. 
The double rectangular system trusses, the double triangular system trusses or the 
trusses with multiple lattices form complex articulated systems. 

To determine the efforts in the bars of a framework, one may use various methods of 
computation. Thus, in the method of sections (Ritter’s method) a complete section is 
made, and the conditions of equilibrium of one of the two parts are put. Only three 
unknowns may appear, because one can write only three equations of equilibrium; if the 
reactions have been previously obtained, then the unknowns may be only efforts in the 
sectioned bars, so that these ones cannot be more than three. We notice that these bars 
must not be all concurrent or parallel; in such a case, the three equations are no more 
linearly independent. 

Figure 4.39.  Equilibrium of a framework with parallel flanges. 

Let be a framework with parallel flanges (Fig.4.39), of height h , acted upon by 
vertical concentrated forces at the nodes. Because the truss is simply supported, the 
reactions can be obtained from its global equilibrium, as in the case of a usual straight 
bar. Let thus be a section I-I; we replace the sectioned bars (3-5, 2-4 and 3-4) by the 
corresponding efforts ( 3 5S � , 2 4I �  and 3 4D � ), with a positive sign. We consider the 
equilibrium of the left part of the truss. The equation of moment with respect to the 
node 3 leads to 

3
2 4

M
I

h� � , (4.2.48) 

where 3M  is the moment of the given and constraint forces acting upon the left part of 
the bar with respect to the node 3 (positive if the corresponding couple leads to a 
clockwise rotation in the plane); analogously, the equation of moment about the node 4 
allows to write 
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4
3 5

M
S

h� � � , (4.2.48') 

where 4M  has a similar signification. The equation of projection on the normal 
common to the two parallel flanges yields 

1
3 4 sin

T
D

�� � , (4.2.48'') 

where 1T  is the projection on the considered direction of all the given and constraint 
forces at the left of section I-I, while �  is the angle formed by the diagonal with one of 
the flanges. We notice that M  and T  have the significance of a bending moment and 
of a shearing force in a straight bar, respectively, their sign being analogously 
established. In the case of a section II-II, the equation of projection on the normal 
common to the parallel flanges leads to 

II4 5V T� � , (4.2.49) 

where IIT  has an analogous significance. One obtains thus the efforts in all the bars of 
the framework. Only for the vertical member 6-7 one must make a section of the form 
III-III (we isolate the node 7), wherefrom 

6 7 7V P� � � . (4.2.50) 

Figure 4.40.  Framework with tensioned (a) or compressed (b) diagonals. 

Such a bar for which the effort depends only on a local load, being independent of the 
form of the beam and of its loading, is called a supplementary bar. 

As we can see, it follows that in the bars of the superior flanges and in the vertical 
beams appear only efforts of compression, while in the bars of the inferior flanges and 
in the diagonals we have efforts of tension. The compressed bars are traced by thin 
lines, while the tensioned ones are traced by thick lines (Fig.4.40,a). If the diagonals  
of each pane would be ascendent towards the middle of the truss (instead to be  
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descendent, as in the previous case), then they would be compressed and the vertical 
members tensioned, but the bars of the flanges would have efforts of the same sign as 
above. These results are rendered by the same graphical convention in Fig.4.40,b; we 
notice that the efforts in the superior flanges of the panes and in the end vertical 
members vanish. Indeed, these affirmations are justified because between the efforts in 
the bars and the forces acting at the nodes take place relations of the type of those 
between the internal forces (see, e.g., the nodes 3 and 4 and the bar 3-4, Fig.4.41). 

This method of computation may be applied analogously in the case of a truss with 
polygonal flanges; we mention that it can be used in a graphical variant too. 

Another method of computation often used is the method of isolation of nodes, which 
is – in fact – a particular case of the method of sections; in the frame of this method, 
each node is isolated, by sectioning the bars which start form this one and by replacing 
them by the corresponding efforts. One obtains  thus, in  each  node, a  system 

Figure 4.41.  Efforts in the members of a framework. 

of forces which must be in equilibrium. Two equations can be thus written for each 
node; this method of computation is convenient if we can solve these equations for each 
node separately. We start from a node where intervene only two unknowns, passing 
than to neighbouring nodes where intervene only two unknowns too. For instance, in 
the case of the truss with parallel  flanges  considered  in  Fig.4.39  one  starts  from  the 

Figure 4.42.  Method of separation of nodes. 

node O ; previously, the reactions have been determined by a global equilibrium (the 
method of rigidity). One obtains thus 0 2 0I � �  and 00 1V V� � �  (Fig.4.39). Then, one 
passes – successively – to the equilibrium of the node 1 (Fig.4.42,a), to the equilibrium 
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of node 2 (Fig.4.42,b) a.s.o. Sometimes, it is useful to combine the method of isolation 
of nodes with the method of sections, as in the case of K  lattice trusses (Fig.4.38,d). 

Figure 4.43.  A triangular truss (a) and the corresponding Maxwell-Cremona draught (b). 

The method of isolation of nodes is graphically concretized in the Maxwell-Cremona 
draught. Let be the truss 0-1-2-3-4, acted upon by the forces 1P  and 3P  (Fig.4.43,a). 
We use Bow’s notation, denoting by m, n, p, q, r the zones in which is divided the 
exterior of the framework by the given and constraint forces which act upon it; as well, 
we denote by a, b, c the zones in the interior of the truss, separated by bars or by the 
corresponding efforts. Each given and external force and each effort will be expressed 
in the form N�� , where the indices ,� �  correspond to the zones m, n, p, q, r, a, b, c 
on one and the other part of the respective force. First of all, the polygon of given and 
constraint forces, which is a closed one, is drawn. Then, one constructs the polygon of 
forces for the equilibrium of each node, taking the forces clockwise around the node, in 
the order in which they are met. We notice that to each node of the truss (Fig.4.43,a) 
there corresponds a closed polygon in the Maxwell-Cremona draught (Fig.4.43,b), 
while to each closed polygon of the truss (the polygons at the exterior of the truss are 
closed at infinity) there corresponds a point of intersection of the respective sides on the 
draught. Such figures are called reciprocal, while the method is called the method of 
reciprocal polygons too. Denoting the intervals on the framework, the signs of the 
efforts are determined on the figure, taking into account the direction along a polygon 
according the clockwise direction around the corresponding node on the framework; if 
the force stretches the node, then the effort is of tension (as in Fig.4.41), otherwise, it is 
of compression. 

The compound structures may be studied analogously, by the methods indicated 
above. In the case of complex structures in which there is not one node with only two 
unknowns and not one section cutting only three non-concurrent members or for which 
one cannot make a decomposition in simple structures to which the application of these 
methods be possible, one must make – in general – a study of the whole framework; 
such a study involves the solution of a system of 2n  linear algebraic equations for the 
n  nodes of the truss. But, from case to case, one can apply the method of bars 
replacing of Henneberg or the two sections method of S.A. Tsaplin. 

The spatial articulated systems are also systems of bars linked by hinges so as to 
form a non-deformable structure from a geometric point of view, and where the loads 
are applied at the nodes; but the members of the truss are no more coplanar. 

The simple articulated systems are those obtained by joining tetrahedra formed by 
bars; such a tetrahedron has six bars, corresponding to its sides. By complete induction, 
one can show that 
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3 6n b� � , (4.2.51) 

where b  is the number of bars, while n  is the number of nodes; this is a necessary 
condition of non-deformability of the articulated system. 

If the articulated system is not free, then it is necessary to introduce constraints 
equivalent to six simple supports, which may be materialized by pendulums; besides 
simple supports (which allow the rotation in any direction and the displacement in a 
plane normal to its direction, Fig.4.44,a), such constraints may be plane hinges (double 
supports, materialized by two concurrent pendulums, which allow the rotation in any 
direction and a displacement along a direction normal to the plane of the support, 
Fig.4.44,b) and spherical hinges (triple supports which allow the rotation in any 
direction, but not one displacement is allowed, Fig.4.44,c). 

Figure 4.44.  Simple (a), double (plane hinge) (b) and triple (spherical hinge) (c) supports. 

The relation (4.2.51) becomes a more general form 

3n b s� � ,   6s � , (4.2.51') 

where s  is the number of simple supports. 
With the three types of supports mentioned above one can obtain various supporting 

systems; for instance, a simple support, a double support and a triple support ensure the 
fixity in space of the articulated system. In general, the six pendulums (the six bars) of 
the supporting system must fulfil some conditions to ensure a correct fixity of the 
articulated system, hence to avoid a critical case. These critical forms may be identified 
– in general – on a static way (by equations of projection and of moment) or on a 
kinematic way (analysing all the possibilities of motion). Thus, not one straight line 
about which the resultant moment of all the constraint forces be zero must exist, 
because the resultant moment of all the given forces about this line (which – in general 
– does not vanish) could no more be equilibrated; in this case, the articulated system 
could rotate about this straight line. As well, there must not exist some straight line so 
that the sum of the projections along it of all the six constraint forces be zero, because 
the projection along the very same line of the resultant of the given forces would no 
more be equilibrated; in this case, the rigid solid would have a motion of translation. 
We mention also that a certain number of pendulums of the six ones must not constitute 
a plane critical form (for instance, three coplanar pendulums do not be concurrent). 

Among the critical forms which are the most encountered, depending on the 
directions of the supports’ pendulums, one can mention the following ones: the case in 
which all the six directions pierce the same straight line; the case in which two sets of 
three directions are parallel or concurrent; the case in which at least four directions are 
parallel or concurrent or are coplanar; the case in which two directions are in a plane 
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which contains also the piercing point of other three directions; the case in which three 
directions are coplanar, the plane containing also the piercing point of other two 
directions; the case in which five directions are in two planes, their intersection of 
which is coplanar with the sixth direction; the case in which all the six directions are in 
parallel planes. These results may be easily verified. We consider that a thorough 
examination of the supporting system is very important, to can avoid the critical cases. 

If the supporting is correct, then the six unknown reactions may be determined by a 
system of six scalar equations with six unknowns; in some particular case, one can 
make various observations, simplifying thus the computation. The condition (4.2.51') is 
only a necessary condition of geometric non-deformability; besides this condition, one 
must verify if the articulated system is not a critical form. In this case, to very small 
variations of the lengths of the bars correspond very great displacements of the nodes; 
expressing the conditions of equilibrium on the deformed form of the articulated 
system, to an arbitrary loading may correspond very great values of the efforts in bars 
or some particular load may lead to indeterminate efforts. 

The efforts in the members of the articulated system are given by a system of 3n  
equations with 3n  unknowns (the equations of equilibrium in each node), so that the 
condition of non-deformability of such a system is given by 

3 0n) � , (4.2.52) 

where 3n)  is the determinant of the coefficients of the system of equations. 
Because it is rather difficult to express such conditions for a great n , in particular 

cases one may use some special methods of investigation. Thus, if no one force is 
applied at the nodes (hence, if one applies null loads), then all the free terms of the 
system of equations vanish and, if we take into account the condition (4.2.52), the 
system has only zero solutions. Hence, in the method of null loading, if one succeeds to 
show that, for zero loads at the nodes, all the efforts in the bars vanish, then it follows 
that the articulated system is not a critical form; otherwise, this system is a critical form. 

On the other hand, the relation (4.2.51') ensures us that the articulated system is 
statically determinate; if 3b s n� � , then the system is a mechanism, while if 

3b s n� � , then the system is statically indeterminate. If we have 6s �  in the 
relation (4.2.51'), then the system is a free articulated system, the geometric non-
deformability of which does not depend on the constraints. 

Besides the simple articulated systems, we mention also the compound articulated 
systems, obtained by the composition of various simple systems with the aid of some 
bars of connection. The complex articulated systems are those which cannot be reduced 
to simple articulated ones. 

An important case is that of articulated spatial systems which form a polyhedron 
without internal diagonals. One may thus use polyhedra the faces of which are 
constituted by plane trusses, their nodes being on the edges of the polyhedra. We notice 
that the conditions of geometric non-deformability are fulfilled. To prove this assertion, 
we start from Euler’s relation 

2m n f� � � , (4.2.53) 
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valid for a closed polyhedron, where n  is the number of vertices, m  is the number of 
edges and f  is the number of faces. Assuming that each face is a triangle, each edge 
being common to two faces, and each face having three edges, we find the 
supplementary relation 

2 3m f� ; (4.2.54) 

eliminating f  between the last two relations, we may write 

3 6m n� � . (4.2.53') 

Noting that the edges are just the bars of the truss (m b� ), it follows that the relation 
(4.2.53') is equivalent to the relation (4.2.51); the non-deformability of this articulated 
system is thus emphasized. If each face of the polyhedron is constituted by a plane 
truss, non-deformable from a geometric point of view, having nodes only on the edges, 
so that at each node be at least three coplanar bars, then the above reasoning is valid; 
such a spatial framework is geometrically non-deformable. 

We notice that the hypothesis of perfect hinges at the nodes has a greater importance 
in the spatial case than in the plane one. Indeed, in this case, the rigidity of the nodes 
may have a great influence on the values of the efforts in bars. 

To state the efforts in bars, we use – in general – the same methods of computation 
as in the plane case. We mention thus the method of isolation of nodes, which can be 
applied analytically, as well as graphically; one must have at the most three unknown 
efforts (the reactions are obtained – previously – from conditions of global equilibrium) 
at each node. In the method of sections, each section must cut at the most six bars with 
unknown efforts. Eventually, one can combine the two methods. These methods are no 
more sufficient – in general – in the case of complex structures; then one must use the 
method of bars replacing of Henneberg or the two sections method of Tsaplin. If it is 
possible, then one can make also a decomposition of the spatial articulated system in 
several plane articulated systems, which are separately studied. 

2.1.9 Open articulated systems 
We call open articulated system (polygonal articulated line, chain) a system of 

articulated bars having the form of a polygonal line; if such a system is constituted of 
more than two bars, then it is movable. Assuming that the system of given and 
constraint external forces 0 1 2, , ,..., nF F F F , equivalent to zero, is acting at the nodes 

0 1 2, , ,..., nP P P P  (Fig.4.45,a), one must find the form of the polygonal line, as well as 
the efforts 01 10� �N N , 12 21� �N N ,…, 1, , 1n n n n� �� �N N  in the bars (according to 
the considerations synthetized in Fig.4.41, we assume that these forces are applied at 
the respective nodes). An open articulated system is called simply connected because, 
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considered in the previous subsection, which are called multiply connected (they are not 
losing their unity by suppressing an intermediary bar). 

For the equilibrium of an open articulated system, it is necessary and sufficient 
that each node of it be in equilibrium under the action of the external loads (given 
and constraints), as well as of the internal ones (efforts in bars). To the node 1P  
corresponds the polygon of forces 1 2OAA , to the node 2P  the polygon of forces 

2 3OA A  a.s.o., while to the node 1nP �  the polygon of forces 1 nnOA A� ; we construct 
these polygons in a cumulative polygon of forces 1 2 ... nOA A A , where the internal 
forces corresponding to two consecutive nodes equilibrate one the other (Fig.4.45,b). 
The polygons corresponding to the nodes 0P  and nP  are reduced to segments of 
straight lines. The point O  is called pole, 1 2, ,..., nOA OA OA  being polar radii. The 
geometric figure formed by the sides of the articulated polygonal line, parallel to the 
polar radii, is called funicular (link) polygon. Firstly, one constructs the polygon of 
forces 1 2 ... nOA A A  (the forces 0F  and nF  may be external constraint forces); the 
funicular polygon sides are then drawn, by parallels to the polar radii (the length of 
which is proportional to the magnitude of the efforts in bars, at a certain scale, the 
directions of these efforts being so as to close the polygons of forces). Thus, the 
position of equilibrium of the open articulated system, as well as the constraint forces 
and the efforts in bars are specified. 

Figure 4.45.  Funicular polygon (a). Polygon of forces (b). 

Because the external force which acts at a node forms a triangle with the efforts in 
the contiguous bars, there results that this force and the two adjacent bars are coplanar; 
thus, an open articulated system acted upon by coplanar external forces is contained in 
the respective plane too. If in all the bars arise efforts of tension, then the polygonal 
articulated system may be replaced by a perfect flexible and inextensible thread, acted 
upon analogously, obtaining the same results. 

by suppressing an intermediary bar, it loses its unity, unlike the closed systems, 
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The graphic construction of the polygon of forces and of the funicular polygon is 
particularly useful in many plane problems. Thus, the resultant R  of the external forces 

1 2 1, ,..., n �F F F  is specified in direction and magnitude by the oriented segment 1 nA A
������

; 
one can show that the resultant passes through the piercing point P  of the extreme 
sides of the funicular polygon (Fig.4.45,a). If the polygon of forces is closing, then two 
cases may take place: if the two sides of the funicular polygon are parallel, then the 
system of forces is reduced to a couple, while if these sides coincide, then the system of 
forces is equivalent to zero. We may state 
Theorem 4.2.5. The necessary and sufficient condition of equilibrium of a system of 
coplanar forces which act upon a rigid solid (forces modelled by sliding forces) 
consists in the closing of the polygon of forces, as well as of the funicular polygon. 

Let be n  coplanar forces 1 2, ,..., nF F F . One can show that the 1n �  sides of a 
funicular polygon, corresponding to a pole 1O , pierce the corresponding sides of 
another funicular polygon, corresponding to a pole 2O , in 1n �  points on a straight 
line parallel to 1 2O O ; this one is called the Culmann straight line. Starting from this 
property, one can easily see that, for a system of given forces, all the funicular polygons 
which pass through two fixed points 0P  and nP  have their poles on a straight line 
parallel to 0 nP P . Finally, one proves that there is only one funicular polygon which 
passes through three non-collinear given points. These basic properties allow the 
graphical study of a system of forces which act upon a rigid solid or upon a system of 
rigid solids and constitute the basis of the methods of graphical statics. For instance, 
one can decompose a force along three non-concurrent coplanar supports, one can 
construct the moment of a system of forces, one can determine reactions in a graphical 
way, one can calculate graphically (with a certain approximation) static moments 
(obtaining thus the position of centres of gravity), moments of inertia etc. 

Figure 4.46.  Polygonal articulated line. Analytical method. 

Analytical methods imply – in general – a great volume of computation. Let us 
consider the particular case of an open articulated system, the extremities of which are 
fixed at two fixed points, and which is acted upon by equidistant equal parallel forces; 
such a system may be encountered in the case of suspension bridges. We consider thus 
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the articulated polygonal line 0 1 2 ... nP P P P , acted upon by the forces 

1 2 1... n �� � � �F F F F  with respect to a Cartesian right-handed frame of reference 
Oxy . We use the notations in Fig.4.46, assuming – for the sake of simplicity – that  

0O P� . We may thus write 

, 1 1, , 1 , 1cos cos consti i i i i i i iN N H� �� � � �� � � , 

, 1 1, , 1 , 1sin sini i i i i i i iN F N� �� � � �� � , 
 

where 1, , 1i i i iN N� ��  is the modulus of the effort in the bar 1 iiP P� , while H  is the 
constant modulus of the projection of this effort on the Ox - axis; eliminating the efforts 
in bars, we get 

1, 01tan tan ( 1)i i
Fi
H

� �� � � � .  

The ordinate of the point iP  will be 

� �01 12 1,tan tan ... tani i iy a � � � �� � � �  

01 01
( 2)

tan 2 ... ( 1) tan
2

i iF F F Fa i i a i
H H H H

� �
�$ %$ %� � � � � � � �* +* +& ' & '

; 

 

noting that ix ia� , we have 

� �01tan 1
2i i i
F xy x x
H a

�� � � .  

Hence, the open articulated system considered above can be inscribed in a parabola of 
equation 

� �01tan 1
2
F xy x x
H a

�� � � . (4.2.55) 

Knowing the co-ordinates of the point nP , one can determine the angle 01� , as well as 
the modulus H . 

2.2 Statics of threads 

As we have seen in Chap. 1, Subsec. 1.1.10, a thread is a deformable solid (a bar) for 
which two dimensions (of the cross section) are completely negligible with respect to 
the third dimension (the length); one considers that the threads are perfect flexible and 
torsionable (they cannot take over efforts of bending and of torsion), even if – in reality 
– such ideal models do not exist, as it was shown in Subsec. 2.1.6 (Fig.4.28). We 
suppose also that the threads to study (materialized by cables, chains, ropes etc.) are 
inextensible. In reality, such threads do not exist; to take into consideration their 
extensibility (as in the case of rope bridges) passes beyond the frame of this chapter. 
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After deducing the equation of equilibrium of threads, together with a study of them, 
we will consider some particular cases of equilibrium under the action of distributed or 
concentrated loads; as well, we will emphasize the problems which arise in the case of 
threads constrained to stay on a surface. 

2.2.1 Equilibrium equations of threads 
Because its thickness is negligible, a thread may be modelled by its axis, the points 

of application, both of the external forces and of the efforts being thus situated on this 
axis. If in the equations of equilibrium of a bar (4.2.36) we neglect the moments on the 
cross section as well as the moment external loads (because of the perfect flexibility and 
torsionability), we may express the equilibrium of threads in the form 

d ( )
( )

d
s

s
s

� �
R

p 0 ,   ( ) ( )s s3 �R 0= , (4.2.56) 

Figure 4.47.  Equilibrium of a thread. 

where ( )sp  is the external load (considered distributed on the unit length of the 
thread), applied at the point of curvilinear abscissa s , while ( )sR  is the resultant of 
the efforts on the corresponding cross section. Taking into account the model assumed 
for the thread, as well as the second equation (4.2.56), ( )sR  is reduced to the axial 
force of tension ( )sT  (one uses the letter T , from the word tension), along the unit 
vector = , tangent to the thread (Fig.4.47); the equation of equilibrium is thus reduced to 

d ( )
( )

d
s

s
s

� �
T

p 0 . (4.2.57) 

Noting that the effort ( ) ( ) ( )s T s s�T = , where ( ) 0T s �  is the tension in the thread, 
at the section s , we may write the equations of equilibrium with respect to Frenet’s 
trihedron in the form 

d 0
d
T p
s �� � ,   0T p��

� � ,   0p� � , (4.2.57') 

where we took into account Frenet’s formula (4.1.10). Extending the considerations 
made in the previous subsection concerning articulated polygonal lines and passing to 
the limit, one obtains the threads; hence, their form of equilibrium is a funicular curve. 

The third equation (4.2.57') shows that, for equilibrium, the external load p  must be 
contained in the corresponding osculating plane, in any point of the funicular curve. It 
results that, in the case of external coplanar loads, the funicular curve is a plane one; the 
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same conclusion is obtained if the load p  is of constant direction ( ( )p s�p u , 

const�
������

u ). Finally, if the distributed load p  has the same support, the funicular curve 
becomes a straight line, which coincides with the common support; this happens also if 
the thread is not acted upon by some forces ( �p 0 ) or is acted upon only by tangential 
forces ( 0p� � ). The first two equations (4.2.57') show that the external load p  is 
directed towards the convex part of the funicular curve (because / 0p T� �� � � ), 
exactly in the direction of the decreasing tensions ( d /d 0p T s� � � � , for T  
decreasing). Moreover, the tangential component p�  of the external load specifies the 
tension T ; then, the normal component p�  determines the curvature 1/� , hence the 
funicular curve. If the external load p  is normal to the thread for any s  (hence if 

0p� � ), then the tension T  is constant; one can thus explain why the tension T  
remains constant along a thread, even if this one passes frictionless over a pulley. This 
observation remains valid also in the case of a thread of negligible weight, on a smooth 
surface ( constT � ), if the funicular curve is a geodesic line of the surface ( J  is along 
the normal to the surface). 

An interesting particular case is that in which the external force is conservative, 
deriving from a potential ( )U U s� , hence the case in which 

gradU�p ,    d
d
Up
s� � . (4.2.58) 

The first equation (4.2.57') leads to 

constT U� � ; (4.2.58') 

by choosing in a convenient form the origin O , the constant can be taken equal to zero, 
the tension in the thread being thus specified. We notice that the tension T  is constant 
at all the points of a thread on an equipotential surface. 

Referring the equation (4.2.57) to the orthonormed frame iOx , 1,2, 3i � , we get 

� �d
d

d 0
d

i

i

x
T
s p
s

� � ,   1,2, 3i � ; (4.2.59) 

associating the relation 

d d
1

d d
i ix x
s s

�  (4.2.59') 

too, we can determine the unknowns ( )T s  and ( )ix s , 1,2, 3i � . The four differential 
equations (4.2.59), (4.2.59') are of first order with respect to T  and of second order 
with respect to the co-ordinates; the six constants of integration thus introduced are 
determined by boundary conditions (for instance, bilocal conditions at the two 
extremities of the thread). 
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2.2.2 Particular configurations of equilibrium 

Let be a thread fixed at the points 1P  and 2P , acted upon by a distributed load ( )sp  
of constant direction, proportional to the element of arc (for instance, the own weight). 
According to an observation in the previous subsection, the funicular curve will be a 
plane one. Referring to a right-handed orthogonal Cartesian system Oxy , we may write 

� �d d 0
d d

xT
s s

� ,   � �d d
d d

yT p
s s

� ,  

wherefrom 

d const
d
xT H
s
� � , (4.2.60) 

 
Figure 4.48.  Catenary curve. 

the tension at the point 0P  being thus constant and equal to H  (Fig.4.48). This result 

has a more general character; if the external load is of the form ( )p s�p u , const�
������

u , 
then the projection of the tension on a direction normal to the unit vector u  is constant. 

Eliminating the tension T , we get 

� �d d 1
d d

ya
s s

� ,   H
a

p
� , (4.2.61) 

wherefrom, taking into account 2d 1 ds y x�� �  and integrating, we obtain 

0sinh
x x

y
a
�� � ,   0

0 cosh
x x

y y a
a
�

� � ;  

hence, the funicular curve, called catenary curve in this case, is a hyperbolic line. 
Effecting a translation of the co-ordinate axes towards the position in Fig.4.48, we find, 
finally (without losing anything of the generality) 
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cosh xy a
a

� ,   sinh xy
a

� � ,   cosh xT H py
a

� � ; (4.2.62) 

the last relation corresponds to the formula (4.2.58'), the considered external force p  
being conservative ( grad( const)py� � �p ). We notice that the length of the arc of 
curve between the points 0P  and P  is given by 

0
d sinh
x

x
xL s a
a

� �� ,   2 2 2
xL y a� � , (4.2.62') 

and the curvature at a current point is expressed in the form 

2
1 a
y�

� . (4.2.62'') 

Taking into account the position of the points of suspension 1P  and 2P  (Fig.4.48), we 
introduce the notations 1 22l l l� � , 1 22h h h� � ; the total length of the catenary 
curve 1 2L L L� �  and the difference of level 2h  are given by 

1 22 sinh sinh
l l

L a
a a

� �� �	 

� �

,   1 22 cosh cosh
l l

h a
a a

� �� �	 

� �

, 
 

so that 

2 2 2 2sinh lL h a
a

� � . (4.2.62''') 

Noting that 

� � � �2 42 2 sinh 1 11 ...
3! 5!

l
L h l la

ll a a
a

�
� � � � �  

 

and taking into account that the function in the second member is increasing for 
/ (0, )l a � � , it results that this equation has only one positive root a , function of the 

known parameters l , h  and L ; the condition 2 2 2l h L� �  must be fulfilled, hence 
the length of the thread must be greater than the distance 1 2P P . 

If such a thread has a large span and a very small deflection with respect to it, then 
the tension is increasing very much. In this case, the projection H  of the tension is 
greater than the own weight of the thread; one can thus neglect the powers greater than 
3 of the ratio 2 /pL H  and – obviously – of the ratio / /px H x a� . Hence, 

3

3sinh
6

x x x
a a a

1 � ,   
2

2cosh 1
2

x x
a a

1 � . 
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Replacing in (4.2.62), (4.2.62') and translating the axis Ox  so that the origin does 
coincide with the vertex of the catenary curve (which is now a parabola), we obtain 
(Fig.4.49) 

2
2
py x
H

� ,   
2 2

3
2 2

2
1

36
x

p y
L x x x

H x
� �� � � �	 

� �

,   
2

2
2
pT H x H
H

� � 1 . 

 (4.2.63) 

Assuming that the points 1P  and 2P  have the same ordinate ( 0h � ), equal to the 
deflection f  of the thread, and noting that 1 2l l l� � , we may also write ( 2 /2a l f� ) 

2
2
f

y x
l

� ,   
242 2

3
fL l
l

� � ,   
2

2
plT H
f

1 � . (4.2.63') 

 
Figure 4.49.  Parabolic curve. 

We remark the great influence of a small variation of the length 2L  of the thread on 
the deflection f  (due – for instance – to dilatation or contraction), the distance 2l  
between the points of suspension remaining constant. If L l l� � ) , then the second 
relation (4.2.63') leads to 

3 1,225
2

l lf l l
l l
) )

� 1 ; (4.2.64) 

thus, for a variation of the length 2L  given by / 0, 0001l l) �  (e.g., 2 1l) �  cm for 
2 100l �  m), we obtain 0, 01225f l�  (hence, 61f 1  cm). 

Analogously, one can study the case of a thread fixed at the extremities and acted 
upon by a distributed load of constant direction, proportional to the length of the 
projection of the element of thread on a plane normal to the direction of the force; using 
the same frame of reference as in the previous case (Fig.4.49), we may introduce a 
uniformly distributed load of intensity q  by the relation d dp s q x� . The equation 
(4.2.60) holds further and becomes 

2

2
d
d
yH q
x

� , 
 

wherefrom, by integration, 
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� �0
d
d
y q x x
x H

� � ,   � �20 02
qy y x x
H

� � � .  

By a translation of the co-ordinate axes, we find again the results of the preceding case 
of the catenary curve with a relatively small deflection, in the form 

2
2
qy x
H

� ,   2
2
qf l
H

� ,   
2

2
qlH
f

� ,   2 2 2( )T x H q x� � . (4.2.65) 

Hence, the funicular curve is a parabola; these results are used – for instance – in the 
case of threads acted upon by loads laid down by the snow. 

2.2.3 Threads acted upon by concentrated loads 

If the external load ( )sp  is no more distributed, the thread being acted upon by one 
or several concentrated loads, the equation of equilibrium (4.2.57) can no more be 
applied in the usual manner. In this case, noting that a thread acted upon by only two 
concentrated forces at two distinct points of it is in equilibrium if and only if the two 
forces have the same modulus, the same support and opposite directions; the 
configuration of equilibrium of this portion of thread is a segment of a line which 
coincides with the common support of the two forces. Thus, the thread may be 
assimilated to an open articulated system, the problem of equilibrium being thus 
reduced to the problem of determination of the funicular polygon of the external given 
forces; various conditions which may be imposed to this polygon, function of the given 
limit conditions, have been discussed in Subsec. 2.1.9. Analytically, the study of such a 
thread can be made writing the equations of equilibrium for each point of application of 
a concentrated load. 

To pass over these difficulties of computation, as it was shown by W. Kecs and P.P. 
Teodorescu, one may use the methods of the theory of distributions. Thus, we can admit 
that the equation (4.2.57) maintains its form in distributions, ( )sT  and ( )sp  being 
distributions, while the differentiation is made in the sense of the theory of 
distributions; besides, this equation may be obtained directly in distributions, in an 
analogous manner. Using the formulae (1.1.50), (1.1.51) and assuming that the tension 

( )sT  is a regular distribution, we may write 

� �
1

1

d ( ) d ( )
( )

d d

n

i i
i

s s
s s

s s

�

�
� � ) B �

�T T
T ,  (4.2.66) 

where “tilde” indicates the derivatives in the usual sense, while ( )i)T  are the jumps of 
the tension at the points of discontinuity is s� , 1,2,..., 1i n� � . We decompose the 
external load in the form 

� �
1

1
( ) ( )

n

i i
i

s s s s
�

�
� � B ��p p F ,  (4.2.66') 
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where ( )s�p  are forces in the usual sense (distributed loads), while iF  are concentrated 
forces, applied at the points is s� , 1,2,..., 1i n� � . In this case, the equation (4.2.57) 
can be decomposed in the form 

d ( )
( )

d
s

s
s

� �
�

�T
p 0 ,  (4.2.67) 

( )i i) � �T F 0 ,   1,2,..., 1i n� � ; (4.2.67') 

the equation (4.2.67) coincides with the classical one, while the 1n �  relations 
(4.2.67') must take place for the points of application of the concentrated forces. 

 
Figure 4.50.  Thread acted upon by concentrated forces (a). Local equilibrium at a vertex (b). 

Let thus be a thread acted upon only by the concentrated forces iF , 
1,2,..., 1i n� � , applied at the points 1 2 1... ns s s �� � � ; the equation (4.2.67) 

becomes 

d ( )
d
s
s

�
�T

0 ,  
 

wherefrom we see that the tension ( )sT  is piecewise constant, so that the funicular 
curve is a funicular polygon (Fig.4.50,a). On the other hand, we notice that 

, 1 1,( )i i i i i� �) � �T T T ,   1, , 1i i i i� �� �T T 0 ;  

hence, the equation (4.2.67') corresponds to the equilibrium of the point iP , subjected 
to the action of the concentrated force iF  and of the tensions , 1i i �T  and , 1i i �T  
(Fig.4.50,b). Integrating the equation 

� �
1

1

d ( )
d

n

i i
i

s
s s

s

�

�
� B � �T

F 0 ,  
 

we get 

� �
1

0
1

( )
n

i i
i

s s s
�

�
� � L � �T F R ; (4.2.68) 
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we put thus in evidence the tension at each point of the thread, excepting the points of 
discontinuity, but at these points appear the corresponding jumps. We denote by 

0 01�R T  the constraint force applied at the point 0P . If ( )sr  is the position vector of 
a point of the thread and if we take into account the formula (4.1.9), then we obtain 

� �
1

0
1

d ( ) 1 1( ) ( )
d

n

i i
i

s
s s s s

s T T

�

�

$ %� � � � L � �* +& '
=

r
T F R , 

 

where 

� �
21

0
1

n

i i
i

T s s
�

�

$ %� � � L �* +& '
T R F . (4.2.68') 

Noting that the unit vector of the tangent to the curve of equilibrium has only 
discontinuities of the first species and taking the origin at the point 0P , we get, by 
integration, 

� � � �

( 1)

1
0 0

12 2 0

0 0

( )

k

j k

i ik
i i

jj k
j jj
i i

i i

s s s s s

�

�
� �

�
�

� �

� � � �
$ % $ %
* + * +
& ' & '

 


 

F F
r

F F

, (4.2.68'') 

for 1k ks s s �� � , 0,1,2,..., 1k n� � , with 0 0s �  and ns L� , where L  is the 
total length of the thread; as well, it was denoted 0 0�F R . We have thus obtained the 
vector equation of the searched funicular polygon. 

2.2.4 Threads constrained to stay on a surface 
We consider first of all a thread C  staying on a smooth surface S , supposing that 

the external forces which act on it are distributed; in the case of concentrated forces, 
one can adapt the results of the preceding subsection. Let be 

� �1 2 3, , 0f x x x �  (4.2.69) 

Figure 4.51.  Equilibrium of a thread on a frictionless surface (a)  
or on a surface with friction (b). 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 284 

the equation of the surface, with respect to a right-handed orthonormed frame of 
reference iOx , 1,2, 3i � . An element ds  of the thread is acted upon by a given 
external force ( )ds sp  and by the constraint force ( )ds sR , where grad f��R  ( R  
is along the normal to the surface), �  being an indeterminate scalar (Fig.4.51,a). The 
equation of equilibrium is written in the form 

d ( )
( ) ( )

d
s

s s
s

� � �
T

p R 0  (4.2.70) 

or, in projection on the co-ordinate axes, 

� � ,
dd

0
d d

i
i i

x
T p f

s s
�� � � ,   1,2, 3i � . (4.2.70') 

Thus, the equations (4.2.69), (4.2.70') and the relation (4.2.59') allow the determination 
of the unknowns T  and � , and of the co-ordinates 1 2 3, ,x x x  as functions of s . 

Projecting the equation 

d ( ) d ( )
( ) ( ) ( ) ( )

d d
T s s

s T s s s
s s

� � � �
=

= p R 0  
 

on the axes of the intrinsic Darboux’s trihedron and taking into account the first 
formula (4.1.25), we get the equations 

d 0
d
T p
s �� � ,   0g

g

T p
�

� � ,   0n
n

T p R
�

� � � . (4.2.71) 

In particular, if the thread is not acted upon by an external given load ( �p 0 ), then 
constT � , 1/ 0� �  and / nR T �� � , the thread staying along a geodesic line of 

the surface (case mentioned in Subsec. 2.2.1); if 0T � , then the thread is not 
extended, its form being arbitrary. 

If the surface S  is rough, then its reaction on an element of thread will have, besides 
the normal component ( )ds sR , a tangential component ( )ds sG  too, called force of 
sliding friction. The equations of equilibrium in Darboux’s trihedron become 

d cos 0
d
T p
s � � �� � � ,   sin 0g

g

T p � �
�

� � � ,   0n
n

T p R
�

� � � , (4.2.72) 

where � � GG , while �  is the angle made by the force G  with the unit vector =  
(Fig.4.51,b), tangent to the thread; according to Chap. 3, Subsec. 2.2.12, one must have 

fR� �  (4.2.72') 

for equilibrium, where f  is a Coulombian coefficient of friction (of sliding). It follows 
that, for the same external load ( )sp , the configurations of equilibrium C  of the thread 
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on the surface S  will be contained between two limit curves 1C  and 2C . In the limit 
case (the sign “=” in the relation (4.2.72')), assuming that the thread is not acted upon 
by external loads ( �p 0 ), we may write 

d cos 0
d
T fR
s

�� � ,   sin 0
g

T fR �
�

� � ,   0
n

T R
�

� � . (4.2.73) 

Eliminating R  and �  between these relations, we obtain the differential equations 

ext 2 2

ext

d 1 tan d
n

T f s
T

�
�

� 2 �  
 

for the extreme values of the tension T , where we took into account the formulae 
(4.1.19), (4.1.21), �  being the angle formed by the normal n  to the surface S  with the 
principal normal J  to the line C . We obtain thus Euler’s inequalities 

maxmin ( )T T s T� � , (4.2.74) 

with 

0min eT T ��� ,   max 0eT T �� ,   2 2
0

1 tan ( )d
( )

s

n
f� � � �

� �
� �� , (4.2.74') 

where 0T  is the tension at the point 0P , origin of the considered co-ordinates. 
Denoting tanf �� , where �  is the angle of sliding friction, we notice that, for 

equilibrium, one must have � �� . If the thread is along a geodesic line of the surface, 
then 0� � , so that 

0

d
( )

s
f ��

� �
� � , (4.2.75) 

where, on the basis of Meusnier’s formula (4.1.19), n� �� , �  being the radius of 
curvature of the curve C . 

Figure 4.52.  Thread wrapped up a circular cylinder along a director curve of it. 

In particular, we consider the case of a thread wrapped up a circular cylinder, along 
a director curve of it (a geodesic line of the cylinder), case which appears often in 
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practice. Let 1P  and 2P  be two extreme points of the thread on the rough cylinder 
(Fig.4.52). We may calculate 

0 0

d d
( )

s
f f f

��� � �
� �

� � �� � , 
 

so that Euler’s relation 

2

1
e ef fT

T
� �� � � , (4.2.76) 

where �  is the arc, measured in radians, covered by the thread, must hold for 
equilibrium. Because fe �  increases rapidly with � , for great values of this argument, 
one may equilibrate a force of great intensity, which acts at an extremity of the thread, 
by a force of a relative small intensity, applied at the other extremity; for instance, for 

0.25f � , a contact of the thread on half of the circumference ( � �� ) or on a whole 
circumference or on two or four circumferences, we are led to an amplification of the 
tension in the thread 2.19  times or 4.81  times or 23.14  times or 535.49  times, 
respectively. 

A geodesic line of the cylinder is – in general – a helix, and we can make an 
analogous study in this case too. 
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Chapter 5 

KINEMATICS 

Kinematics deals with the motion of mechanical systems in time, without taking into 
account their masses and the forces that act upon them; thus, its object of study is the 
geometry of motion. We consider the kinematics of the particle, developing the notions 
of velocity and acceleration; as well, the kinematics of rigid solids and the kinematics of 
mechanical system – in general – are dealt with, emphasizing the relative motion too. 

1. Kinematics of the particle 
We consider the motion of a particle (material point) with respect to a fixed frame of 

reference, emphasizing thus its trajectory, velocity and acceleration; the results thus 
obtained are particularized for some important cases. 

1.1 Trajectory and velocity of the particle 
In what follows, we define the trajectory and the velocity of a particle, as well as the 

horary equation of motion; we specify then the velocity in curvilinear co-ordinates and 
in some particular systems of co-ordinates. 

1.1.1 Trajectory. Horary equation of motion. Velocity 
We have introduced in Chap. 1, Subsec. 1.1.4 the notion of frame of reference with 

respect to which the motion is studied, using arbitrary curvilinear co-ordinates or, in 
particular, spherical co-ordinates, cylindrical co-ordinates, or orthogonal Cartesian 
co-ordinates. As well, in Chap. 1, Subsec. 1.1.5, we have shown that a particle P  
describes a trajectory C  (Fig.1.5), of vector equation (1.1.6) or of parametric 
equations (1.1.16')-(1.1.16iv), which define the law of motion. The functions which are 
involved must be continuous and bounded in modulus for " #0 1,t T t t� � ; they must 
be differentiable too, excepting – eventually – a finite number of moments, 
distinguishing thus between a continuous motion (the functions are everywhere of class 

2C ) and a discontinuous motion. If the trajectory is a rectifying curve, the mapping 
(1.1.17) (or (1.1.18')) is the horary equation of motion. 

By analogy with the relation (1.1.18'), a particle P  verifies the law of motion 

� �0;t�r r r ,   � �0;i i ix x t x� ,   1,2, 3i � , (5.1.1) 

287  
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where 0
0 j jx�r i  corresponds to the position 0P  of the particle P  at the initial moment 

0t . 

 
Figure 5.1.  Trajectory and velocity of a particle. 

It was also shown that the first derivative �r  is an invariant with respect to a change 
of fixed frame of reference. To emphasize the mechanical significance of this 
derivative, we will study how the particle P  moves on the trajectory. Let P  and P �  be 
the positions of the particle at time t  and time t � , respectively; the mean velocity of 
the particle in the interval of time t t� �  is defined in the form (Fig.5.1) 

mean
( ) ( )t tPP

t t t t t t
�� � ��

� � �
� � �� � �

�����
r rr rv . (5.1.2) 

Analogously, the mean magnitude of the velocity is given by 


mean

( ) ( )s t s tPP s sv
t t t t t t

�� � ��
� � �

� � �� � �
; (5.1.2') 

we notice that this magnitude coincides with the modulus of the mean velocity only by 
identifying the arc PP �  with the chord PP � . Passing to the limit, we obtain the 
instantaneous velocity (the velocity at the point P ) 

meanlimP t t��
�v v ,   meanlimP t t

v v
��

� , (5.1.3) 

supposing that these limits exist; in this case, v�v . It follows that the velocity of a 
particle P  is given by (for the sake of simplicity, we renounce to the index P ) 

� �v r , (5.1.4) 

and is expressed by the derivative of the position vector with respect to time 
(corresponding to the formulae (1.1.20')). We notice that the instantaneous velocity 
(which, as a matter of fact, will be used) is an ideal notion, because only mean 
velocities can be practically measured; the approximation is the best if one considers, in 
the series of the mean velocities, terms which correspond to as small as possible 
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difference t t� � , tending to the instantaneous velocity. The components of the velocity 
in orthogonal Cartesian co-ordinates are given by 

i iv x� � ,   1,2, 3i �  (5.1.4') 

ix�  being the velocities of some particles situated in the projections of the point P  on 
the three axes of co-ordinates. It results that the modulus of the velocity is given by 

i i i iv v v x x s� � �� � � , (5.1.5) 

where we took into consideration the relations (1.1.18). The velocity v  of the particle 
P  on the trajectory (which is a scalar) is thus the modulus of the velocity v  (vector 
quantity); the horary equation of motion is obtained by the integration of the differential 
equation 

d ( )ds v t t� , (5.1.5') 

obtaining the formula (1.1.18'). If 0( ) constv t v� � , the motion is called uniform; in 
this case 

0 0s v t s� � . (5.1.6) 

Passing to the limit in formula (5.1.3) we notice that the oriented segment PP �
�����

 
situated along the chord PP �  tends to the tangent to the trajectory at the point P , the 
velocity v  enjoying this property. In intrinsic co-ordinates (after Frenet’s trihedron) we 
may thus write 

v v� � ,   0v v� �� � , (5.1.7) 

so that 

v�v = . (5.1.7') 

We notice that the velocity vector is applied at the point P , its direction 
corresponding to the direction of the motion. 

1.1.2 Velocity of a particle in curvilinear co-ordinates 
Let be a system of curvilinear co-ordinates 1 2 3, ,q q q , linked to the position vector 

and to the orthogonal Cartesian co-ordinates by relations of the form (A.1.32), (A.1.33). 
Taking into account the formulae (A.1.35) and the notation (A.1.36), the velocity of a 
particle is expressed in the form 

i i i i i
i
q q v

q
(

� � �
(

� �rv e e , (5.1.8) 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 290 

where i iv q� �  are the components of the velocity (as a matter of fact, they are the 
contravariant components, but we do not use this notion, neither the corresponding 
notations) in the frame of reference specified by the basis’ vectors ie . The modulus of 
the velocity is given by 

2
ij i jv g q q� � � , (5.1.8') 

where we use the formula (A.1.37) of the element of arc. 
Taking into account the notations (A.1.40), we may write 

3

1
i i i

i
H v

�
� v i ,   versi i�i e , (5.1.9) 

Figure 5.2.  Velocity of a particle in curvilinear co-ordinates. 

1 1H v , 2 2H v , 3 3H v  being the physical components of the velocity v  (Fig.5.2). 
Analogously, the orthogonal projections of the velocity v  on the basis’ vectors ie  will 
be given by ( ) iiv � �v i , hence by (without summation for 1,2, 3i � ) 

3

( )
1

ij
ii

jj

g
v v

H�
�  . (5.1.10) 

In the case of orthogonal curvilinear co-ordinates 0ijg � , i j� , so that (without 
summation for 1,2, 3i � ) 

( ) i iiv H v� ; (5.1.11) 
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hence, the orthogonal projections of the velocity are the physical components of it. If 
the frame of reference is orthonormed, then 1 2 3 1H H H� � � , obtaining again the 
components (5.1.4'). 

1.1.3 Important particular cases 
In spherical co-ordinates, we obtain 

r rv v v� �� �� � �v i i i , (5.1.12) 

where 

rv r� � ,   v r� �� � ,   sinv r� ��� � , (5.1.12') 

taking into account the results in App., Subsec. 1.1.5; the modulus of the velocity is 
given by 

2 2 2 2 2 2 2sinv r r r� ��� � ��� � . (5.1.12'') 

Analogously, in cylindrical co-ordinates we may write 

r r z zv v v� �� � �v i i i , (5.1.13) 

where 

rv r� � ,   v r� �� � ,   zv z� � , (5.1.13') 

the modulus of the velocity being given by 

2 2 2 2 2v r r z�� � ��� � ; (5.1.13'') 

in particular, in polar co-ordinates (in the plane 1 2Ox x ), we have 

r rv v� �� �v i i ,   rv r� � ,   v r� �� �  (5.1.14) 

and 

2 2 2 2v r r �� � �� , (5.1.14') 

corresponding to the results in App., Subsec. 1.1.2. 

1.1.4 Areal velocity 
In the case of a plane trajectory C , we may define a quantity of the nature of a 

velocity, which characterizes the variation of the sectorial area between two vector radii 
and the arc of the trajectory, when the particle P  describes the latter one. Let thus be 
the sectorial areas A  and A�  at the moments t  and t � , respectively. Noting that 
(Fig.5.3) 
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� �
� �

� �
� �

2 2

2 2
r rA A
t t t t t t
� � � �� � ��� ��

� �
� � �� � �

 
 

and passing to the limit for t t� � , we obtain the areal velocity A� � �  (in the plane 
1 2Ox x ), given by 

21 1
2 2
r rv�� �� �� . (5.1.15) 

Figure 5.3.  Areal velocity of a particle. 

Vectorially, we have 

3
1
2

�� � 3i r vI , (5.1.15') 

where we took into account rr�r i , 3r �3 �i i i  and the first formula (5.1.14); it 
follows also that 

� �1 2 1 2
1
2
x x x x� � �� � . (5.1.15'') 

If the trajectory C  is a tortuous curve, we may consider formulae of the form 
(5.1.15'), (5.1.15'') for the projections of the particle P  on the three co-ordinate planes. 
We introduce thus the areal velocity 

1 1
2 2 i i�� 3 � 3 ��r v r r iI ,   1

2 jijk kx x� � � � , (5.1.16) 

which characterizes the variation of the area of the sector between two vector radii on 
the lateral surface of the cone of vertex O  and directrix C . 

In particular, if const� �
������

CI , then we may write 

1 ( ) 0
2

� 3 � � �r r v C r ;  

hence, the trajectory C  is a plane curve, which passes through the origin O  of the co-
ordinate axes. In the case of a vanishing areal velocity ( �C 0 ), the velocity v  has the 
same direction as the position vector r , the trajectory being rectilinear. 
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We notice that one can introduce the torsor of the velocity v  with respect to the pole 
O  in the form 

, -( ) ,2O= �v v I . (5.1.16') 

1.2 Acceleration of the particle 
We define – in the following – the acceleration of a particle, by introducing the 

velocity hodograph; we calculate the acceleration in curvilinear co-ordinates and in 
some particular cases of co-ordinates. We introduce accelerations of higher order too, 
as well as the acceleration of a discontinuous motion. 

1.2.1 Velocity hodograph. Acceleration 
Let M  be an arbitrary pole at which we apply the vector V , equipollent to the 

velocity vector v ; if the particle P  describes the trajectory C , then the extremity Q  
of the vector V  describes a curve 	 , called the velocity hodograph (Fig.5.4). 
Observing that MQ �

�����
V  plays the rôle of a vector radius, it results that the velocity by 

which the point Q  is moving on the curve 	  is the velocity of the velocity of the 
particle P , equipollent to the acceleration a  (introduced in Chap. 1, Subsec.1.1.5), 
which is invariant with respect to a change of a fixed frame of reference. 

Figure 5.4.  Hodograph of velocity. 

Let P  and P �  be two positions of the particle on the trajectory C . We introduce the 
mean acceleration 

mean t t
� �

�
� �

v va ; (5.1.17) 

the instantaneous acceleration (acceleration at the point P ) becomes 

meanlim
t t��

�a a . (5.1.17') 

Taking into account the velocity hodograph, we may write 

� � ���a v r ; (5.1.18) 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 294 

the acceleration, applied at the point P , is thus the derivative of the velocity with 
respect to time or the second derivative of the position vector with respect to time. 

The components of the acceleration in orthogonal Cartesian co-ordinates are 
expressed in the form 

i i ia v x� �� �� ,   1,2, 3i � , (5.1.18') 

ix��  being the accelerations of the projections of the point P  along the three axes of co-
ordinates. The modulus of the acceleration is given by 

i i i i i ia a a v v x x� � �� � �� �� . (5.1.18'') 

Starting from (4.1.7'), we obtain, by differentiation, 

d
d

v v v v s
s

� � � �� � � �a =
= = = ,  

wherefrom 

a v� � � ,   
2va� �

� ,   0a� � , (5.1.19) 

so that 

a a� �� �a = J ,  (5.1.19') 

taking into account the first formula of Frenet (4.1.10). The component of the 
acceleration along the binormal vanishes, hence the acceleration is contained in the 
osculating plane. The modulus of the acceleration may be written in the form 

4
2

2
va v
�

� �� . (5.1.19'') 

We notice that, in the case of a uniform motion ( constv � ), the tangential 
acceleration vanishes; if consta� � , then the motion is uniformly varied (uniformly 
accelerated or uniformly decelerated as a�  and v  have the same sign or are of opposite 
signs). The normal acceleration (the acceleration a  too) is directed always towards the 
interior of the trajectory (towards the centre of curvature), being centripetal ( 0a� � ); 
it vanishes only at the inflection points of the trajectory or in the case of a rectilinear 
motion (1/ 0� � ). If the acceleration vanishes ( �a 0 , 0a a� �� � ), the motion of 
the particle is rectilinear and uniform. Starting form the areal velocity (5.1.16), we may 
define the areal acceleration in the form 

1 1
2 2 i i�� 3 � 3 � �� ��r a r r iI ,   1

2i jijk kx x� � �� �� ; (5.1.20) 
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in this case, the torsor of the acceleration with respect to the pole O  is given by 

, -( ) ( ) ,2O O= � = � ��a v a I . (5.1.20') 

1.2.2 Approximation of the motion of a particle in the neighbourhood of a given 
position. Deviation 

Let P  and P �  be two positions of a particle, corresponding to the moments t  and 
t � , respectively. Assuming that the function ( )tr  is of class 2C , we may use the 
formula (A.1.20) of Taylor type in the form 

21( ) ( ) ( ) ( ) ( ) ( ) ( , )
2

t t t t t t t t t t t� � � �� � � � � � �� ��r r r r M ,  

Figure 5.5.  Deviation of a particle. 

where ( , )t t t� �M  represents the rest. We can thus approximate the motion of the 

particle P  in the neighbourhood of the point P  by 1 1 2 2PP PP P P P P� �� � �
����� ��������� �����

 
(Fig.5.5), with 

1 ( ) ( )PP t t t�� �
����

�r ,   2
1 2

1 ( ) ( )
2

P P t t t�� �
�����

��r ,   2 ( , )P P t t t� �� �
�����

M ; (5.1.21) 

for a fixed t , we may write 

1d
( )

d
PP

t
t

�
�

����
�r ,   1 2d

( ) ( )
d
P P

t t t
t

�� �
�

�����
��r ,   

2
1 2
2

d
( )

d
P P

t
t

�
�

�����
��r . (5.1.21') 

We can thus state 
Theorem 5.1.1. The continuous motion of a particle P  may be approximated, at a 
given moment t , in a neighbourhood of first order (the segment PP �

�����
), by a rectilinear 

and uniform motion along the tangent at P  to the trajectory, where the velocity is 
equal to the velocity of the particle at P . As well, in a neighbourhood of second order 
(the segments 1PP

����
 and 1 2P P

�����
), the motion can be approximated by a succession of two 

rectilinear motions: the motion previously presented, to which a uniform varied motion 
with the acceleration of the particle at P  is added. 
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The time interval t t� �  is very small in a vicinity of first order; in a vicinity of 
second order, this interval is somewhat greater, but still small, so that the segment 

2P P � �
�����

M  is negligible. The vector 1 2P P
�����

 is called deviation; its rôle is to bring back 
the particle P  from the tangent (on which it moves if it is not acted by a force, 
according to the principle of inertia) on the trajectory C . 

1.2.3 Acceleration of a particle in curvilinear co-ordinates 
Starting from the expression (5.1.8) of the velocity, by differentiation, one obtains 

2

,j j j j jk j k k
j jk
q q q q q q

q q q
( (

� � � �
( ( (

� � �� � � ��r ra e e . (5.1.22) 

Noting that 

j jk k k kja a g� � � �a e e e ,   ij i
kj kg g 
� ,  

we may write 

" #, ,il il il il
i j j j i jl l j k k l ka g g q q g q q jk l g q q� � � � � � � �� � �� �� � �a e e e e e ,  

using the notations introduced in App., Subsec.1.1.5, where " #,jk l  is Christoffel’s 
symbol of first species. With the aid of Christoffel’s symbol of second species (A.1.45), 
we may write the components (contravariant components) of the acceleration in the 
frame ie  in the form 

 i i j k

i
a q q q

j k
� N� �� �  O
� �! P

�� � � ,   1,2, 3i � . (5.1.22') 

The physical components of the acceleration are 1 1a H , 2 2a H , 3 3a H , while the 
orthogonal projections of the acceleration on the basis’ vectors ie  are written in the 
form (without summation with respect to 1,2, 3i � ) 

3

( )
1

ij
ji

ij

g
a a

H�
�  . (5.1.23) 

In the case of orthogonal curvilinear co-ordinates, we have (without summation with 
respect to 1,2, 3i � ) 

( ) i iia H a� , (5.1.23') 

so that the orthogonal projections of the acceleration are its physical components. For 
an orthonormed frame of reference ( 1 2 3 1H H H� � � ) we find again the 
components (5.1.18'). 
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Using a method due to Lagrange, we can calculate the components of the 
acceleration also in a movable system of curvilinear co-ordinates, given by 

� �1 2 3, , ;q q q t�r r . (5.1.24) 

We have 

j j j
j
q q

q t
( (

� � � �
( (

�� �r rv e r ,  

wherefrom 

j
j jq q

( (
� �

( (�
v r e ;  

then 

d d d
d d di

i i it q t q t q
( ( (� � � �� � � � � � �	 
 	 
( ( (� � � �

v r r ra e v v . 
 

We notice that 

2 2d
d j

i j i i
q

t q q q t q
( ( (� � � �	 
( ( ( ( (� �

�r r r ,   
2 2

j
i i j i

q
q q q q t
( ( (

� �
( ( ( ( (

�v r r ; 
 

because the vector function r  is of class 2C , it follows 

� �d d
d di i it q q q t

( ( (� � � �	 
( ( (� �
r v r , 

 

so that the operators d/dt  and / iq( (  are permutable. Finally, we get (covariant 
components of the acceleration) 

2 2d 1 d 1
d 2 d 2i

i i i i

v v
t q q t q q

( ( ( (� �� �� � � � � � �	 
 	 
( ( ( (� � � �

v va e v v , 
 

wherefrom 

2 21 d
2 d
ij

i
j j

v v
a g

t q q
( ($ � � %

� �	 
* +( (& � � '�
,   1,2, 3i � , (5.1.25) 

obtaining thus Lagrange’s formula. 
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1.2.4 Important particular cases 
Taking into account the results in App., Subsec. 1.1.5, we obtain, in spherical co-

ordinates, 

r ra a a� �� �� � �a i i i , (5.1.26) 

with 

2 2 2sinra r r r� ��� � ���� � , 

� �2 2 21 d2 sin cos sin2
d 2

ra r r r r
r t� � � � �� � ��� � � � ��� � �� � � , 

� �2 21 dsin 2 sin 2 cos sin
sin d

a r r r r
r t� �� �� ��� ��

�
� � � ���� � � � � . 

(5.1.26') 

Analogously, in cylindrical co-ordinates, we get 

r r z za a a� �� � �a i i i , (5.1.27) 

where 

2
ra r r�� � ��� ,   2a r r� � �� ��� �� ,   za z� �� . (5.1.27') 

In particular, in polar co-ordinates, in the plane 1 2Ox x , we may write 

r ra a� �� �a i i ,   2
ra r r�� � ��� ,   � �21 d2

d
a r r r

r t� � � �� � ��� � �� . (5.1.28) 

1.2.5 Accelerations of higher order 
As we have seen in Chap. 1, Subsec. 1.1.4, the derivatives of higher order of the 

position vector are invariant with respect to changes of a fixed frame of reference; these 
derivatives are identified with the derivatives of the acceleration a , which will be 
called acceleration of first order ( � �1�a a ). We obtain thus accelerations of higher 
order: the acceleration of second order ( � �2 � �� ���a a r ), the acceleration of third order 

( � �3 � � ���� ��a a r ) and – in general – the acceleration of nth order, given by 

� �

1 1

1 1
d d
d d

n n

n n nt t

� �

� �� �
a ra . (5.1.29) 

Although the accelerations of higher order do not intervene directly in the Newtonian 
model of mechanics, which needs only the acceleration of first order, one considers that 
some mechanical phenomena (collisions, seismic phenomena, etc., which take place by 
a rapid variation of the intensity of the force) may lead to other mathematical 
modelling, in which these accelerations play an important rôle. 
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Starting from formulae (5.1.19), (5.1.19'), which give the acceleration of first order 
with the aid of its intrinsic components (along Frenet’s trihedron axes), and using 
Frenet’s formulae (4.1.10), (4.1.10'), we get 

� �
� � � � � �2 2 2

2 a a a� � �� � �= J 5a , (5.1.30) 

where 

� �
3

2
2
va v� �

� ��� ,   � �2 2
23

vva v�
�

� �
� �

�� ,   � �
3

2 va� ��
� �

�
. (5.1.30') 

We notice that the acceleration of second order has a component along the binormal 
too, which vanishes only in the case of a rectilinear trajectory or, more general, of a 
torsionless trajectory (in the osculatory plane). The acceleration of second order along 
the principal normal vanishes (for a curvilinear trajectory) if 

3
03

0

v
v �

�
� , (5.1.31) 

where 0�  and 0v  correspond to the moment 0t t�  (for instance, in the case of a 
uniform circular motion). 

Obviously, the acceleration of second order may be introduced also with the aid of 
the hodograph of the acceleration of first order. 

1.2.6 Acceleration in case of a discontinuous motion 

In the case in which the position vector is a continuous function on " #,t t� �� , while 
the velocity and the acceleration are continuous on the same interval, excepting a finite 
number of moments " #,it t t� ��� , 1,2,...,i n�  (piecewise continuous), to which 
correspond discontinuities of the first species, that is 

� � � �0 0i it t� � �v v ,   � � � �0 0i it t� � �a a , (5.1.32) 

it is necessary to use methods of the theory of distributions. The integrals 

( )d
t

t
t t

��

�� v ,   ( )d
t

t
t t

��

�� a  (5.1.33) 

do exist in these conditions. 
Taking into account the formula (1.1.51), we may write 

� �
22

2 2
1

d ( ) d ( )
d d

n

i i
i

t t
t t

t t �
� � B �

�r r
V , (5.1.34) 
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� � � �0 0i i it t� � � �V v v ,   1,2,...,i n� , (5.1.34') 

represents the jump of the velocity, corresponding to the moment of discontinuity 
it t� , while the sign “tilde” is for the derivative in the usual sense; we may thus state 

Theorem 5.1.2. The acceleration of a particle in the sense of the theory of distributions 
is equal to the distribution defined by the acceleration of the particle in the usual sense, 
where the latter one exists, to which is added the sum of the products of the velocity 
jump, of the particle by the Dirac distribution. 

We introduce the notations 

2

2
d ( )

( )
d
t

t
t

�
r

a ,   
2

2
d ( )

( )
d
t

t
t

�
�

� r
a ,   � �

1
( )

n
c i i

i
t t t

�
� B �a V , (5.1.34'') 

where ( )ta  is the acceleration in the sense of the theory of distributions, ( )t�a  is the 
acceleration in the usual sense, while ( )c ta  is the complementary acceleration due to 
the discontinuities. With these notations, the relation (5.1.34) becomes 

( ) ( ) ( )ct t t� ��a a a . (5.1.34''') 

The acceleration in the sense of the theory of distributions will be called generalized 
acceleration too. 

1.3 Particular cases of motion of a particle 
We consider, in what follows, some particular cases of motion: the rectilinear 

motion, the circular motion, the parabolic motion, the helical motion, as well as the 
cycloidal motion. 

1.3.1 Parabolic and rectilinear motion 

We consider the particular case 0 const� �
������

a a ; integrating, we get 

� �0 0 0t t� � �v a v ,   � � � �2
0 0 0 0 0

1
2
t t t t� � � � �r a v r , (5.1.35) 

where we have supposed that 0�v v  and 0�r r  at the initial moment. We notice that, 
taking a new origin of the frame of reference at 0�r r , nothing of the generality of the 
trajectory is lost; the position vector r  is thus a linear combination of the constant 
vectors 0v  and 0a , hence, it belongs to a fixed plane, so that the trajectory is a plane 
curve. We suppose that the trajectory is contained in the plane 1 2Ox x ; we may thus 
write the parametric equations in the form (Fig.5.6) 

� �0
01 1( )x t v t t� � ,   � � � �20 0

0 02 2 2
1( )
2

x t a t t v t t� � � � , (5.1.35') 

where 
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where, for the sake of simplicity, we take the 2Ox -axis along the acceleration 0a . 
Eliminating the time t , we get 

� �

0 0
2 22

2 1 1020 112

a v
x x x

vv
� � ; (5.1.36) 

hence, the trajectory is a parabola, the axis of which is parallel to the acceleration 0a ; 
the vertex Q  of the parabola is of co-ordinates (we notice that 0

1v , 0
2 0v � , 0

2 0a � ) 

0 0
1 2

1 0
2

v v
x

a
� � ,   

� �20
2

2max 0
22
v

x
a

� � , (5.1.36') 

and is obtained by the particle at the moment 0 0
0 2 2/t t v a� � . We may write 

Figure 5.6.  Parabolic motion of a particle. 

0 0
2 2 2max2v a x� � , (5.1.37) 

obtaining thus Torricelli’s formula, which gives the component 0
2v  of the initial 

velocity of the particle which attains the ordinate 2maxx , assuming an acceleration of 
modulus 0

0 2a� �a . These results stay at the basis of studies on external ballistics. 
In the particular case in which 0

1 0v � , the motion is rectilinear; if we assume that 
the motion is along an Ox -axis, then the second relation (5.1.35') allows to write the 
equation of motion (which is – at the same time – the horary equation) in the form 

� � � �2
0 0 0 0 0

1( ) ( )
2

x t s t a t t v t t x� � � � � � , (5.1.38) 

where we put into evidence the initial position (eventually another one that the origin 
O ); there results 

� �0 0 0( )v t a t t v� � � . (5.1.38') 
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If 0 0a � , then the motion is uniform and the diagram of motion is given in 
Fig.5.7,a. As a matter of fact, the reciprocal implication is also true; indeed, if 0 �a 0 , 
then 

0�v v ,   � �0 0 0t t� � �r v r , (5.1.39) 

the trajectory being a straight line. If 0 0a � , then the motion is uniformly varied; 
eliminating the time t  between the relations (5.1.38), (5.1.38'), we obtain Torricelli’s 
formula in the form 

 
Figure 5.7.  Diagram of a rectilinear motion of a particle: uniform (a) 

 and uniformly varied (b). 

� �2
0 0 02v v a x x� � � ; (5.1.40) 

in particular, if the particle has not initial velocity at the origin O , then we get 

02v a x� . (5.1.40') 

If, for a certain interval of time, the velocity and the acceleration have the same 
direction, then the motion is accelerated, on the contrary, the motion is decelerated. In 
the case of a varied motion, it is possible to have both phases (for instance, a motion the 
diagram of which is given in Fig.5.7,b) or only one of them. 

1.3.2 Circular motion 
If the trajectory is a circle of radius R  ( rR�r i ), then the motion is called circular 

(Fig.5.8). By means of the formulae (5.1.7), (5.1.19) or of the formulae (5.1.14), 
(5.1.28), we obtain 

� 37v r ,   v v v s R� � �� � � �� ,   0s R s�� � , (5.1.41) 
2�� 3 ��7a r r ,   a a R� � �� � � ,   2

ra a R� �� � � , 4 2a R � �� � � , 
 (5.1.41') 

where we have introduced the angular velocity �  and the angular acceleration � , 
defined by the relations 
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3( ) ( )t t��7 i ,   3( ) ( ) ( )t t t�� �� �8 7 i ,   ( ) ( )t t� �� � ,   ( ) ( ) ( )t t t� � �� � ��� . 
 (5.1.42) 

Figure 5.8.  Circular motion of a particle. 

If 0� �� , const� �  (and constv � ), then the motion is uniform and we have 

0t� � �� � ,   � �0s R t� �� � ,   v R�� ,   0a� � ,   2a a R� �� � . (5.1.43) 

1.3.3 Helical motion 
Let be a particle in a uniform motion on a helix of pitch 2 tanp R� �� , situated on 

a circular cylinder of radius R  (Fig.5.9). The trajectory is given by 

 
Figure 5.9.  Helical motion of a particle. 

1 cosx R t�� ,   2 sinx R t�� ,   3 2
px t�
�

� . (5.1.44) 

Hence, 

1 sinv R t� �� � ,   2 cosv R t� �� ,   3 2
pv �
�

� , (5.1.45) 
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2
2

2 cos4
p R

v R
��
��

� � � ; (5.1.45') 

then 

2
1 cosa R t� �� � ,   2

2 sina R t� �� � ,   3 0a �  (5.1.46) 

and 

2a R�� . (5.1.46') 

Thus, the motion is uniform and the acceleration is reduced to the normal 
acceleration given by (5.1.20). Comparing to (5.1.46') and taking into account (5.1.45'), 
we obtain the radius of curvature 

2

2 24 cos
p RR
R

�
� �

� � � ; (5.1.47) 

the principal normal is parallel to the plane 1 2Ox x  and passes through the 3Ox -axis; 
hence, the acceleration a  enjoys the same property (as it results from the formulae 
(5.1.46)). 

1.3.4 Cycloidal motion 
Another interesting particular case of motion is that of a particle P  on a cycloid; that 

one is the locus of a point of a circle (for instance, on the peripheral of a wheel in a 
vertical plane) of radius R , which is rolling without sliding on a straight line 
(horizontal) (Fig.5.10). The imposed condition leads to 

 
Figure 5.10.  Cycloidal motion of a particle. 

t� �� ,   0v
R

� �  (5.1.48) 

where 0 const�
������

v  is the velocity of the centre O �  of the circle, supposed to have a 
uniform motion. The parametric equations of the trajectory are 

so that 
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1 ( sin )x R t t� �� � ,   2 (1 cos )x R t�� � , (5.1.49) 

wherefrom one obtains the components of the velocity and of the acceleration 

1 (1 cos )v R t� �� � ,   2 sinv R t� �� , (5.1.49') 
2

1 sina R t� �� ,   2
2 cosa R t� �� , (5.1.49'') 

respectively. 
One can easily prove that the modulus of the velocity and of the acceleration are 

expressed in the form 

02 sin 2 sin
2 2
t tv R v AP� �� �� � � ,   2 2a R O P� ��� � , (5.1.49''') 

respectively; the acceleration a  is directed towards the centre O �  of the circle. Hence, 
from the point of view of the velocities, the particle behaves as in a uniform motion of 
angular velocity �  around the point A ; what concerns the accelerations, it behaves as 
in a rotation around the point O � . 

2. Kinematics of the rigid solid 
In the study of the motion of a rigid solid, it is necessary to study the motion of an 

arbitrary point P  of it with respect to a fixed frame of reference �R  of orthogonal 
Cartesian co-ordinates 1 2 3O x x x� � � � . By means of some basic kinematics formulae which 
are deduced, one considers some particular cases of motion; hence, one can pass to the 
general case of motion of the rigid solid. 

2.1 Kinematical formulae in the motion of a rigid solid 
We put in evidence, in what follows, some results concerning the determination of 

the velocity and the acceleration in the motion of a rigid solid. 

2.1.1 Velocity in the motion of the rigid solid 

Let be a movable frame of reference R  of orthogonal Cartesian co-ordinates 
1 2 3Ox x x , in a rigid linkage with the rigid solid (hence, in motion with respect to the 

fixed frame of reference �R , specified by the constant unit vectors j�i , 1,2, 3j � ); 
obviously, we use right orthonormed frames of reference. We denote by 0�r  the 
position vector of the pole O  with respect to the pole O �  and by j jx� � ��r i  the position 
vector of the point P  with respect to the frame �R ; analogously, the position vector 
of the same point P  with respect to the movable frame of reference is j jx�r i , where 

ji , 1,2, 3j � , are the unit vectors of the frame R  (Fig.5.11). We mention that, during 

the motion, const�
������

r  with respect to the moving frame R. We notice that the latter 
frame can be determined by the vector 0r  and the unit vectors ji , 1,2, 3j �  (as a 
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matter of fact, one of the unit vectors and the plane formed by the other two unit vectors 
are sufficient), that is 2+1=3 independent scalar quantities; this result corresponds to the 
six degrees of freedom of the rigid solid. The position of the point P  with respect to 
the frame �R  is given by 

Figure 5.11.  Motion of the rigid solid with respect to a fixed and  
a movable frame of reference. 

0� �� �r r r . (5.2.1) 

Using the formula (A.2.37) which links the absolute derivative (with respect to the 
frame �R ) to the relative derivative (with respect to the frame R ), we may write 

d
dt

� � 3� 7
rr r , (5.2.2) 

where 7  is a vector specified by (A.2.36), the same for all the points of the rigid solid 
(hence, an invariant); we took into account that the derivative of r  with respect to the 
movable frame of reference is equal to zero ( / t( ( �r 0 ). For the velocity � �� �v r  of 
the point P  with respect to the fixed frame of reference we obtain Euler’s formula, 
which gives the distribution of the velocities in a rigid solid 

0� �� � 37v v r , (5.2.3) 

where we have introduced the velocity 0 0� �� �v r  of the pole O  of the frame R  with 
respect to the same frame �R . We notice that the relations (5.2.2), (5.2.3) may be 
written in the form 

d
d
OP OP
t

� 3

���� ����
7 , (5.2.2') 

0 P OP� �� � 3 �
����

7v v 0  (5.2.3') 
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too, where O  and P  are two arbitrary points of the rigid solid. Scalarly, we have 

O
i i jijk kv v x�� � � ,   1,2, 3i � . (5.2.3'') 

A scalar product of the relation (5.2.3) by vers r  leads to a mixed product which 
vanishes, so that 

0vers vers� �� � �v r v r ; (5.2.4) 

hence, the projections of the velocities of two points of a rigid solid on the straight line 
which links these points are equal. We notice that the relation (5.2.4) corresponds to the 
relation (3.2.22'), a consequence of the rigidity condition (3.2.22), and represents the 
condition of compatibility of the velocities in the motion of the rigid solid (relation of 
holonomic constraint). 

Let 1P  and 2P  be two points of the rigid solid. From the relation 

1 2 2 1P P OP OP� �
����� ����� ����

, it results 
2 2 2

1 2 1 2 1 22P P OP OP OP OP� � � �
����� ���� ����� ���� �����

; hence, the 

condition of rigidity of the solid ( 1 2 constP P �
�����

, 1 constOP �
����

, 2 constOP �
�����

) 

leads to � �1 2, constOP OP �
���� �����

� . We may thus state that the angle of two arbitrary 

segments of a rigid solid is conserved in a general motion of it. 
Analogously, effecting the scalar product of the relation (5.2.3) by the vector 7 , we 

get 

0� �� � �7 7v v  (5.2.5) 

and may state 
Theorem 5.2.1. The scalar product of the velocity of a point of the rigid solid by the 
vector 7  is an invariant (the same for all the points of the rigid solid). 

We can state also that the projection of the velocity of a point of the rigid solid on the 
vector 7  is a constant (the same for all the points of the rigid solid). It follows that, in 
the case of a general motion (for 0�v  and 7  arbitrary vectors), there are not points of 
vanishing velocity (for which � �v 0 ). We obtain this result also by observing that the 
equation 0� � 3 �7v r 0  has a solution only if 0 0� � �7v ; as well, if the vectors 0�v  
and 7  are orthogonal at a point, then they are orthogonal at any other point. 

Hence, in the motion of the rigid solid do appear two kinematic invariants: the vector 
7  as we will see in Subsec. 2.2.2, it is an angular velocity) and the scalar product 
� 77v  (or the projection of the vector v  on the direction of the vector 7 , that is 

/�� 77v ). 

2.1.2 Acceleration in the motion of a rigid solid 

Differentiating the relation (5.2.3) with respect to time in the frame �R , we obtain 
the acceleration with respect to the same frame 
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0 ( )� �� � 3 � 3 3�7 7 7a a r r  (5.2.6) 

where we have introduced the acceleration 0 0� �� �a v  of the pole O  of the movable 
frame of reference with respect to the same fixed frame; we took into account the 
formula (5.2.2) and the relation d /d /t t� � ( (�7 7 7  (on the basis of the formula 
(A.2.37)). Using the basic formula of the triple vector product (2.1.49), we may write 

2
0 ( ) �� �� � 3 � � ��7 7 7a a r r r  (5.2.6') 

too; in components, we have 

� �2O
i i i j ij jijk ka a x� � � 
 �� �� � � � � � ,   1,2, 3i � . (5.2.6'') 

Denoting by P �  the projection of the point P  on the vector 7  (we have 
OP OP P P� �� � �

����� ���������
r ) and noting that OP �3 �

�����
7 0  in (5.2.6) and 0P P�� �

�����
7  in 

(5.2.6'), we obtain Rivals’ formula 

2
0 OP P P�� � �� � 3 �

���������
�7a a . (5.2.6''') 

Imposing the condition 0ia � � , 1,2, 3i � , we get a system of linear equations in 
the co-ordinates jx , obtaining thus the points in which the acceleration of the rigid 
solid vanishes. If we use the formula (2.1.36''), then we may write the determinant of 
the coefficients of the unknowns of this system in the form 

�2 21det
6i j ij iijk k ijk lmn l il � � � 
 � � � � 
� � � � � � � �$ %& '�  

� � � � �2 2
p m q n rj jm jmqilp k kn knr� � � � 
 � � � � 
 �� � � � � � � �� � � ; 

 

developing, we obtain 27 sums of products, seven of them being equal to zero, because 
they correspond to products of symmetric tensors by antisymmetric ones with respect to 
the same indices. Taking into account the formulae (2.1.46)-(2.1.46'') and the above 
observation, we get 

2 2 2 2( ) ( )i j i j i i j j � � � � � � � � � �� � � � � � � 3� �� � � � �7 7 7 7 , (5.2.7) 

where we have used Lagrange’s identity (2.1.33). 
If 3 ��7 7 0 , then there exists a point (and only one), called the pole of 

accelerations, for which the acceleration vanishes at a given moment; hence, this pole 
is moving with respect to both frames of reference (fixed and movable). One may thus 
state 
Theorem 5.2.2. In the general motion of a rigid solid, the instantaneous distribution of 
the accelerations is the same as in the case of a rigid solid with a fixed point (the pole 
of accelerations) at the respective moment. 
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If 3 ��7 7 0 , then the system of linear equations may be impossible, so that points 
of null acceleration do not exist (the case of a translation or of a helical motion), or may 
be indetermined, existing a straight line (an instantaneous axis of rotation, support of 
the vector 7 ) for which all the points have a vanishing acceleration (the case of a 
rotation or of a plane-parallel motion). All these particular cases will be considered in 
Secs 2.2 and 2.3. 

The scalar product of relation (5.2.6) by the vector 7 , where � �a 0 , leads to a 
scalar equation of the form (2.1.53), hence 

0 ( ) 0�� � 3 � ��7 7 7a r , (5.2.8) 

where we took into account the relation (2.1.53) and the conditions in which a triple 
scalar product vanishes. The solution of this equation is of the form (2.1.53') and we 
may write 

0
2( )

( )
��

� 3 3 � 3
3

� �
�

7
7 7 7 7

7 7
ar p . (5.2.8') 

The arbitrary vector p  is determined so that the vector equation obtained from (5.2.6), 
where we make � �a 0 , be verified; one observes once more the important rôle played 
by the vector product 3 �7 7 . 

In general, ( , , ) 03 �� �7 7 7 7 , so that we may represent the vectors r  and 0�a  in a 
frame of reference defined by the three factors of this mixed product, in the form 

� � �� � � 3� �7 7 7 7r ,   0
O O Oa a a� ��� � � �� � � 3� �7 7 7 7a ; (5.2.9) 

replacing in the vector equation obtained from (5.2.6), making � �a 0 , and noting that 
basis’ vectors are arbitrary, we obtain the scalar system 

2( ) 0a� � �� � � � �� �7 7 7 ,  
2 ( ) 0a� � � �� � � � ��7 7 , (5.2.9') 

2 0a� � � �� � � � ;  

We see thus that the determinant of the coefficients of the unknowns is given by the 
same formula (5.2.7), similar conclusions being obtained. 

The condition (5.2.4) of compatibility of the velocities may be written also in the 
form 

� � 0O P OP� �� � �
����

v v ; (5.2.4') 

hence, the difference of the projections of the velocities of two points of the rigid solid 
on the straight line which links them vanishes (or the difference of the velocities of the 
two points is normal to the straight line which links them). Analogously, the condition 
(3.2.23'') of compatibility of the accelerations becomes 
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� � � � � �22
O P O POP OP� � � �� � � � � 3

���� ����
7a a v v . (5.2.10) 

We may thus state that the product of the modulus of the difference of the projections of 
the accelerations of two points of a rigid solid on the straight line which links them by 
the distance between these points is equal to the square of the difference of the 
velocities of the respective points. 

2.2 Particular cases of motion of the rigid solid 
In what follows, we consider some particular cases of motion of the rigid solid, i.e.: 

the motion of translation, the motion of rotation and the motion of rototranslation. As 
well, we emphasize the motion of the local frames of Frenet and Darboux. 

2.2.1 Motion of translation 
We say that a rigid solid is subjected to a motion of translation if an arbitrary straight 

bar of it remains parallel to itself at any moment of the motion. In particular, the axes 
iOx , 1,2, 3i � , of the movable frame of reference R  must enjoy this property; as a 

matter of fact, it is sufficient that the three axes do remain parallel to themselves (hence, 
the moving frame of reference must have a displacement parallel to itself), in order that 
any other straight line do enjoy the same property (because any straight line of the rigid 
solid is rigidly connected to the frame R ). The position vector r  remains constant in 
the relation (5.2.1) (it has a displacement parallel to itself), in this case; the trajectory 
C  of the point P  is obtained from the trajectory 	  of the point O  by a translation of 
vector 0� �� �r r r  (Fig.5.12). If the point O  attains the point 1O  on the curve 	 , then 

the point P  attains the point 1P  on the curve C , while the vector 1 1 1O P �
�����

r  is 
equipollent to the vector r . 

 
Figure 5.12.  Motion of translation of a rigid solid. 

Taking into account Poisson’s formula (A.238), it results that j �i 0 , 1,2, 3j � , if 
and only if �7 0 ; in this case, the distribution laws of the velocities and accelerations 
are given by 
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O� ��v v ,   O� ��a a . (5.2.11) 

Hence, at a given moment, all the points of a rigid solid in a motion of translation have 
the same velocity and the same acceleration; the respective vectors may be modelled by 
free vectors. If the velocity O�v  is given, then the equation of the trajectory becomes 

 

0
0( ) ( ) ( )d

t

t
t t � �� � �� � �r r v  (5.2.12) 

If vers constO� �
������

v , then the motion of translation is rectilinear; otherwise, it is 
curvilinear. If constO� �v , then the motion of translation is uniform. 

2.2.2 Motion of rotation 
We say that a rigid solid is subjected to a motion of rotation if two points of it remain 

fixed during the motion; the straight line which links the two points (called axis of 
rotation) is fixed too, in this case. We assume (without losing from the generality of the 
study) that O O ��  and we choose as axis of rotation 3 3O x Ox� � � . The rigid solid 
remains with only one degree of freedom, which is the angle 

( )t� ��  (5.2.13) 

between the axes O x�� �  and Ox� , 1,2� �  (Fig.5.13). Noting that the unit vectors of 
the movable frame may be expressed with the aid of the unit vectors of the fixed frame 
of reference in the form 

 
Figure 5.13.  Motion of rotation of a rigid solid. 

� �� �i i i1 1 2cos sin� � ,   � �� � �i i i2 1 2sin cos� � ,   ��i i3 3   

the formula (A.2.36) leads to 

� �1 2 0� � ,   � �3 ( ) ( ) ( )t t t� � �� , (5.2.13') 
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hence, the vector 7  is a sliding vector situated along the axis of rotation 
( � i3( ) ( )t t�7 ), being the angular velocity vector. Thus, we have put in evidence the 
mechanical significance of the vector 7 , formally introduced in the formula (5.2.3). 

The velocity of a point of the rigid solid is thus given by 

PO� � 3 � 3
����

� 7 7v r r  (5.2.14) 

and can be considered to be the moment of the vector 7  with respect to the point P . 
Multiplying scalarly this relation by the vector r  and by the vector 3i , respectively, 
and noting that one obtains null mixed products, one gets 

21 d 0
2 d
r
t

� � ��r r ,   3 3
d ( ) 0
dt

� � � ��i r i r ,  

wherefrom 2 constr �  and � �3 , const�� i r . It follows that the trajectory of a point 
P  is the intersection of a sphere of centre O  and r  radius and a cone, the vertex of 
which is at O  too; hence, these trajectories are circles situated in planes normal to the 
axis of rotation, having the centres in points P �  on the very same axis. Because 
OP OP P P OP� � �� � � � �

����� ����� ���������
r r , where P �  is the projection of the point P  on the 
axis of rotation, one can write the relation (5.2.14) also in the form 

� 3v r7 ,   v �� r ; (5.2.14') 

comparing this formula with the formula (5.1.41), which corresponds to the circular 
motion of a particle, we see that the velocity vector is tangent to the trajectory in the 
normal plane to the axis of rotation. Noting that the vectors r  and v  are polar vectors, 
it results that 7  is an axial vector; besides, the above considerations justify the 
denomination given to this vector. Taking into account the considerations in Chap. 3, 
Subsec. 1.2.3, we may attach to the vector 7  an antisymmetric tensor of second order, 
given by the formula (3.1.62'); we write 

ij ijk k� ��� ,   1
2i ijk jk� �� � , (5.2.15) 

and the relations (5.2.14), (5.2.14') become 

i j ji jijk kv x x� ��� � ,   1 2v x�� � ,   2 1v x�� ,   3 0v � , (5.2.14'') 

so that all the points of the rigid solid have the same angular velocity. We notice that 
the points on the axis of rotation are the only ones of vanishing velocity, while the 
velocity vectors of the points of a straight line parallel to this axis are equipollent; as 
well, the velocities are parallel and their moduli have a linear variation for the points of 
a normal to the axis of rotation. Taking into account (A.2.31'), (A.2.31''), the relations 

curl 2�v 7 ,   div 0v �  (5.2.16) 
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hold, the field of velocities being thus solenoidal. 
Rivals formula (5.2.6''') leads to 

2 2� �� 3 � � 3 �� �a r r r r7 7 ,   4 2a � �� � �r , (5.2.17) 

corresponding to the formula (5.1.41'), which gives the distribution of accelerations in 
the circular motion of particle; we have 

2
i j iijk ka x x� ��� �� ,   1,2, 3i � , 

2
1 2 1a x x� �� � �� ,   2

2 1 2a x x� �� �� ,   3 0a � , 
(5.2.17') 

so that the accelerations are contained in a plane normal to the axis of rotation and 
directed towards the interior of the circular trajectory. The determinant of the 
homogeneous system which gives the points of null acceleration is 4 2 0� �� ��  and 
allows to affirm that only the points of the axis of rotation enjoy this property (it is one 
of the cases mentioned in Subsec.2.1.1, the angular acceleration vector � �8 7  being a 
sliding vector too, the support of which is the same axis of rotation. As in the case of 
the velocities, the accelerations are equipollent vectors for the points of a straight line 
parallel to the axis of rotation; as well, for the points of a straight line normal to the axis 
of rotation, the velocities are parallel, their modulus having a linear variation. If �� 07 , 
then the motion of rotation is uniform. If the vectors 7  and �7  have the same direction, 
then the motion is accelerated; otherwise, it is decelerated. 

2.2.3 Helical motion. Motion of rototranslation 
We say that a rigid solid has a helical motion if two of its points remain on a fixed 

straight line during the motion; we may also say that a straight line rigidly linked to the 
rigid solid (axis of rotation and sliding) maintains its support fixed (or slides along a 
fixed support). We choose the axis of rotation and sliding as axis 3O x� �  and the point O  
on this axis (in general,   O O � ), so that the axis 3Ox  coincides with it. This motion is 
defined by the scalar functions (Fig.5.14) 

Figure 5.14.  Helical motion of a rigid solid. 

3 3 ( )O Ox x t� �� ,   ( )t� �� , (5.2.18) 
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which specifies the position of the rigid solid at a given moment (the rigid solid has two 
degrees of freedom). The distribution of the velocities is given by 

O� �� � 3v v r7 ,   2 2 2
Ov v r�� �� � , 

1 2v x�� � � ,   2 1v x�� � ,   3 3
O

Ov v v� � �� � , 
(5.2.19) 

where ( ) ( )t t� �� �  has the significance given at the previous subsection. The formulae 
(5.2.19) show that the modulus of the velocity is minimal (equal to O�v ) for the points 
of the axis of rotation and sliding; in fact, the velocity ( )O O t� ��v v  is a function of 
time, so that one may have points of null velocity only – eventually – for some 
particular cases. As in the case of a motion of rotation, the velocities of the points of a 
straight line parallel to the axis of rotation and sliding are equipollent vectors. In a plane 
normal to the axis of rotation and sliding we obtain a component of the velocity which 
has a behaviour analogous to that in case of a motion of rotation; the component of the 
velocity along the direction of the same axis behaves as in the case of a motion of 
translation. 

The distribution of the accelerations is given by 

2
O �� �� � 3 ��a a r r7 ,   � �2 4 2 2

Oa a r� �� �� � � � , (5.2.20) 

leading to the same components 1a � , 2a �  as those given by the formula (5.2.17') and to 
the component 03a a� �� . As in the case of the velocities, the modulus of the 
acceleration is minimal (equal to 0a � ) for the points of the axis of rotation and sliding; 
but there cannot be points of null acceleration, excepting – eventually – for some 
particular moments (case mentioned in Subsec. 2.1.1). We notice that 

3 3( ) ( ) ( ) ( )t t t t� �� � � ��� � i i8 7  is the angular acceleration, the same for any point of 
the rigid solid. The accelerations are equipollent vectors for the points of a straight line 
parallel to the axis of rotation and sliding. The component of the acceleration which is 
contained in a plane normal to the axis of rotation and sliding has a behaviour 
analogous to that in case of a motion of rotation; while the component of the 
acceleration along the same axis has a behaviour analogous to that of a motion of 
translation. 

From the above considerations, it results that the helical motion can be obtained, 
from the point of view of the distribution of the velocities and accelerations, by the 
composition of a motion of rotation with a motion of translation along the axis of 
rotation. We notice that the vectors ( )O t�v  and ( )t7  have the same constant direction 
( ( )O t� 3 �v 07 ). 

The considered motion is called helical, the trajectory of a point of the rigid solid 
being situated on a circular cylinder. If the first of the scalar functions (5.2.18) which 
defines the motion verifies a relation of the form 3

Ox k�� � , k  being a constant the 
dimension of which is a length, then the trajectories are helices and we have to do with 
a screw motion; the rigid solid has – in this case – only one degree of freedom. We 
obtain Ov k�� � , Oa k�� � � , so that 
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2 2v r k�� � ,   � �2 4 2 2 2a r r k� �� � � � . (5.2.21) 

The pitch of the helix is 2p k�� , so that 

2O
pv �
�

� � ,   
2O
pa �
�

� � � . (5.2.22) 

We notice that the helical motion is a particular case of a motion of rototranslation, 
i.e., the case in which the vectors 7  and O�v  have the same support. In the general 
case, O�3 �v 07 , 7  and O�v  having fixed directions, and we obtain an arbitrary 
motion of rototranslation (called also motion of finite rototranslation), which is not a 
helical motion; this case is basic for the study of the general motion of the rigid solid. 

The relations (5.2.16) remain still valid in the case of a motion of rototranslation. 

2.2.4 Motion of Frenet’s and Darboux’s trihedra 
If we know the trajectory of a point of the rigid solid, then we may choose as 

movable frame of reference Frenet’s trihedron. Taking into account Poisson’s formulae 
(A.2.38) and Frenet’s formulae (4.1.10)-(4.1.10''), and noting that 

d d d
d d d

s
t s t
�

= = ,   d d d
d d d

s
t s t
�

J J ,   d d d
d d d

s
t s t
�

5 5 ,  

we may write 

d
d

v
t �
� 3 �

=
7 = J , 

d
d

v
t v

�
�

� 3 � � �
�

J
7 J = 5 , 

d
d

v
t �
� 3 �

�
5

7 5 J , 

(5.2.23) 

which leads to interesting kinematic interpretations for the radii of curvature and 
torsion. In this case, the angular velocity vector is given by 

� � �� � �� � �7 = J 5 ,   v
�� �
� �

�
,   0�� � ,   v

�� �
�  (5.2.24) 

and we may write 

2 2
1 1v�
� �

� �
�

. (5.2.24') 

In the case of a torsionless motion, hence in the case in which the trajectory of a point 
of the rigid solid is a plane curve, we have 
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v ��� . (5.2.24'') 

Analogously, choosing as a movable frame of reference Darboux’s trihedron 
(assuming that we know a surface on which moves a point of the rigid solid, for 
instance a cylinder in the case of a motion of rototranslation) and using the formulae 
(A.2.38) and (4.1.25), as well as observations analogous to those above, we obtain 

d
d g n

v v
t � �
� 3 � �g n=
7 = , 

d
d g g

v v
t � �
� 3 � � �

�
g

g n7 = , 

d
d n g

v v
t � �
� 3 � � �

�
n n g7 = ; 

(5.2.25) 

we are thus led to interesting kinematic interpretations for the radii of normal curvature, 
as well as of geodesic curvature and torsion. We may express the angular velocity 
vector in the form 

g n�� � �� � �g n7 = ,   
g

v
�� �
� �

�
,   g

n

v�
�

� � ,   n
g

v�
�

� , (5.2.26) 

wherefrom 

2 2 2
1 1 1
g g n

v�
� � �

� � �
�

. (5.2.26') 

2.3 General motion of the rigid solid 
We consider, in the following, the general motion of the rigid solid as an 

instantaneous helical motion, introducing the fixed and the movable axoids; according 
to the form of the axoids (conical or cylindrical), we obtain the motion of a rigid solid 
with a fixed point or the plane-parallel motion of the rigid solid, respectively. 

2.3.1 Instantaneous helical motion. Static-kinematic analogy 
In the general case of motion of a rigid solid we use the results given in Subsecs 

2.1.1 and 2.1.2 concerning the distribution of velocities and accelerations. Using the 
formula (5.2.3), which gives the velocity �v  of a point P  of the rigid solid with respect 
to a fixed frame of reference, and the formula (5.2.14), we observe that 
, -, { }O O� � =v7 7 , , -, { }P P� � =v7 7 , with 

P O O OPO OP� � � �� � 3 � � 3 � � 3
���� ����

v v v v r7 7 7 . (5.2.27) 

We obtain thus a torsor of the angular velocities, 7  playing the rôle of the resultant 
vector (an axial, sliding vector), while �v  is the moment resultant vector (a polar, 
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bounded vector). This observation stays at the basis of the static-kinematic analogy, 
which allows the kinematic study of the motion of the rigid solid with the aid of the 
static methods. Analysing the distribution of the velocities, we see that – at a given 
moment – the general motion of a rigid solid may be identified with an instantaneous 
motion of rototranslation, characterized by an instantaneous torsor of the angular 
velocities. 

Hence, the general motion of a rigid solid is characterized by the vectors 7  and O�v  
(the components of the torsor { }O= 77  of the angular velocities with respect to the pole 
O , rigidly linked to the rigid solid); in general, these vectors are not collinear. There 
exist points (which can belong to the rigid solid or not) for which O�� v7 , the general 
motion of the rigid solid becoming thus an instantaneous helical motion. Indeed, taking 
into account the scalar of the torsor 

P O� �� � �v v7 7 , (5.2.28) 

which is an invariant, it follows that P O� ��v v� � , where we have emphasized the 
components parallel to the vector 7  of these vectors. The formula (5.2.27) becomes 

P O
? ?� �� � 3v v r7 , (5.2.29) 

where the components of the velocities normal to the vector 7  have been introduced. 
Using the method of determination of the central axis (emphasized in Chap. 2, Subsec. 
2.2.5), we put the condition P

?� �v 0 , wherefrom 

2
O�

�
�3

� �
v

r
7

7 ; (5.2.30) 

we obtain thus the instantaneous axis (the locus of the searched points) with respect to 
which we have an instantaneous helical motion. This axis is parallel to the vector 7 ; a 
vector equipollent to the latter one, the support of which is the instantaneous axis, is 
called Chasles’ vector. We may write the equation (5.2.30) also in the form (a vector 
product by 7  eliminates the scalar � ) 

2
O

O �
��

� � 3 �
v

v r
7

7 7 ; (5.2.30') 

in components one has 

� � � �1 2 3 3 2 2 3 1 1 3
1 2

1 1O Ov x x v x x� � � �
� �

� �� � � � �  

� � � �3 1 2 2 1 1 1 2 2 3 32
3

1 1O O O Ov x x v v v� � � � �
� �

� � � �� � � � � � . (5.2.30'') 

We notice that the instantaneous axis, defined by the equations (5.2.30)-(5.2.30''), is the 
locus of the points for which, at a given moment, the modulus of the velocity is 
minimal. The above considerations allow us to state 
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Theorem 5.2.3 (Chasles). The general motion of a rigid solid at a given moment may 
be identified with an instantaneous helical motion about an instantaneous axis of 
rotation and sliding. 

We can say that this helical motion is tangent to the general motion of the rigid solid 
at a given moment. 

From the above analysis it follows that if � 07 , O� �v 0 , then the rigid solid is in 
rest. If � 07 , O� �v 0 , then a motion of translation takes place; if � 07 , O� �v 0 , 
then the motion of the rigid solid can be identified with a motion of rotation about an 
instantaneous axis of rotation passing through the fixed point O  (in particular, a finite 
rotation), hence with a rigid solid with a fixed point. If � 07 , O� �v 0 , then two cases 
may occur: if the torsor’s scalar vanishes ( 0O�� �v7 ), then the motion of the rigid 
solid is an instantaneous motion of rotation about an instantaneous axis of rotation 
(which does not pass through a fixed point); if the scalar does not vanish ( 0O�� �v7 ), 
then a general motion of the rigid solid takes place. 

In the general motion of the rigid solid, the distribution of accelerations is that 
emphasized in Subsec. 2.1.2. 

2.3.2 The fixed and the movable axoids 
We notice that the instantaneous axis of rotation and sliding varies both with respect 

to the fixed and the movable frames of reference, because 7  and O�v  are functions of 
time. The locus of the instantaneous axes of rotation and sliding with respect to the 
frame �R  is a ruled surface fA , called the fixed axoid, while the locus of the same 

axis with respect to the frame R  is a ruled surface mA  too, called the movable axoid 
(Fig.5.15); these two surfaces play an important rôle in the general motion of a rigid 
solid, as it was emphasized by Poncelet. 

Figure 5.15.  Fixed and movable axoids of a rigid solid. 

Let P  be a point of the rigid solid on the instantaneous axis of rotation and sliding, 
rigidly linked to this axis, for which a relation of the form (5.2.1) takes place. 
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Differentiating with respect to the frame �R  and using the formula (A.2.37), we 
obtain 

dd
d d

O

t t t
� (
� � � 3

(
rr r r7 ; (5.2.31) 

d /dP t� ��v r  is the velocity of the point P  in the motion of the instantaneous axis of 
rotation and sliding with respect to the frame �R , while /P t� ( (v r  is the velocity 
of the same point in the motion of this axis with respect to the frame R. Noting that 

d /dO O t� ��v r  and O �� � 3 �v r7 7 , where �  is a scalar, because the translation 
velocity of the point P  and the angular velocity 7  are collinear vectors for the points 
of the instantaneous axis of rotation and sliding, we get the relation 

P P �� � �v v 7 . (5.2.31') 

If the velocities Pv  and P�v  would be equal, then the axoids would have a motion of 
rolling without sliding; because of the vector difference �7 , occurs also a sliding of the 
movable axoid on the fixed one along the direction of the vector 7 , with the velocity 
�7 . Projecting the relation (5.2.31) on a direction normal to the vector 7 , we obtain 

P P
? ?� �v v , (5.2.32) 

the components normal to the instantaneous axis of rotation and sliding of the velocities 
of a point P  of this axis with respect to the fixed and movable frames of reference, 
respectively, being equal. We may thus state 
Theorem 5.2.4. The general motion of a rigid solid takes place so that the movable 
axoid be tangent to the fixed axoid along the instantaneous axis of rotation and sliding 
(the common generatrix of the two axoids), its motion being a rolling about this axis, 
over the fixed axoid, together with a sliding along the same instantaneous axis. 

We notice that the two axoids must be both developable or warped surfaces. 
The motion of the movable axoid characterizes thus completely the general motion 

of the rigid solid. 

2.3.3 Motion of the rigid solid with a fixed point 
In the case of a rigid solid with a fixed point both origins may coincide with this 

point, without losing anything of the generality (O O �� ); we have thus 
O O� � �v v 0 , O O� � �a a 0 , the vectors 7  and �7  being arbitrary. The rigid solid 

remains with three degrees of freedom and its position at a given moment may be 
specified with the aid of Euler’s angles , ,� � � , emphasized in Chap. 3, Subsec. 2.2.3. 

The distribution of the velocities is given by the relation 

� 3v r7 , (5.2.33) 
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the points situated on the support of the angular velocity vector being of null velocity; 
this support passes through the fixed point and is just the instantaneous axis of rotation 
(in this case is no sliding). The axoids are two tangent cones, having the vertices at the 
fixed point (Poinsot’s cones); the motion of a rigid solid with a fixed point is thus 
characterized by the rolling without sliding of the polhodic cone pC (movable) over the 
herpolhodic cone hC  (fixed) (Fig.5.16). 

Figure 5.16.  Herpolodic and polodic cones of a rigid solid. 

Introducing the components �� , ��  and ��  of the angular velocity with respect to the 
axes 3Ox � , 3Ox  and ON , respectively, (Fig.3.15), we may write 

3 3� � ��� � �� ��i i n7 , (5.2.34) 

where versON�
����

n . Projecting on the axes of the frame R, it results 

1 cos sin sin� � � � � �� �� � , 

2 sin sin cos� � � � � �� � �� � , 

3 cos� � � �� � �� , 

(5.2.35) 

while, in projection on the axes of the frame �R , we may write 

1 cos sin sin� � � � � �� � �� � , 

2 sin sin cos� � � � � �� � �� � , 

3 cos� � � �� � �� � . 

(5.2.35') 

If we put i ix ��� ��  and i ix ��� , 1,2, 3i � , then we obtain the parametric equations  
of the herpolhodic and polhodic cones, respectively, the parameters being �  and t . 

To pass from ( )i t� , 1,2, 3i � , to Euler’s angles ( )t� , ( )t�  and ( )t� , hence to 
integrate the system (5.2.35) with respect to the latter unknown functions, it is useful to 
introduce the intermediate unknown functions ( )i t� , 1,2, 3i � , which represent the 
direction cosines of the axis 3Ox �  with respect to the frame R. We have the relations 

1 sin sin� � �� ,   2 sin cos� � �� ,   3 cos� �� , (5.2.36) 
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which allow the determination of Euler’s angles � , � , if one knows i� ; the angle �  
is then obtained by a quadrature from the third relation (5.2.35). The link between the 
functions i�  and i�  is obtained writing that the derivative of the unit vector 3�i  with 
respect to the fixed frame of reference vanishes; we have 

3 3� �� 3 ��i i 07 ,   2
3 1� �i  (5.2.37) 

or, in components, 

0i jijk k� � �� � �� ,   1,2, 3i � ,   1i i� � � . (5.2.37') 

The distribution of accelerations is of the form 

2( ) ( ) �� 3 � 3 3 � 3 � � �� �a r r r r r7 7 7 7 7 7 ; (5.2.38) 

taking into account the results in Subsec. 2.1.2, we can state that – in general – in the 
motion of a rigid solid with a fixed point, excepting the fixed point, there are not other 
points of null acceleration. This motion is reducible to a motion of rotation only in the 
case in which the vectors 7  and �7  are collinear or one of them vanishes. 

2.3.4 Plane-parallel motion 
We say that a rigid solid has a plane-parallel motion if three non-collinear points of 

it are contained, during the motion, in a fixed plane (hence, if a plane section of the 
rigid slides on a fixed plane). We notice that the motion of rotation and the motion of 
translation, the trajectory of which is plane, are plane-parallel motions. Because each 
point of a normal to the considered plane section has the same translated trajectory, we 
may refer only to this plane section in the fixed plane. If the rigid solid is reduced to a 
plate of small thickness (negligible), the median plane of which is just the fixed plane, 
then the motion is called plane. We choose the two frames of reference so that the axes 
O x�� �  and Ox� , 1,2� � , of the fixed and movable frames, respectively, be contained 
in the fixed plane. In this case, the rigid solid has three degrees of freedom, and its 
position at a moment t  can be specified by the scalar functions 

( )O Ox x t� �� �� ,   1,2� � ,   ( )t� �� , (5.2.39) 

where Ox��  are the co-ordinates of the pole O  with respect to the fixed frame of 
reference, while �  is the angle made by the Ox� -axis with the O x�� � -axis (Fig.5.17). 
The trajectories of the points of the rigid solid are, obviously, plane curves, while the 
points situated on a parallel to the 3O x� � -axis describe identical curves; hence, it is 
sufficient to study the motion in the plane 1 2O x x� � � , considered as a fixed plane. In this 
case, 

O
O v� �� � ��v i ,   O

O a� �� � ��a i ,   3� �� i7 ,   3� ��� � i7 , (5.2.39') 

Where, in the summation, the Greek indices take only the values 1 and 2. 
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The formula (5.2.3) allows to write the distribution of the velocities in the form 

1 1 2
Ov v x�� �� � ,   2 2 1

Ov v x�� �� � ,   3 0v � � . (5.2.40) 

 
Figure 5.17.  Plane-parallel motion of a rigid solid. 

The points of null velocity of the rigid solid are given by 

2
1

Ov�
�
�

� � ,   1
2

Ov�
�
�

� ,   3�  arbitrary, (5.2.41) 

 
Figure 5.18.  Fixed and movable centrodes in a plane-parallel motion. 

with respect to the movable frame of reference, these points being situated on a straight 
line normal to the fixed plane, which is the instantaneous axis of rotation (from the 
given definition of the plane-parallel motion, it results that there is no sliding along this 
axis). Hence, the rigid solid will be in instantaneous motion of rotation about an 
instantaneous axis of rotation which is of constant direction and the trace of which on 
the fixed plane is a point I , called instantaneous centre of rotation; indeed, in this 
plane (and in parallel planes too), an instantaneous motion of rotation of the points of 
the rigid solid about the point I  (of null velocity) takes place, as it was shown by 
Euler. The two axoids are, in this case, two cylinders, the traces of which on the fixed 
plane are two curves: the basis B (the fixed (space) centrode) and the rolling curve R 
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(the movable (body) centrode), tangent at the instantaneous centre of rotation I  
(Fig.5.18). The velocities of the point I  in its motion with respect to the fixed and the 
movable frames of reference are I�v  and Iv , respectively; taking into account the 
relation (5.2.32), it results 

I I� �v v ,  (5.2.42) 

so that the two velocities are directed along the common tangent of the two centroids, 
their elements of arc being equal. The plane-parallel motion of the rigid solid is thus 
characterized by the rolling without sliding of the rolling curve over the basis. 

The parametric equations of the rolling curve are, obviously, given by (5.2.41); by a 
change of axes of co-ordinates, we obtain the parametric equations of the basis in the 
form 

1 1 1 2cos sinOx� � � � �� � � � ,   2 2 1 2sin cosOx� � � � �� � � � . (5.2.43) 

We notice that, at a moment t , the velocity vector is normal to a radius starting from 
the instantaneous centre of rotation and its modulus is proportional to the length of the 
radius (an instantaneous motion of rotation about this centre takes place); hence, we 
may use geometric methods to determine the point I  and to draw the two centroids. 
Thus, being given the velocities of two points P  and Q  of a rigid solid in a plane-
parallel motion (their non-parallel supports are sufficient), the centre I  will be at the 
intersection of the normals to P�v  and Q�v  at these points (Fig.5.19,a); it follows 

Figure 5.19.  Geometric determination of the instantaneous centre of rotation if one knows the 
velocities of two points: concurrent velocities (a) or parallel velocities (b). 

QP vv
IP IQ

�
��

� � ,   Q P
IQv v
IP

� �� . (5.2.44) 

If  the supports of the two velocities are parallel, then the centre I  is thrown to infinity, 
P Q� ��v v , and we have to do with a motion of translation. Finally, if the velocities P�v   

and Q�v  are both normal to the straight line PQ , then the centre I  will be on this line  
at the point of intersection of it with the straight line which links the extremities of the  
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two velocities (Fig.5.19,b). By turning down the vectors P�v  and Q�v  in the same 

direction of a rigid angle, we obtain the vectors PP �
�����

 and QQ �
�����

, the points P �  and Q �  
being on the straight lines PI  and QI , respectively (Fig.5.19,a); noting that 

Pv PP� �� , Qv QQ� �� , and taking into account the relations (5.2.44) there results that 
the straight line P Q� �  is parallel to the straight line PQ . Thus, the velocities turning 
down method allows to construct graphically the velocity Q�v  of a point of a rigid 
motion in a plane-parallel motion if we know the instantaneous centre of rotation I , as 
well as the velocity P�v  of another point P ; if P PQ� ?

����
v , then we use the graphic of 

Fig.5.19,b. 
Let us consider the points , ,P Q R ,… in the plane section of the fixed plane, where 

the velocity vectors P�v , Q�v , R�v ,… are applied; we construct the equipollent vectors 

POP � ��
�����

v , QOQ � ��
�����

v , ROR � ��
�����

v ,… at a pole O . We may introduce the relative 

velocities QP P Q� ��
������

v , RQ Q R� ��
�����

v , PR R P� ��
������

v ,… too; the figure OP Q R� � �… 
forms the velocities plane. Taking into account the relation (5.2.3'), one obtains 
(Fig.5.20) 

Q P QP� �� �v v v ,   QP PQ� 3
����

v 7 . (5.2.45) 

We notice also that QP PQ?
����

v  or P Q PQ� � ?
������ ����

 and other analogous relations 
(Fig.5.20). Introducing the moduli in the second relation (5.2.45) and proceeding 
analogously with similar relations, we get 

Figure 5.20.  Velocities’ similarity theorem. 

P Q Q R R P
PQ QR RP

�
� � � � � �

� � � . (5.2.45') 

Hence, the triangles P Q R� � �  and PQR  are similar, their similarity ratio being � ; we 
notice that the sides of the triangle P Q R� � �  are normal to the homologous sides of the 
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triangle PQR . Because a polygon may be decomposed in a certain number of triangles, 
we may state 
Theorem 5.2.5 (the velocities’ similarity theorem; Burmester). If a polygon PQR…, 
formed by the points of a rigid solid in plane-parallel motion is given, then the polygon 
P Q R� � � …, formed by the homologous points of the velocities plane, is similar to the 
first polygon and is rotated through an angle of 900 with respect to this one in the 
direction of the angular velocity. 

Let be, e.g., a rigid bar AB  of length 2l , which is moving so that its extremities do 
remain on the axes 1O x� �  and 2O x� � , respectively, hence on two fixed orthogonal 
straight lines (Cardan’s problem) (Fig.5.21). We choose the pole of the movable frame 
of reference in O A�  and the axis 1Ox  normal to AB ; the rigid solid has only one 
degree of freedom, its position being specified by the angle ( )t� . The velocities of the 
points A  and B  will be along the fixed axes of co-ordinates, so that we may easily 
determine the centre I  (2 sinl � , 2 cosl � ). We notice that the basis is a circle of centre 
in O �  and radius 2O I l� � ; the rolling curve is a circle too, of diameter 2AB l� , 
passing through the points O �  and I . If the bar can stay only in the first quadrant, then 
the basis is a quarter of a circle, while the rolling curve is a semicircle. 

Figure 5.21.  Cardan’s problem. 

Let us consider also the case of a wheel of radius R , which is moving on a  
horizontal straight line (taken as axis 1O x� � ); we assume that the centre O  of the wheel 
moves with a horizontal velocity O�v  while this one rotates with an angular velocity  

O7 . The position of the wheel is given by two parameters; the abscissa 1x �  of the point  
O  and the angle �  specify a point of it, corresponding thus to two degrees of freedom  
(the third one is annihilated by the imposed condition). The basis B  is a straight line, 
parallel to the horizontal 1O x� �  and situated under the point O , while the rolling curve  
is a circle R  of centre O  and radius /O OOI v ��� . If O Ov R�� � , then OI R� , and 
the motion of the wheel is a rolling without sliding (Fig.5.22,a). If O Ov R�� � , then we 
have OI R� , and the wheel slides in the direction in which it advances (the velocities  
of all its points have the same direction; the case of the drawn wheel) (Fig.5.22,b); as  
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well, if O Ov R�� � , then we see that OI R�  and the wheel slides in the opposite 
direction to that in which it advances (there are points which have a direction opposite 
to that of O�v ; the case of the driving wheel) (Fig.5.22,c). 

Figure 5.22.  Motion of a wheel of a horizontal line: case 0 0v R�� �  (a);  
case 0 0v R�� �  (b); case 0 0v R�� �  (c). 

The distribution of accelerations in the plane-parallel motion is given by the formula 
(5.2.6) in the form ( 0� �r7 ) 

2
O �� �� � 3 ��a a r r7 , (5.2.46) 

2
1 1 2 1

Oa a x x� �� �� � �� ,   2
2 2 1 2

Oa a x x� �� �� � �� ,   3 0a � � . (5.2.46') 

There exists a straight line parallel to 3O x� �  for which the accelerations vanish ( � �7 7 , 
corresponding to the considerations in Subsec. 2.1.2). The point J  at which the 
acceleration vanishes is called the centre (pole) of the accelerations, of co-ordinates 

2
1 2

1 4 2

O Oa a� ��
� �
� ��

�
�

�
�

,   
2

1 2
2 4 2

O Oa a� ��
� �
� ��

�
�

�
�

, (5.2.47) 

with respect to the movable frame of reference. The instantaneous distribution of the 
accelerations is identical to that of an instantaneous rotation about the centre J , as one 
can see effecting a change of axes in this pole. 

We notice that the instantaneous centre I  and the pole of accelerations J  are 
distinct points, which do not coincide in the particular case of a motion of rotation. 
Hence, in general, I� �v 0 , I� �a 0  and J� �v 0 , J� �a 0 . 

We have seen that the instantaneous centre may be used to determine the velocities 
of some points of the rigid solid, when one of these velocities is known; we notice that 
the pole of accelerations J  can play an analogous rôle to determine the accelerations. 
In the method of the accelerations’ pole we suppose known the acceleration Pa �  of the 
point P , the angular velocity 7  and the angular acceleration � �8 7 . Thus, starting 
from the point P , we draw the segment PJ , which makes the angle given by 

2tan /� � �� � , in the direction indicated by the angular acceleration, with the 
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acceleration P�a , the point J  being specified by 4 2/PPJ � ��� � �a  (Fig.5.23); 
indeed, if O P�  and one takes the 1Ox -axis along the vector P�a , then the formulae 
(5.2.47) justify the above affirmation. Noting that 

Figure 5.23.  Method of the acceleration’s pole. 

P

Q

JP
JQ

�
�

�
a
a

, (5.2.48) 

we may easily draw the vector Q�a  applied at the point Q , which makes an angle �  
(in the same direction as that indicated by the angular acceleration) with JQ . 

 
Figure 5.24.  Inflections and turning back circles. 

In a plane-parallel motion, the locus of the points P  for which P P� �3 �v a 0  is a 
circle (called the inflections circle), while the locus of the points Q  for which 

0Q Q� �� �v a  is a circle too (called the turning back circle). If we draw from I  the 
orthogonal straight lines which make the angles �  and 90 �0 �  with IJ  and meet the 
normal to IJ  at J  in M  and N , respectively, then the circles of diameters IM  and 
IN , respectively, are the searched loci (the circles of Bresse); the drawing easily 
justifies this assertion (Fig.5.24). 

To the points , ,P Q R ,…, of accelerations P�a , Q�a , R�a ,…, correspond the 

equipollent vectors PO P� � ��
�����

a , QO Q� � ��
������

a , RO R� � ��
�����

a ,…, applied at the point O � ; 
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the figure O P Q R� � � �… constitutes the plane of accelerations (Fig.5.25). Introducing 
the relative accelerations 

( )QP Q PP Q PQ PQ� � � �� � � � 3 � 3 3
������ ���� ����

�a a a 7 7 7 ,…, (5.2.49) 

Figure 5.25.  Accelerations’ similarity theorem. 

as sums of two terms which have the same expressions as in case of the circular motion, 
we may state (as in the case of velocities) 
Theorem 5.2.6 (the accelerations’ similarity theorem). If a polygon PQR…, formed 
by points of a rigid solid in plane-parallel motion is given, then the polygon P Q R� � � …, 
formed by the homologous points of the accelerations plane is similar to the first 
polygon and is rotated through an angle of 180 �0 �  with respect to this one in the 
direction of the angular acceleration. 

The relations 

P Q Q R R P
PQ QR RP
� � � � � �

� �  (5.2.50) 

take place for the triangles PQR  and P Q R� � � . We mention that the similarity theorem 
and the relation (5.2.50) remain valid also in the case of collinear points , ,P Q R  (to 
these points correspond the collinear points , ,P Q R� � �  in the accelerations plane). 

The velocities plane and the accelerations plane lead to methods useful for the 
graphical computation to determine the corresponding kinematic quantities. 

Let 1 1 1, ,P Q R ,… be the extremities of the velocity vectors P�v , Q�v , R�v ,…, applied 
at the points , ,P Q R ,…, respectively (Fig.5.20). We may write 

1 1 Q P QPPQ PQ PQ PQ PQ� �� � � � � � � 3
����� ���� ���� ���� ����

v v v 7 ;  

noting that the vector product PQ3
����

7  is a polar vector normal to PQ
����

 and contained 
in the plane of motion, and taking into account that the vector 7  is normal to this 
plane, it results 
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� � � �
22 2 22

1 1 1PQ PQ PQ PQ�� � 3 � �
����

7 .  

Completing the similarity theorem (for velocities) we may state that the polygons 
PQR… and 1 1 1PQ R … are similar too, the similarity ratio being 21 ��  (as well 
with the polygon P Q R� � � …). 

If, analogously, 1 1 1, ,P Q R … are the extremities of the acceleration vectors P�a , Q�a , 

R�a ,…, applied at the points , ,P Q R ,…, respectively (Fig.5.25), we may write 

2
1 1 Q P QPPQ PQ PQ PQ PQ PQ�� �� � � � � � � 3 �
����� ���� ���� ���� ���� ����

�a a a 7 ,  

where we took into account the formula (5.2.46); as above, we notice that the vector 
product PQ3

����
�7  is a polar vector, normal to PQ

����
, contained in the plane of motion, 

and taking into account that the vector �7  is normal to this plane, we obtain 

� � � � � �
222 2 22 2 2

1 1 1 1PQ PQ PQ PQ� � �� � � 3 � � �$ %& '
����

� �7 .  

Hence, completing the similarity theorem (for the accelerations), we may state that the 
polygons PQR… and 1 1 1PQ R … are similar too, the similarity ratio being 

� �22 21 � �� � �  (the same statement with the polygon P Q R� � � …). 
We can emphasize also some interesting properties concerning the displacement of a 

segment of straight line PQ  in a plane-parallel motion. Let be the segments PQ  and 
RS  in the positions 1 1PQ  and 1 1R S , at the moment 1t , and in the positions 2 2PQ  and 

2 2R S , at the moment 2t , respectively, with respect to a fixed frame of reference. 
Taking into account a property emphasized in Subsec. 2.1.1, we may write 

� �1 1 1 1,PQ R S �
����� �����

� � �2 2 2 2,PQ R S
������ ������

� ; noting that � �1 1 2 2,PQ PQ �
����� ������

� � �1 1 1 1,PQ R S
����� �����

�  

� �1 1 2 2,R S R S� �
����� ������

� � �2 2 2 2,R S PQ
������ ������

�  and taking into account the previous relation, we 

get 

� � � �12 1 1 2 2 1 1 2 2, ,PQ PQ R S R S� � �
����� ������ ����� ������

� � . (5.2.51) 

We may thus state 
Theorem 5.2.7. In a plane-parallel motion, the angle 12�  formed by two homologous 
segments of straight line at the moments 1t  and 2t  depends only on the two moments, 
but not on the two considered segments (being thus equal to the angle formed by any 
other two homologous segments of straight line at the same moments). 

If 12 0� � , then we have 1 1 2 2PQ PQ
����� ������

� ; but 1 1 2 2PQ PQ�
����� ������

 so that 1 2 1 2P P Q Q�
����� ������

, 

these vectors defining a motion of finite translation. If 12 0� �  we construct a point 0I   
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at the intersection of the midperpendiculars of the segments 1 2P P  and 1 2Q Q  (Fig.5.26). 
Noting that the triangles 0 1 1I PQ  and 0 2 2I PQ  are equal (their sides are equal, by 

construction), it results � �
0 01 1 2 2P I Q P I Q� ; we may thus write � �

0 01 2 1 2P I P Q I Q�  too, so 
that the segment of straight line 1 1PQ  can be superposed over the segment of straight line 

2 2PQ  by a finite rotation about the point 0I . We may state 

Figure 5.26.  Euler’s theorem for a plane-parallel motion. 

Theorem 5.2.8 (Euler). In a plane-parallel motion of a rigid solid one may pass from a 
position corresponding to a moment 1t  to a position corresponding to a moment 2t  by 
a finite translation or by a finite rotation. 

If 2 1t t� , then the point 0I  becomes the instantaneous centre of rotation. 

In a general motion of the rigid solid, we construct the vectors PO P� � ��
�����

v , 

QO Q� � ��
������

v  and RO R� � ��
�����

v  equipollent to the velocities of the points , ,P Q R  at an 
arbitrary point O . The points , ,P Q R� � �  determine a plane �  on which we project the 

points , ,P Q  and R ; the projections of the corresponding velocities 1P PP� �
����

v , 

1Q QQ� �
�����

v  and 1R RR� �
�����

v  are the vectors 1pp
����

, 1qq
���

, 1rr
���

. As it was shown by 
Poncelet, the normals at the points , ,p q  and r  to these projections on the plane � , 
respectively, are concurrent; the instantaneous axis of rotation and sliding passes 
through this point and is normal to the considered plane. 

3. Relative motion. Kinematics of mechanical systems 
Starting from the results concerning the relative motion of a particle, we pass to the 

relative motion of a mechanical system, in particular of a rigid solid. We give then some 
results concerning the systems of rigid solids. 

3.1 Relative motion of a particle 
We analysed till now the motion of a particle P  with respect to a fixed frame of 

reference �R  of axes 1 2 3O x x x� � � � ; sometimes, it is useful to consider its motion with 
respect to a frame of reference of axes 1 2 3Ox x x  in motion with respect to the fixed 
frame (a movable frame R) (Fig.5.27). It  is  thus  put  the  problem  to  determine  the 
kinematic quantities which characterize the motion of the particle with respect to the 
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frame �R  if the quantities corresponding to the motion of the particle with respect to 
the frame R, as well as the motion of R  with respect to �R  are known. Such a 
problem is important – for instance – in the study of the motion of a particle on the 
surface of the Earth. 

Figure 5.27.  Relative motion of a rigid solid. 

The motion of the particle with respect to the fixed frame of reference is called 
absolute motion, its motion with respect to the movable frame of reference being the 
relative motion; the motion of transport characterizes the motion of R  with respect to 

�R  and can be specified by the motion of its pole and of its axes. The velocities and 
accelerations are called absolute, relative and of transport, after the motions to which 
these quantities correspond. The mechanical phenomenon in its totality is called relative 
motion. We assume that the time t  is the same in the two frames of reference (the 
Newtonian model). Eventually, we may have constt t� � � ; the constant can be taken 
equal to zero, without losing something of the generality of the phenomenon. 

In what follows, we consider the composition laws of velocities and accelerations in 
the case of a particle, emphasizing thus the basic kinematic laws of the relative motion. 

3.1.1 Composition of velocities 

Starting from the relation (5.2.1) which links the position vectors r  and �r  of the 
particle P  with respect to the frames R  and �R , respectively, we differentiate with 
respect to time in the fixed frame of reference. Applying the formula (A.2.37) which 
links the absolute derivative (with respect to �R ) to the relative derivative (with 
respect to R), we may write 

d
dt t

(
� � 3

(
r r r7 . (5.3.1) 

Noting 

d
da t
�

�
rv ,   r t

(
�

(
rv ,   t O�� � 3v v r7 , (5.3.2) 
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where av , rv  and tv  are the absolute velocity, the relative velocity and the velocity of 
transport of the particle, respectively; we obtain 

a rt� �v v v  (5.3.3) 

and may state 
Theorem 5.3.1. The absolute velocity of a particle is obtained by the vector 
composition of the velocity of transport with the relative velocity of it. 

Equating to zero the relative motion ( r �v 0 ), we notice that the velocity in the 
motion of transport is – as a matter of fact – the velocity of a point of the rigid solid, 
rigidly linked to the movable frame of reference. 

3.1.2 Composition of accelerations 

Differentiating the relation (5.3.3) with respect to time in the frame �R  and taking 
into account (5.3.2) and (A.2.37), we may write 

dd d
d d d
a rt

t t t
� �

vv v ,    

dd d d
d d d d
t O

t t t t
�

� � 3 � 3
vv rr7

7 ,   d
d
r r

rt t
(

� � 3
(

v v v7 . 

 

Using the formula (5.3.1) and the notations 

d
d
a

a t
�

va ,   r
r t

(
�

(
va ,   2 rC � 3a v7 , 

( )t O�� � 3 � 3 3�a a r r7 7 7 ,   
d
d
O

O t
�

� �
v

a , 
(5.3.4) 

where aa , ra , ta  and Ca  are the absolute acceleration, the relative acceleration, the 
acceleration of transport and the acceleration of Coriolis (the complementary 
acceleration) of the particle, respectively, we obtain 

a rt C� � �a a a a ; (5.3.5) 

noting that the absolute acceleration is not obtained by summing vectorially the 
acceleration of transport with the relative acceleration (by vanishing the motion of 
transport, a complementary term, due to Coriolis, is added to the relative acceleration), 
so that we state 
Theorem 5.3.2. The absolute acceleration of a particle is obtained by the vector 
composition of the acceleration of transport with the relative and Coriolis’ 
accelerations. 

Excepting the trivial case in which r �v 0 , the acceleration of Coriolis vanishes if 
� 07 , hence if the movable frame of reference has a motion of translation with 

respect to the fixed frame of reference (the movable frame is not rotating, its axes 
having a displacement parallel to themselves), or if r �v 7  (e.g., the case of a particle 
in motion on the generatrix of a right circular cylinder, which rotates about its axis). 
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As it can be easily verified, after Resal, if � ��� �7 7 7  or if r r r� ��� �v v v , 
corresponding to two successive rotations or relative motions, then the resultant 
acceleration of Coriolis is the sum of the component Coriolis’ accelerations 
( C C C� ��� �a a a ). 

As in the case of velocities, by equating to zero the relative motion ( r r� �v a 0 ), 
we notice that the acceleration in the motion of transport is the acceleration of a point of 
the rigid solid, rigidly linked to the moving frame of reference. 

We may apply the above results – for instance – to the computation of the velocities 
and of the accelerations in polar, cylindrical, or spherical co-ordinates, by the 
composition of rectilinear motions or of motions of rotation, hence by the composition 
of a motion of transport with a relative one. 

3.2 Relative motion of the rigid solid 
The results obtained at the preceding section may be used in the study of the motion 

of a point of an arbitrary mechanical system, hence in the study of the motion of the 
respective mechanical system. In particular, we consider the relative motion of the rigid 
solid, emphasizing the corresponding composition of the velocities and of the 
accelerations. 

3.2.1 Composition of velocities 

Let us consider a fixed frame of reference 
 0R  of pole O , a moving frame of 

reference 
 1R  of pole 1O  and another moving frame of reference 

 2R  of pole 2O , 
rigidly linked to the rigid solid. In this case, the relative velocity (with respect to the 
movable frame of reference) of a point P  of the rigid solid is given by 

21 21 2r � � 3v v r7 , where 21v  is the velocity of the pole 2O  with respect to the pole 

1O , 217  is the angular velocity of the frame 
 2R  with respect to the frame 

 1R , while 

2r  is the position vector of the point P  with respect to the frame 
 2R ; using analogous 

notations, we may write the velocity of transport (of the moving frame with respect to 
the fixed one) in the form 10 10 1t � � 3v v r7 . The formula (5.3.3) of composition of 
velocities allows to write the absolute velocity (of the point P  with respect to the frame 

 0R ) in the form 

10 21 10 1 21 2P � � � 3 � 3v v v r r7 7 . (5.3.6) 

In the case of 1n �  motions of transport, corresponding to 1n �  frames 
 1R , 

 2R ,…, 
 1n �R , the frame 

 0R  being fixed, while the frame  nR  is rigidly linked to the 
rigid solid, we may write 

,0 ,0 , 1 , 1
1 1

n n
nn n ii i i iP

i i
� �

� �
� � 3 � � 3 v v r v r7 7 , (5.3.7) 
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the formula being proved by complete induction, taking into account (5.3.6) too; 
analogously, the angular velocity of the rigid solid with respect to the fixed frame 

 0R  
is given by 

,0 , 1
1

n

n i i
i

�
�

� � 7 7 7 . (5.3.7') 

In particular, if all the component motions (both relative and of transport) are 
translations, then we obtain ( 10 21 , 1... n n �� � � � 07 7 7 ) 

, 1
1

n

i iP
i

�
�

� v v , (5.3.8) 

all the points of the rigid solid having the same velocity. We may state 
Theorem 5.3.3. By the composition of n  motions of translation of a rigid solid one 
obtains a resultant motion which is a motion of translation too, the velocity of a point of 
the rigid solid being equal to the vector sum of the velocities of translation of the 
component motions. 

If all the component motions are instantaneous rotations and if the origins of the 
corresponding frames are on the instantaneous axes of rotation and coincide, then we 
have ( 10 21 , 1... n n �� � � �v v v 0 , 1 2 ... n� � � �r r r r ) 

P � 3v r7 ,   , 1
1

n

i i
i

�
�

� 7 7  (5.3.9) 

and we may state 
Theorem 5.3.4. By the composition of n  instantaneous motions of rotation, the 
instantaneous axes of rotation of which are concurrent at a fixed point O , one obtains 
an instantaneous resultant motion which is also an instantaneous motion of rotation 
about an instantaneous axis of rotation which passes through the same point O  and the 
angular velocity of which is the vector sum of the angular velocities of the component 
motions. 

This result allows the study of the motion of a rigid solid with a fixed point, by the 
composition of three instantaneous motions of rotation about three instantaneous axes 
of rotation, passing through the fixed point. 

In the case of instantaneous motions of rotation about some instantaneous parallel 
axes of rotation, we may write ( , 1i i� �v 0 , , 1 , 1i i i i�� �� u7 , 1�u , 1,2,...,i n� ) 

P � 3v 7 @ ,   �� u7 ,   , 1
1

n

i i
i

�
�

� u 7 ,   
, 1

1

n

ii i
i

�

�

�
��
 r

@ , (5.3.10) 

assuming that � 07 . We may pass from a point P  to a point Q  by the relation 

i iO Q O P PQ� �
����� ����� ����

, wherefrom 
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� �, 1
1

( )
n

ii iQ P
i

PQ PQ� ��
�

� 3 � � � 3
���� ����

v u r v u ; 
 

if � 07 , then we obtain Q P�v v , hence a motion of translation. We may thus state 
Theorem 5.3.5. By the composition of n  instantaneous motions of rotation, the 
instantaneous axes of rotation of which are parallel, of angular velocities , 1i i�7 , one 
obtains an instantaneous resultant motion which is an instantaneous motion of rotation 
about an instantaneous axis of rotation passing through the centre of the parallel 
vectors , 1i i�7  of angular velocity 

, 1
1

n

i i
i

�
�

� 7 7 , 
 

or a motion of translation, as we have � 07  or � 07 , respectively. 
If, for 2n � , we have 10 21� � 07 7 , then we can say that a couple of 

instantaneous rotations is equivalent to a translation. 
In the general case, by passing from a point P  to a point Q  of the rigid solid, we 

obtain a relation of the same form as that above, i.e. 

Q P PQ� � 3
����

v v 7  (5.3.11) 

(of the form (5.2.27)). We attach the relation 

, 1 , 1
1 1

n n

ii i i iP
i i

PO� �
� �

� � 3 
�����

v v 7  (5.3.7'') 

to the relation (5.3.7'), so that we can introduce the torsor of the angular velocities, 
applying the static-kinematic analogy. The considerations made in Subsec. 2.3.1 remain 
valid, and we may classify the resultant instantaneous motions (obtained by the 
composition of some instantaneous motions), as in the case of only one such motion. 

In particular, for rest with respect to a fixed frame of reference we must have 

� 07 ,   P �v 0 , (5.3.12) 

the point P  being arbitrarily chosen. 
Observing that 

�, 1 , 1 , 1 1 1 1 2
1 1 1

...
n n n

i ii i i i i i i i i
i i i

O P O O O O� � � � � �
� � �

3 � 3 � 3 �  
����� �������� ����������

r7 7 7  

� � �1 10 1 2 10 21 2 3... ...n nnO O O P O O O O�� � � 3 � � 3
��������� ����� ������ ������

7 7 7  

, 1
1

...
n

ni i
i

O P�
�

� �� 3	 

� �


�����
7 ,   1nO P� � , 
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1

0 ,0, 1 1
1 1

n n
ni ni i iP

i i
O O O P

�

� �
� �

� � 3 � 3 
�������� �����

v v 7 7 , (5.3.13) 

an useful relation for practical applications. If we take into account a formula of the 
form (5.3.11), then we get 

1

,0 ,0, 1 1
1 1

n n

n i ii i i
i i

O O
�

� �
� �

� � 3 
��������

v v 7 . (5.3.13') 

The general motion of a rigid solid is completely characterized by the vectors 0 ( )t�v  
and ( )t7 , corresponding to a motion of translation and of rotation, respectively; as we 
have seen, the vector 0 ( )v t�  may be replaced by a couple of vectors 0 ( )t7 , 0 ( )t�77 . 
Using the general results given in Chap. 2, Subsec. 2.2.4, concerning the systems of 
sliding vectors, we can state 
Theorem 5.3.6. The general motion of a rigid solid at a given moment may be obtained 
by the composition of three instantaneous motions of rotation about three instantaneous 
axes of rotation passing through three given points or by the composition of two 
instantaneous motions of rotation about two instantaneous axes of rotation, one of them 
passing through a given point. 

We notice that the relation (5.2.31) established for a point of the instantaneous axis 
of rotation and sliding corresponds, in fact, to the basic formula (5.3.3) in a relative 
motion. We come back to the respective problem in the particular case of a plane-
parallel motion, considered in Subsec. 2.3.4. Let thus be the instantaneous centre of 
rotation I  ( ( )I t  at the moment t ), which describes the curve B (basis) in the 
absolute motion, and the curve R (rolling curve) in the relative motion, respectively; 
obviously, its velocity vanishes ( t �v 0 ) in the motion of transport. The formula 
(5.3.3) leads thus to a r�v v , so that the two centrodes are tangent at ( )I t  at the 
moment t . In modulus, we have s s� �� �  too, so that ( ) ( )s t s t� �  on the curves B and 
R, respectively; we start from the initial moment 0t t�  at which the two centrodes are 
tangent at 0( )I t  and which is considered to be the origin for the corresponding 
curvilinear co-ordinates. We may thus state 
Theorem 5.3.7. In the plane-parallel motion of a rigid solid, the basis B and the 
rolling curve R  are centrodes tangent at ( )I t  at the moment t ; during the motion, 
the rolling curve is rolling without sliding over the basis. 

We may also state 
Theorem 5.3.7' (reciprocal). If in a plane-parallel motion a smooth curve R, rigidly 
linked to the rigid solid, is rolling without sliding over a fixed smooth curve B, then the 
point of contact ( )I t  of the two curves at the moment t  is the instantaneous centre of 
rotation, B and R  being the basis and the rolling curve, respectively. 

Indeed, at the point ( )I t  we have a r��v v , �  scalar, and s s� �� � , so that 
a r�v v ; the relation (5.3.3) leads – in this case – to t �v 0 , condition which 

we may also write 
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characterizes the centre ( )I t . If we enlarge somewhat the conditions of this reciprocal 
theorem so that, in general, s s� �� � , then 1� � ; on the basis of the relation (5.3.3), the 
velocity t �v 0  is along the common direction of the velocities av  and rv , hence it is 
tangent to the two curves at the point M , while ( )I t  is on their common normal 
(Fig.5.28,a). We thus state 

Figure 5.28.  Properties of a smooth curve rigidly linked to a rigid solid 
 in a plane-parallel motion. 

Theorem 5.3.8. If, in a plane-parallel motion, a smooth curve C, rigidly linked to the 
rigid solid, remains all the time tangent to a smooth fixed curve �C , then the 
instantaneous centre of rotation ( )I t  is, at any moment t , on the common normal at 
the point M  of contact. 

Let also be a curve C, rigidly linked to a rigid solid, which passes through a fixed 
point M , and let be a point P  on this curve, which coincides all the time with the 
point M ; the point P  describes the curve C with respect to the movable frame of 
reference, remaining at a fixed point with respect to the fixed frame of reference. 
Hence, at this point a �v 0  and rt � �v v 0 ; but rv  is along the tangent at P  to the 
curve C, so that tv  enjoys the same property (Fig.5.28,b). It results that the centre I  is 
on the normal to this tangent and we may state 
Theorem 5.3.9. If, in a plane-parallel motion, a smooth curve C, rigidly linked to the 
rigid solid, passes all the time through a fixed point M , then the instantaneous centre 
of rotation ( )I t  is at any moment t  on the normal at M  to the curve C. 

3.2.2 Composition of accelerations 
As in the case of the distribution of velocities, we consider a fixed frame of reference 
 0R  of pole O , a movable frame 

 1R  of pole 1O  and a frame 
 2R  of pole 2O , rigidly 

linked to the rigid solid. The relative acceleration (with respect to the movable frame) 
of a point P  of the rigid solid is given by 21 21 2 21 21 2( )r � � 3 � 3 3�a a r r7 7 7 , 
where 21a  is the acceleration of the pole 2O  with respect to the pole 1O , 217  and 21�7  
are the angular velocity and acceleration, respectively, of the frame 

 2R  with respect to 
the frame 

 1R , while 2r  is the position vector of the point P  with respect to the frame 

 2R ; using analogous notations, we may write the acceleration of transport (of the 
movable frame with respect to the fixed one) in the form 10 10 1t � � 3�a a r7  
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10 10 1( )� 3 3 r7 7 . The acceleration of Coriolis is given by 102 rC � 3a v7  
10 21 21 22 ( )� 3 � 3v r7 7 . The formula (5.3.5) of composition of accelerations allows 

to write the absolute acceleration (of the point P  with respect to 
 0R ) in the form 

10 21 10 1 21 2 10 10 1( )P � � � 3 � 3 � 3 3� �a a a r r r7 7 7 7  

21 21 2 10 21 21 2( ) 2 ( )� 3 3 � 3 � 3r v r7 7 7 7 . (5.3.14) 

In the case of 1n �  motions of transport, corresponding to 1n �  frames 
 1R , 

 2R ,…, 
 1n �R , the frame of reference 

 0R  being fixed, while the frame  nR  is rigidly 
linked to the rigid solid, we have 

,0 ,0 ,0 ,0 , 1 , 1
1 1

( )
n n

n nn n n n ii i i iP
i i

� �
� �

� � 3 � 3 3 � � 3 � �a a r r a r7 7 7 7  

1

, 1 , 1 , 1 , 1 , 1
1 2 1

( ) 2 ( )
n n i

i ii i i i j j i i i i
i i j

�

� � � � �
� � �

� 3 3 � 3 � 3 r v r7 7 7 7 ; (5.3.15) 

the formula may be proved by complete induction, taking into account the relation 
(5.3.14) and the sum (5.3.7'). Differentiating the last formula with respect to time in the 
fixed frame of reference, we may write 

,0 , 1 , 1
,0 , 1

1 1

ddd
d d d

n nn i i i i
i i i

i it t t t
� �

�
� �

(� �� � � � 3	 
(� �
 

7 777
7 7  

, 1 , 1 , 1
1 1 1

n n i

i i j j i i
i i j

� � �
� � �

� � 3 �7 7 7 , 

 

so that the angular acceleration of the rigid solid with respect to the fixed frame 
 0R  

will be given by 

1

,0 , 1 , 1 , 1 , 1 1,0 , 1
1 2 1 1 2

n n i n n

n i i j j i i i i i i i
i i j i i

�

� � � � � �
� � � � �

� � � 3 � � 3   � � � �7 7 7 7 7 7 7 7 . 

 (5.3.15') 

In particular, if all the component motions (both of transport and relative) are 
translations, we obtain ( , 1 , 1i i i i� �� �� 07 7 , 1,2,...,i n� )  

, 1
1

n

i iP
i

�
�

� a a , (5.3.16) 

all the points of the rigid solid having the same acceleration, and we may state 
Theorem 5.3.10. By the composition of n  motions of translation of a rigid solid, one 
obtains a resultant motion which is a motion of translation too, the acceleration of a 



www.manaraa.com

Kinematics 339 

point of the rigid solid being equal to the vector sum of the accelerations of translation 
of the component motions. 

If all the component motions are instantaneous rotations, the origins of the 
corresponding frames of reference being on the instantaneous axes of rotation and being 
coincident, we get ( , 1i i � �v 0 , , 1i i � �a 0 , i �r r , 1,2,...,i n� ) 

1

, 1 , 1 , 1 , 1 , 1
1 1 2 1

( ) 2 ( )
n n n i

i i i i i i j j i iP
i i i j

�

� � � � �
� � � �

� �� 3 � 3 3 � 3 3	 

� �
  �7 7 7 7 7a r r r ; 

 (5.3.17) 

noting that, in general, �� 07 , even if the component rotations are uniform 
( , 1i i� �� 07 , 1,2,...,i n� ), we may state that, by the composition of n  instantaneous 
motions of rotation, the instantaneous axes of which are concurrent at a point O , one 
obtains a motion with a distribution of accelerations characteristic to a rigid solid with a 
fixed point (the point O ). 

In the case of some instantaneous motions of rotation about some parallel 
instantaneous axes of rotation, we can write ( , 1 , 1j j i i� �3 � 07 7 , , 1,2,...,i j n� ) 

, 1
1

n

i i
i

�
�

� � �7 7 , (5.3.18) 

the vector �7  being parallel to the vector 7 ; we obtain as resultant motion an 
instantaneous rotation about an instantaneous axis of rotation or a translation, the 
distribution of accelerations being a corresponding one. 

Noting that 1 1 2 1... n ni i i i i nOO O O O O O P� � � �� � � � �
�������� ���������� ��������� �����

r , taking into account 
(5.3.7') and (5.3.15'), and using the relation 

1,0 , 1 1,0 , 1 , 1 1,0( ) ( ) ( )i i ii i i i i i i i i� � � � � �3 � � 3 3 � 3 3r r r7 7 7 7 7 7 ,  

a consequence of the relation (2.1.50'), we may write the law of composition (5.3.15) 
also in the form 

,0 ,0, 1 1
1 1

n n
ni i ni i iP

i i
O O O P� �

� �
� � 3 � 3 

�������� �����
� �a a 7 7  

1

,0 ,0 ,0 ,01 1,0 , 1
1 2

( ) ( ) 2
n n

ni i i n ni i i i
i i

O O O P
�

� � �
� �

� 3 3 � 3 3 � 3 
�������� �����

v7 7 7 7 7  (5.3.19) 

useful in many applications. 
In the general case, passing from a point P  to a point Q  of the rigid solid, we 

obtain a relation of the form 

( )Q P PQ PQ� � 3 � 3 3
���� ����

�a a 7 7 7 , (5.3.20) 
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where the angular velocity and acceleration are given by the formulae (5.3.7'), (5.3.15'), 
respectively. 

We mention that the formula (5.3.19) may lead to a torsor of the angular 
accelerations, less useful that the torsor of the angular velocities, because of its 
complicated form. 

3.3 Kinematics of systems of rigid solids 
After some general considerations concerning the systems of rigid solids (called also 

multibody systems, where it is understood that the bodies are rigid ones), we introduce 
the notion of mechanism, as an example of such systems; the results thus obtained allow 
to present some applications concerning the transmission of displacements, velocities 
and accelerations. 

3.3.1 Systems of rigid solids 
The results obtained for the relative motion of a rigid solid may be used also for 

systems of rigid solids. Let be thus two rigid solids S  and �S , bounded by two 
convex surfaces S  and S � , respectively, which at any moment t , have the same 
tangent in an ordinary common point P P �� , P S� , P S� ��  (Fig.5.29); we assume 
that the solid �S  is fixed, while the solid S  is movable, remaining at any moment in 
contact with the solid �S . Let us suppose that a movable point Q  coincides with 
P P ��  at any moment t ; the locus of the point Q  with respect to the movable 
surface S  is a curve C , its velocity Pv  being a relative velocity, and with respect to 
the fixed surface S �  a curve C � , its velocity Pv , being an absolute velocity. Taking 
into account the relation (5.3.3), we obtain the velocity of the point Q  as a velocity of 
transport with respect to the surface S �  in the form 

Figure 5.29.  Motion of a rigid solid over another rigid solid. 

Q PP �� �v v v . (5.3.21) 

Because the velocities P �v  and Pv  are contained in the common tangent plane, the 
velocity Qv  which characterizes the sliding of the surface S  over the surface S �  will 
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belong to the same plane. The distribution of the velocities is known if, besides the 
velocity ( )Q tv , the angular velocity ( )t7 , which passes through the point P , is also 

given. The motion of the rigid solid S  with respect to the rigid solid �S  is thus 
characterized by a translation of velocity ( )Q tv  and by a rotation of angular velocity 

( )t7 . The vector ( )t7  may be decomposed in two components: an angular velocity 
( )n t7 , along the normal to the tangent plane, which characterizes a pivoting about the 

respective axis, and an angular velocity ( )t t7 , contained in the tangent plane, which 
characterizes a rolling about the corresponding axis. We can say that the general motion 
of the rigid solid S  over the rigid solid �S  takes place so that the surface S  is rolling 
and pivoting with sliding over the surface S � . If ( )Q t �v 0 , then the motion of the 

rigid solid S  over the rigid solid �S  is an instantaneous rotation (pivoting and 
rolling) about an instantaneous axis of rotation passing through the point of contact. 
The fixed axoid intersects the surface S �  after the curve C � , while the movable axoid 
intersects the surface S  after the curve C ; in this case, PP � �v v , so that the curve C  
is rolling without sliding over the curve C �  during the motion. If Q �v 0  but n � 07  
( t�7 7 ), then the surface S  is rolling with sliding over the surface S � , along an 
instantaneous axis of rotation and sliding; if Q �v 0  too, then the motion is only a 
rotation without sliding. 

Let be the frames 
 1R , 

 2R ,…,  nR . rigidly linked to the rigid solids 
 1S , 

 2S ,…, 
 nS , respectively. Denoting by jk7  the angular velocity in the motion of the frame 

 jR  
with respect to the frame 

 kR  and by ( / )j( ( V  the derivative with respect to time of a 
vector V  in the frame 

 jR , we may write 

1,
1

i i
i i

�
�

( (
� � 3

( (
V V V7 ,   1,2,..., 1i n� � , 

1,
1

n
n

( (
� � 3

( (
V V V7 ; 

 

summing with respect to i  and noting that the vector V  is arbitrary, we obtain the 
relation (equivalent to the relation (5.3.7')) 

21 32 , 1 1,... n n n�� � � � 07 7 7 7 , (5.3.22) 

which links the relative rotations of n  rigid solids. In particular, one obtains the 
remarkable relations 

ij ji� � 07 7 ,   ij ik kj� �7 7 7 ,   i j k i� � � ,   , , 1,2,...,i j k n� . (5.3.22') 

Starting from 
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i j i j ji i j
i j
O O OO OO( (

� � 3
( (

������ ������ ������
7 ,   i j i jO O � �

������
r r ,  

we find also the relation 

ij ji ij i ji j� � 3 � 3 �v v r r 07 7 ,   i j� ,   , 1,2,...,i j n� , (5.3.23) 

complementary to the first relation (5.3.22'), where ijv  is the velocity of the pole iO  of 
the frame 

 iR  with respect to the pole jO  of the frame 
 jR . Starting from the relation 

(5.3.7) and using the relation (5.3.23), we get the relation 

1 1

1, 1, 1, 1 1, 1
1 1

n n

i i n i i i n
i i

� �

� � �
� �

� � 3 � 3 � v v r r 07 7 ,   2n � , (5.3.24) 

corresponding to the frames 
 1R , 

 2R ,…,  nR , the position vectors being those of a 
point P  of the rigid solid with respect to the above mentioned frames. We mention that 
one may write the relation (5.3.24) also in the form 

1 1

1, 1, 1 1, 1 1,
1 1

n n

i i n i i i n
i i

PO PO
� �

� � �
� �

� � 3 � 3 � 
������� �����

v v 07 7 ,   2n � ; (5.3.24') 

the formulae (5.3.22) and (5.3.24') allow thus to use the static-kinematic analogy for the 
sliding vectors 1,i i�7 , 1,2,..., 1i n� � , and 1,n7 , the velocities 1,i i�v , 

1,2,..., 1i n� � , and 1,nv  playing the rôle of moments of those vectors. 
The relation (5.3.13) may lead, on the same way, to some interesting results. 
Noting that 

ji ji ji ji ij
i j j

( ( (
� � 3 � �

( ( (
7 7 7 7 7 ,  

we obtain the relation 

ij ji� �� � 07 7 . (5.3.25) 

The relation (5.3.15') allows to write 

1 2

1, 1, 1,1 2, 1
1 1

n n

i i n i i i
i i

� �

� � � �
� �

� � 3 � �7 7 7 7  (5.3.26) 

in this case; in particular, one obtains 

ij ik kj ik kj� � � 3� � �7 7 7 7 7 . (5.3.25') 

Using a relation of the form (2.1.50'), as for the distribution of velocities, and starting 
from the relation (5.3.15), we get a relation of the form 
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thus, the formulae (5.3.26), (5.3.27) lead also to the static-kinematic analogy for the 
sliding vectors of the nature of angular accelerations, where the relative accelerations, 
the accelerations of transport and the accelerations of Coriolis play the rôle of moments 
of those vectors. 

Analogous results can be obtained starting from the relation (5.3.19) too. 
We consider also a mechanical system made up by three rigid solids 

 iS , 
 jS  and 

 kS , which have a plane-parallel motion. The rigid solid 
 iS  has a motion of rotation 

with respect to the rigid solid 
 jS  about an instantaneous axis of rotation, normal to the 

plane of motion at the instantaneous centre of rotation ijI , with an angular velocity 

ij7 ; analogously, one introduce the instantaneous centres of rotation jkI  and kiI , as 
well as the corresponding angular velocities jk7  and ki7 . Taking into account the 
second relation (5.3.22'), there results that the three parallel vectors are also coplanar, so 
that one may state 
Theorem 5.3.11 (theorem of the three instantaneous centres of rotation). If a 
mechanical system made up by three rigid solids 

 iS , 
 jS  and 

 kS  has a plane-parallel 
motion, then the three instantaneous centres of rotation ijI , jkI  and kiI  corresponding 
to their relative motions are collinear. 

We notice that ij jiI I� , hence the instantaneous centre of rotation of the rigid solid 

 iS  with respect to the rigid solid 
 jS  coincides with the instantaneous centre of 

rotation of the rigid solid 
 jS  with respect to the rigid solid 

 iS . 

3.3.2 Kinematic chains. Mechanisms 
The rigid solids which constitute a system of rigid solids are called elements; one of 

those elements may be considered fixed, the other elements being – in general – 
movable. The link which restricts the motion of an element with respect to another one 
is called kinematic couple relative to the two elements; one may say also that this is the 
possibility to transmit the motion from one element to another one. Among the 
kinematic couples we mention: the articulation (it allows the rotations), the coulisse or 
the slideway (it allows the displacement in a given direction) and the simple support (it 
does not allow displacement in a given direction). An element of a kinematic couple is 
considered fixed, studying – in fact – the relative motion of the second element with 
respect to the first one. The conditions of linkage (the restrictions of the relative 
motion) diminish the number of degrees of freedom of the free element (which is six). 
We denote by c  the number of the conditions of linkage; if 0c � , then the elements  
are free one with respect to the other, while if 6c � , then the two elements are built in  
one into the other (rigid constraint). Hence 1 5c� � ; if N  is the number of degrees  
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of freedom which remain, then we have 6c N� � . We may thus classify (after 
Malyshev) the kinematic couples in five classes, after the number of the conditions of 
linkage. We mention thus the plane-sphere and the plane-plane couple (of class I and 
class II, respectively), the spherical and the plane couple (of class III), the annular and 
the cylindrical couple (of class IV), the couple of rotation, of translation and the helical 
couple (of class V); for instance, the plane-sphere couple allows two translations and 
three rotations, while the cylindrical couple allows only a translation and a rotation. If 
the relative motion of the two elements is a plane-parallel motion, then we have to do 
with a plane couple; otherwise, the couple is a space one. In another classification, we 
have: inferior kinematic couples, if the contact zone is a surface, and superior kinematic 
couples, if the contact zone is a line or a point. 

A system of rigid solids (elements) linked by kinematic couples, which allow the 
motion from one element to the other, by successive transformations, is called a 
kinematic chain. If there is at least a singular element, which belongs to only one 
kinematic couple, then the kinematic chain is called open (Fig.5.30,a); otherwise (if 
each element of it belongs at least to two kinematic couples), the kinematic chain is 
called closed (Fig.5.30,b). A kinematic chain is simple if each element of it belongs at 
the most to two  kinematic  couples  (Fig.5.30).  Otherwise,  the  kinematic  chains  are 

Figure 5.30.  Kinematic chains: open (a) and closed (b). 

complex, having at least an element involved in more than two kinematic couples; these 
chains may be open or closed too (Fig.5.31,a,b). If all the couples are plane, then the 
kinematic chain is plane; otherwise, it is  spatial. We  call  basis  of  the  kinematic  

Figure 5.31.  Complex kinematic chains: open (a) and closed (b). 

chain an element of it which is considered fixed; the other elements are leading elements (if 
they induce the motion coming from the exterior to the other elements) or followers  
(if they receive the motion from the first elements). A kinematic chain for which at any  
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position of one or several leading elements of it corresponds a unique position for all 
the other followers (with respect to the considered basis) is called desmodromous; 
otherwise, the kinematic chain is called non-desmodromous. For instance, the 
articulated quadrangle of vertices , , ,A B C D  and sides , , ,a b c d  (Fig.5.32), for which 
a  is the basis, while the element b  is leading is a desmodromous kinematic chain, the 
elements c  and d  being followers. In analogous conditions, an articulated pentagon, 
e.g., is a non-desmodromous kinematic chain. 

The number of degrees of freedom of a kinematic chain, constituted of n  elements, 
linked by cn  couples of class c , 1,2,..., 5c � , is given by 

5

1
6 c

c
N n cn

�
� �  . (5.3.28) 

If one of the elements of the kinematic chain is a basis, then its degree of mobility is 
specified by the Somov-Malyshev formula (the structural formula of the kinematic 
chains) 

5

1
6( 1) c

c
M n cn

�
� � �  , (5.3.28') 

the kinematic couples being independent. If there exist l  restrictions of motion (due, 
for instance, to some anterior common linkages), then we have 

5

1
(6 ) ( ) c

c l
N l n c l n

� �
� � � � , (5.3.29) 

the degree of mobility being given by Dobrovolski’s formula 

5

1
(6 )( 1) ( ) cl

c l
M l n c l n

� �
� � � � � . (5.3.29') 

In the plane case ( 3l � ), we get 543 2N n n n� � �  and 3 3( 1)M n� � � 4n  

52n� , the latter formula being due to Chebyshev. 
A closed kinematic chain which has a basis and is subjected to a desmodromous  

motion is called a mechanism; the number of its leading elements is – in general – equal  
to the number of its degrees of mobility. In the case of the articulated quadrangle  
( 4n � , 4 0n � , 5 4n � ) (Fig.5.32), Chebyshev’s formula gives 3(4 1)M � �  

2 4 1� � � . In this particular case, we distinguish six centres of rotation, i.e.: four  
centres of permanent rotation (the fixed centres of rotation baI A�  and daI D�  and  
the movable centres of rotation cbI B�  and dcI C� ) and two instantaneous centres  
of rotation caI  and dbI ; corresponding to the Theorem 5.3.11, we notice that the above 
mentioned centres of rotation are three abreast on the four sides of the quadrangle. In 
general, a mechanism made up of n  elements has ( 1)/2n n �  centres of rotation; if  



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 346 

the mechanism is a polygon, then n  centres are permanent (two of them being fixed), 
while ( 3)/2n n �  are instantaneous ones. 

Figure 5.32.  Desmodromous articulated quadrangle. 

3.3.3 Applications to the transmission of displacements, velocities and 
accelerations 

The determination of the kinematic characteristics of a mechanism (i.e., the 
positions, the velocities and the accelerations of its points) is of particular importance in 
the study of it; the methods of computation used are analytical, graphical, or grapho-
analytical ones. 

Figure 5.33.  Crank and connecting-rod mechanism. 

Let be, for instance, the crank and connecting-rod mechanism BAO  (one of the 
most usual mechanisms, which transforms a rectilinear motion in a circular one) 
(Fig.5.33). the leading element is the crank AO , articulated at O  and of length R ,  
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the position of which is specified by the angle �  with respect to the position OA� , 
corresponding to the dead-point (dead-position); in the latter case, the extremity B  of 
the connecting-rod BA , which glides at B  and is of length l , is at the point B � . 
Taking the point B �  as origin for the displacements, the position of the point B  at a 
given moment will be 

� �2 2(1 cos ) 1 1 sinBx B B R l� � ��� � � � � � ,   R
l

� � .  

The ratio �  being subunitary (in general, 1/3� � ), we may use binomial’s formula 
for the radical, so that 

� �
2

2 2 2(1 cos ) sin 2 sin 1 cos
2 2 2B
Rx R
l

� �� � �1 � � � � . (5.3.30) 

Hence, one has the velocity 

� �sin sin2 sin (1 cos )
2B A A
Rv v v
l

� � � � �� � � � ,  Av R�� ,  � �� � . (5.3.31) 

We must have cos cos2 0� � �� �  for maxBv , wherefrom 

� �21cos 1 1 8
4

� � �
�

� � � � 1 ,   90� � 0 ,  

using the same approximation method as above; consequently, 

� �
2 2

2
max 1 1 1

2 2B A Av v v� ��� � � �1 � � 1 �	 
 	 

� � � �

 (5.3.31') 

For 1/5� �  we obtain 78 27 47� � ��1 0  and max 1.02B Av v1 . 
The acceleration is given by 

2 (cos cos2 ) sin (1 cos )Ba R R� � � � � � � �� � � �� . (5.3.32) 

In case of a constant regime ( const� � ), it results 

(cos cos2 )B Aa a � � �� � ,   2
Aa R�� . (5.3.32') 

We get max (1 )B Aa a �� �  for 0� � 0  and min (1 )B Aa a �� � �  for 180� � 0 ; we 
can also have min (1 )/ 8B Aa a � �� � �  too for cos 1/4� �� � . 

Another analytical method is the method of independent cycles, at the basis of which 
stay the formulae (5.3.22) and (5.3.24'), allowing to write two vector equations of 
equilibrium for each independent cycle of the considered mechanism; in the case of n  
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independent cycles, one may write 2n  vector equations to determine the velocities 
1,nv , 1,i i�v  and the angular velocities 1,n7 , 1,i i�7 , 1,2,..., 1i n� � . The formulae 

(5.3.26), (5.3.27) lead to an analogous method of computation for the distribution of 
accelerations. But the analytical methods are difficult to use in the case of more intricate 
mechanisms. 

Among the graphical or grapho-analytical methods we mention – first of all – the 
method of connecting-rod curves to determine the displacements of the points of 
elements of this nature. 

To determine the velocities, one can use – sometimes – the method of the 
instantaneous centre of rotation; for instance, in the case of the just considered crank 
and connecting-rod mechanism (Fig.5.33), the centre I  can be easily obtained, so that 

I
OA
IA

� �� ,   C IIC� �� , (5.3.33) 

for an arbitrary point C  of the driving rod. The velocities’ turning down method, 
emphasized in Subsec. 2.3.4, allows to determine graphically the magnitude and the 
direction of velocities; taking into account Fig.5.19, we may obtain the drawing of 
Fig.5.33. The point D , the foot of the normal from I  to the connecting-rod AB , is the 
point of minimal magnitude of the velocity, which has the direction of the connecting-
rod, and is its characteristic point. We mention that it is not necessary to obtain 
previously the point I ; that is an advantage of the latter method. But if this point is 
specified and a particular scale for the velocities is chosen, so that the magnitude of the 
velocity of a point be equal to the corresponding instantaneous radius (in our case 
Av IA� ), then the velocities of all the points will have the moduli equal to the 

corresponding instantaneous radii; this is the method of the normal velocities. Euler’s 
formula (5.2.3') leads to the method of the relative motion (the method of the vector 
equations). As well, the formulae (5.2.4), (5.2.4') stay at the basis of the method of 
velocities’ projections; thus, if we know the velocities of the points A  and B , which 
correspond to two elements of a mechanism, then we may obtain the projections of the 
velocity of a point C , rigidly linked to each of the points A  and B  and non-collinear 
with these points, on the straight lines AC  and BC , hence obtaining the velocity of 
the point C . The drawing of the velocities’ plane and the similarity theorem (for 
velocities) lead to the method of velocities’ polygon for a plane-parallel motion. Using 
the theorem of the three instantaneous centres of rotation (see Subsec. 3.3.1), one may 
often determine the distribution of the velocities in the case of a plane mechanism (the 
method of collinearity of the instantaneous centres of rotation). 

To determine the accelerations of an element, we may use the graphical 
representation of the accelerations of its points. As in the case of velocities, we mention 
the method of relative motion (the method of vector equations), based on the formulae 
(5.2.6)-(5.2.6''), the projections’ method, based on the formula (5.2.10), and the method 
of accelerations’ polygon, based on the introduction of the accelerations’ plane and on 
the similarity theorem (for accelerations), introduced in Subsec. 2.3.4. 

We notice that a mechanism realizes a transformation of an input quantity 
(displacement, velocity, acceleration) into an output quantity of the same nature; thus, 
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the output quantity will be equal to the input one, amplified by a coefficient, which is a 
transmission ratio (or a transfer function), hence o idd d�� , o v iv v�� , d  being a 
displacement and v  a velocity, where the indices o  and i  stay for output and input, 
respectively, while d� , v�  are the corresponding transmission ratios. We mention that, 
in the case of accelerations, we cannot speak about a transmission ratio, but only if 

constv� � , case in which o v ia a��  with analogous notations; otherwise, the ratio 
a�  of transmission of accelerations depends not only on the position of the leading 

element, but also on its velocity and acceleration. 
Among the mechanisms which realize these transformations, we mention – first of 

all – the mechanisms with articulated levels. One of the simplest mechanisms of this 
type is the articulated quadrangle, which may be – in particular – an articulated 
parallelogram. The link mechanisms may be with a translation, oscillating or rotation 
link; to the first category belongs also the crank and connecting-rod mechanism, just 
considered. We mention also the case in which the axle of the link does not pass 
through the articulation of the crank, as well as the case of eccentric gears (for which 
the ratio /R l� �  is very small). Another mechanism of this kind is the shaping 
mechanism. The director mechanisms may be used to obtain a rectilinear or a 
curvilinear trajectory; they may be reversers (exact director mechanisms) or 
approximate mechanisms. The mechanisms with a Cardan joint are based on a Cardan 
(universal) coupling. 

Figure 5.34.  Wheel mechanisms with (exterior) (a) or interior (b) wheels. 

In the case of wheel mechanisms, one must have in view the relative position of the 
axes of rotation and the angular velocities; we mention that the wheels may be exterior 
(Fig.5.34,a) (the rotation direction is changed) or interior (Fig.5.34,b) (the rotation 
direction is maintained). The transmission may be obtained by friction wheels or by 
gear wheels (trains of gears). In the case in which the axes of rotation are parallel 
(Fig.5.34), having a rolling without sliding, the velocity of their point of contact (which 
is an instantaneous centre of rotation too) is the same, so that the transmission ratio is 
given by 

1 2

2 1

R
R�

��
�

� � 2 , (5.3.34) 

where one takes the sign + or – as the direction of rotation is maintained or not; if the 
motions of rotation are uniform, then we may write 
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1

2

n
n�� � 2 , (5.3.34') 

Figure 5.35.  Gear wheels with concurrent rotation axes. 

where 1n  and 2n  represent the number of rotations per unit time. In the case in which 
the rotation axes are concurrent, the wheels are truncated cones of vertex angles 1�  
and 2�  (Fig.5.35), respectively, and we get 

1 2

2 1

sin
sin�

� ��
� �

� � 2 ; (5.3.35) 

if we have to do with trains of gears, then 1R  and 2R  of the formula (5.3.34) are the 
radii of the two centrodes, and the formula may be written also in the form given by 
Willis 

1 1

2 2

N
N�

��
�

� � 2 , (5.3.34'') 

where 1N , 2N  represent the number of teeth of the two wheels, respectively. We 
mention also the trains of gear rack wheels, as well as the helical gear wheels (for 
which the rotation axes have arbitrary relative positions). A more complex character 
have the planetary and differential trains of gears. We mention also the worm-spiral 
wheel trains (endless screw-helical wheel trains). 

Figure 5.36.  Mechanisms with flexible elements (a); using of crossed belts. 

 The mechanisms with flexible elements may use belts, cables, chains etc. In this  
case, the direction of rotation is maintained (Fig.5.36,a); the direction may be changed  
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if crossed belts are used (Fig.5.36,b). The formulae (5.3.34), (5.3.34,b) remain still 
valid. 

Figure 5.37.  Cam gears. 

The cam gears are used to transform the motions. The cam plays the rôle of a leading 
element, having the pole O  fixed, while the draw bar AB  is the follower, P  being 
the point of contact (Fig.5.37). The point P  is moving after the law ( )OP r f t� � , 
where ( )f t  is a periodic function; if the cam has a rotation of angle 0t� � �� � , then 
the shape of the cam is expressed in polar co-ordinates in the form 

� �0r f
� �
�
�

� . (5.3.36) 
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Chapter 6 

DYNAMICS OF THE PARTICLE WITH RESPECT TO 
AN INERTIAL FRAME OF REFERENCE 

Dynamics deals with the motion of mechanical systems subjected to the action of 
given forces. We begin this study with a single particle in motion with respect to an 
inertial frame of reference; as it was shown in Chap. 1, Subsec. 1.1.4, it is the frame 
with respect to which the basic laws of mechanics are verified. If these laws hold with 
respect to a certain frame, in a Newtonian model, then they are verified in any other 
frame in rectilinear and uniform motion with respect to the first one, obtaining thus a set 
of inertial frames of reference. To study the motion in such a frame, we emphasize the 
corresponding general theorems, both for the free and the constraint (frictionless or 
with friction) particle. 

1. Introductory notions. General theorems 
After introducing mechanical quantities which play an essential rôle in the frame of 

the Newtonian model, we formulate the problem of the free particle, emphasizing the 
methods of solving it; the theorems of existence and uniqueness are thus presented and 
stress is put on the notion of first integral. The principle of relativity allows to establish 
the Galileo-Newton transformations group. Starting from the general theorems 
corresponding to the motion of the particle, one obtains the conservation theorems, 
hence the first integrals of the equations of motion; the first integral of areas leads then 
to the notion of central force. 

1.1 Introductory notions 

In what follows, we introduce the notions of momentum, moment of momentum, 
work, kinetic and potential energy, power and mechanical efficiency; the conservative 
and non-conservative forces are then considered. We mention also the formulation of 
the problem of the free particle in motion and the presentation of the equations of 
motion in curvilinear co-ordinates. 

1.1.1 Momentum. Moment of momentum. Torsor of momentum 

We have introduced the notion of momentum in Chap. 1, Subsec. 1.1.6; thus the 
momentum (linear momentum) of a particle P  of position vector r  with respect to a 
given fixed frame of reference (which is supposed to be inertial), is expressed in the 
form 

35  3
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m m� � �H v r  (6.1.1) 

and is a vector collinear with the velocity v  of the respective particle. 
The moment of the momentum with respect to the pole O  of the frame of reference 

is called moment of momentum (angular momentum) of the particle, with respect to this 
pole, and is given by 

2O Om m m� 3 � 3 � 3 �� IK r H r v r r , (6.1.2) 

where we have introduced the areal velocity (5.1.16). In general, we may consider a 
moment of momentum with respect to any given fixed point (fixed with respect to an 
inertial frame of reference). 

In components, we have 

i i iH mv mx� � � ,   2 jOi Oi ijk kK m mx x�� �� � ,   1,2, 3i � . (6.1.3) 

The notion of torsor, introduced in Chap. 2, Subsec. 2.1.3, allows to write 

, -( ) ,O O= �H H K ; (6.1.4) 

hence, the set formed by the linear and angular momentum of a particle represents the 
torsor of the momentum of the respective particle with respect to the considered pole. 
We notice that the torsor (6.1.4) may be obtained from the torsor (5.1.16') multiplying it 
by the mass m . The notion of torsor plays thus – in the problems of dynamics – a rôle 
analogous to that performed in statics. 

1.1.2 Work. Kinetic and potential energy. Conservative forces 

The notion of work (mechanical work) has been introduced in Chap. 3, Subsec. 
2.1.2, in the form of real elementary work (3.2.3); considering only real displacements, 
we may omit the adjective “real” in what follows. In this case, the elementary work of 
the given forces is of the form 

d d di iW F x� � �F r , (6.1.5) 

where F  is the resultant of the given forces which act upon the particle P , which 
effects a real displacement dr ; analogously, the elementary work of the constraint 
forces is given by 

d d di iRW R x� � �R r , (6.1.5') 

where R  is the resultant of the constraint forces applied at the point P . Using the 
property of distributivity of the scalar product with respect to the addition of vectors, it 
results that the elementary work of a resultant force is equal to the sum of the 
elementary works of the component forces which act upon the same particle. The same 
property allows us to state that the elementary work of a resultant displacement  
is equal to the sum of the elementary works corresponding to successive component 
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displacements; in this case, if the particle P  describes a trajectory C  between the 
points 0P  and 1P , the work of the given force is expressed by 

  0 1 0 10 1
d di iP P P PP P

W F x� � �� �F r . (6.1.6) 

The work is a scalar quantity, expressed in ergs in the CGS-system or in joules in the 
SI-system (see also Table 1.1). 

We notice that we may express the elementary work in the form 

  dd d d pr pr dW t r F� � � � FrF v F r  (6.1.5'') 

too, obtaining – in general – a Pfaff form (it is not an exact differential). 
The given force may be of the form ( , ; )t� �F F r r ; if we know the trajectory 

( )t�r r , then the elementary work depends only on time, and the curvilinear integral 
(6.1.6) becomes a simple one. If the position of the particle and the force F  are 
specified by a parameter q  ( ( )q�r r , ( )q�F F ), then 

d ( ) ( )d ( ) ( )d ( )di iW q q q F q x q q Q q q� �� � � �F r , (6.1.5''') 

Figure 6.1.  Work diagram. 

and the work of the given forces is expressed with the aid of a simple integral too; in 
this case, we may introduce the work diagram (Fig.6.1), sometimes useful in practice. If 
the force F  depends only on the position of the particle ( ( ; )t�F F r ), then the work 
depends only on the trajectory and is independent on the velocity by which that one is 
travelled through. 

In the case of a conservative force F  (which derives from a simple potential, being 
of the form gradU�F , ( )U U� r , the elementary work becomes an exact 
differential 

d dW U� , (6.1.7) 

the work W  depending only on the extreme positions of the particle 
( 0 1 01( ) ( )
P P
W U U� �r r ). If the trajectory C  is a closed curve, then the 

corresponding work vanishes ( 0CW � ). 
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In the case of a quasi-conservative force, which derives from a simple quasi-
potential ( ; )U U t� r , the elementary work is no more an exact differential, but is of 
the form 

d grad d d dW U U U t� � � � �r , (6.1.8) 

where we emphasized the partial derivative with respect to time. 
In Chap. 1, Subsec. 1.1.12, we have introduced the generalized potential 

0 0j jU U U v U� � � � �U v , (6.1.9) 

where 0 0 ( )U U� r  and ( )U U� r  are scalar and vector potentials, respectively. The 
components of the conservative force, defined by means of this potential, are of the 
form 

" #j jF U� ,   1,2, 3j � , (6.1.10) 

where we have put in evidence the Euler-Lagrange derivative, corresponding to the 
index j , given by 

" # ,
d
djj

j

U
U U

t x
(� �

� � 	 
(� ��
; (6.1.10') 

this derivative corresponds to the formula (1.1.88) and allows to express these 
components by a formula analogous to (1.1.82). Taking into account (6.1.9) and noting 
that 

j
j j

U U
U

x v
( (

� �
( (�

,  

we obtain 

� �0
d dgrad grad
d d

U U
t t

� � � � � �
U UF U v . (6.1.11) 

Replacing the vector potential U  by the vector potential grad�� �U U , ( )� �� r , 
and taking into account the relation d /d gradt� �� �v , as well as that one may 
invert the order of application of the operators ( grad(d/d ) (d/d )gradt t� ) for a 
function �  of class 2C , we find the same force F ; hence, the vector potential is 
determined abstraction of a field of gradients. The velocity v  being a function only on 
time, the formula (A.2.31) allows us to write 

dgrad( ) ( ) curl curl
dt

� � � / � 3 � � 3
UU v v U v U v U ;  
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taking into account (6.1.9), we may express the conservative force F  in the form 

� �0 0,, ,grad curl j jk j j k kU U U v U� � 3 � � �$ %& 'F v U i . (6.1.11') 

The above observation concerning the transformation of a vector potential �U U  is 
easily verified ( curl grad� � 0 ). 

In the case of a generalized quasi-potential, the two quasi-potentials are of the form 
0 0 ( ; )U U t� r  and ( ; )t�U U r , respectively; the expression (6.1.11) of the quasi-

conservative force remains still valid. Noting that d /d ( )t � � / � �U v U U , where the 
point indicates the partial derivative with respect to time, we may express the force F  
in the form 

0grad curlU� � 3 � �F v U U . (6.1.11'') 

If to the transformation of vector quasi-potential �U U , considered above, we 
associate the transformation of scalar quasi-potential 0 0 0U U U �� � � � , hence if we 
effect the transformation d /dU U U t�� � � , then the form (6.1.11) (or the form 
(6.1.11')) of the quasi-conservative force remains invariant; that is a gauge 
transformation. 

In the case of a conservative force which derives from a generalized potential, the 
elementary work is given by 

0d d grad d ( , curl , d )W U� � � � �F r r v U r ,  

hence it is a total differential 

0d dW U� . (6.1.12) 

Thus, the formulae (6.1.11') and (6.1.12) show that the scalar potential 0U  plays the 
rôle of the simple potential in the frame of the generalized potential (6.1.9), and the 
vector potential has no contribution in what concerns the elementary work; all the 
considerations made for the simple potential remain still valid. If the force is quasi-
conservative, deriving from a generalized quasi-potential, we obtain 

0 0 0 0d d d d d ( )dW U U t U U t� � � � � � � �� �� �U r U v  

� �0 0,(grad ) d dj j jU U U x� � � � � ��U r ; (6.1.12') 

one can easily see that the gauge transformation mentioned above has not one influence 
on this elementary work too. 

We notice also that a conservative force derives always from a generalized or a 
simple potential as it depends or not explicitly on the velocity of the particle. 

The notion of work appeared in XIXth century with the occasion of experiments 
concerning the transformation of mechanical motion into heat (a non-mechanical form 
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of motion of the matter); one observes that in this transformation there is a constant 
ratio between the effected work and the obtained heat. The work represents thus a 
measure of the mechanical motion of a particle, which is transformed in a non-
mechanical motion of it. 

As well, the work allows a dynamic measurement of the action of a force. The 
positive work is a motive work mW , which puts the particle in motion, while the 
negative work is a resistent work rW  for which it is necessary to use up external 
energy. The work vanishes if the force or the displacement vanish or if they are 
perpendicular one to the other. 

We notice that one may use a quantity of state to characterize the mechanical motion 
of a particle. Indeed, taking into account Newton’s basic law (1.1.89''), we have, 
successively, 

d d dd d ( ) d d d d
d d d

W m m m m
t t t

� � � � � � � � � �
v rF r v r r v v v  

� � � �2 2d 1 d 1 d
d 2 d 2

m mv T
t t

� � �v , 

 

introducing the scalar quantity 

2 21 1
2 2

T m mv� �v , (6.1.13) 

called kinetic energy of the particle P ; this quantity depends on the mass and the 
velocity of the particle. Taking into account the above considerations concerning the 
work, it follows that the kinetic energy is a quantity of state of the particle, which 
measures its mechanical motion and its capacity to be transformed into a non-
mechanical motion. 

Taking into account the modality of introducing the kinetic energy, we notice that 
the simple potential U  (or the scalar potential 0U ) is a quantity of energetical nature; 
hence, we introduce the function 

V U� �  (6.1.14) 

or 

0V U� � , (6.1.14') 

where ( )V V� r  is called potential energy. 
The sum 

E T V� �  (6.1.15) 

is called total mechanical energy (or mechanical energy). 
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1.1.3 Power. Mechanical efficiency. Power of non-conservative forces 
The quantity 

d
d
WP
t

�  (6.1.16) 

is called power (mechanical power) and is measured in erg/s in the CGS-system or in 
J/s=W in the SI-system (see Table 1.1); in practice, 1 HP=75 kgf · m/s (HP means 
horse-power) is used too. Taking into account (6.1.5), we may also write 

d
d

P
t

� � � �
rF F v . (6.1.16') 

This quantity is used to the calibration of motors, engines, apparatuses etc. 
 Assuming that an engine may be modelled as a particle, the motive work is equal to 

the resistent one ( m rW W� ), in a regime working of it; here and in what follows we 
consider the work in absolute value (always positive). We notice that the resistent work 
is formed by the useful work uW , realized by the engine for the goal for which it was 
built up, and by the passive (lost) work pW , used up by the passive forces (frictions, 
various resistent forces etc.); we have thus m u pW W W� � , the engine playing the 
rôle of a transformer of work. To the motive, the useful and the passive work 
correspond the motive power mP , the useful power uP  and the passive power pP  
( m u pP P P� � ), respectively, taken – in what follows – also in absolute value (always 
positive). 

We call mechanical efficiency the ratio 

1 1 1p pu u

m m m m

W PW P
W W P P

� � � � � � � � , (6.1.17) 

which is always subunitary (if not, the engine would be a “perpetuum mobile”), being a 
transfer function of the power; the ratio / /p m p mW W P P�  put in evidence is the loss 
factor. 

If we introduce the force transmission factor and the velocity transmission factor 
(used in Chap. 5, Subsec. 3.3.3) by relations 

m
F

u

F
F

� � ,   m
v

u

v
v

� � , (6.1.18) 

where mv  and uv  are the components of the velocity (in modulus) along the direction 
of the motive force mF  and of the useful force uF , respectively, we may write 

u m m
vF

m u u

P F v
P F v

�� � � ;  

noting that m m mP F v�  and u u uP F v� , we get 
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Theorem 6.1.1 (the black box law). The product of the force transmission factor by the 
velocity transmission factor and by the mechanical efficiency of an engine is equal to 
unity 

1vF� � � � . (6.1.19) 

Because the transmission factors may be obtained experimentally, this law determines 
the mechanical efficiency, so that it is not necessary to disassemble the engine for this (as 
it would be in the interior of a black box). In the case of an ideal engine (for which 1� � , 
the friction being so small that it can be neglected), we obtain 

1vF� � � ; (6.1.19') 

in this case, the force transmission factor is the inverse of the velocity transmission 
factor. 

Figure 6.2.  Case of inclined plane. 

For instance, in the case of the inclined plane (which makes an angle �  with the 
horizontal line (Fig.6.2)) with friction (coefficient of sliding friction tanf �� ), 
considered in Chap. 4, Subsec. 2.1.6, which allows to move up a rigid solid (modelled  
by a material point P ), of weight G , with the aid of a force F  (which makes the angle �  
with the inclined plane), we have ( mF F� , uF G� , cosmv v �� , sinuv v �� ) 

1 sin
cosvF

G
F

��
� � �

� � ; 
 

if the inclined plane is used to move up a rigid solid, then we use the relation (4.2.13) 
and obtain the mechanical efficiency 

sin cos( ) sin (cos sin ) 1 tan
cos sin( ) cos (sin cos ) 1 cot

f f
f f

� � � � � � ��
� � � � � � �

� � �
� � �

� � �
, (6.1.20) 

while if it is used to move down the heavy bodies, then the relation (4.2.14) leads to 

sin cos( ) sin (cos sin ) 1 tan
cos sin( ) cos (sin cos ) 1 cot

f f
f f

� � � � � � ��
� � � � � � �

� � �
� � �

� � �
. (6.1.20') 

If 0� � , then we obtain 
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1
1 cotf

�
�

�
2

, (6.1.20'') 

corresponding to the moving up or down of the rigid solid along the inclined plane. 
A force which does not derive from a simple quasi-potential may be always written 

in the form 

gradU� �F F ,   ( ; )U U t� r , (6.1.21) 

where F  is a non-potential force; the elementary work is given by 

d d grad d d d ( )dW U U U t� � � � � � � � � � �F r r F r F v .  

In the case in which 0U �� ( ( )U U� r  is a potential), the quantity �F v  is of the 
nature of a mechanical power and represents the power of non-potential forces. The 
non-potential forces F  of vanishing power ( 0� �F v ) are called gyroscopic forces 
and – obviously – depend on the distribution of velocities; the forces F  are, in this 
case, conservative. If the power of non-potential forces is non-zero, then the forces are 
non-conservative. The non-potential forces of negative power ( 0� �F v ) are called 
dissipative forces, because – in this case – the energy diminishes (we notice that 
U V� � ). 

For instance, a force curl� 3F v U  (corresponding to the vector potential of 
(6.1.11')) is a gyroscopic force; we may thus state that a conservative force which 
derives from a generalized potential may be expressed in the form of a sum between a 
force which derives from a simple potential and a gyroscopic force. As well, a force of 
the form �� � �F F v , 0� � , which arises in the motion of a particle in a resistent 
medium, is a dissipative force. 

1.1.4 Formulation of problems of a particle in motion 
As it is stated by the principle of action of forces, the motion of a free particle P , of 

mass m , is governed by the differential equation (1.1.89), which is of the form 

m ���r F , (6.1.22) 

where F  is the resultant of the given forces, applied at point P . 
In the first basic problem (the direct problem) is given the force ( , ; )t� �F F r r , 

hence of the form (1.1.93), and the determination of the trajectory, hence of the vector 
function ( )t�r r , and of the velocity ( )t � �v r  is asked. The problem is solved by 
integrating the vector equation (6.1.22) or the scalar equations 

i imx F��� ,   1,2, 3i � , (6.1.22') 

with certain boundary conditions. The most times, initial conditions (at the initial 
moment 0t t� ) are put; but one may put also other boundary conditions (e.g., bilocal 
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conditions, at the moments 0t t�  and 1t t� ). In certain conditions, the solution of the 
problem is unique. 

In the second basic problem (the inverse problem) the motion of the particle is 
known (hence, the position vector ( )t�r r  is given) and the determination of the force 
F , which induces this motion, is asked. In general, the solution of the problem is not 
unique. 

We mention the mixed basic problem too, in which some elements characterizing the 
motion and the force are given; other unknown elements which specify the motion of 
the particle and the force applied upon it are asked. Also, this problem has not a unique 
solution, but only in certain conditions. 

From the point of view of mathematical modelling of mechanical phenomena the 
second basic problem is very important, because it allows to discover laws which are 
verified by various forces which are encountered in nature (for instance, the force of 
universal attraction). If a particular motion ( )t�r r , which corresponds to certain 
given initial conditions, is considered, then we may set up the solution 

( ) ( , , )t� � � 3 �F F r r G r r , (6.1.23) 

where m� ��F r , while G  is an arbitrary vector function of class 0C ; indeed, the 
boundary value problem 

m ���r F ,   � � � �0 0t t�r r ,   � � � �0 0t t� ��r r   

is satisfied, while the given problem is indeterminate. 
More exactly, the equations (6.1.22') allow to calculate the numerical values of the 

components iF , 1,2, 3i � , at any moment t . Hence, if the components of the 
acceleration are uniform functions of time, then the inverse problem has a unique 
solution from numerical point of view, but the vector function F  is not univocally 
determined; indeed, in the expression of the function ( , ; )t�F r r  as a function of time 
one may – partially or totally – replace t  as function of the components of vectors r  
and �r . 

The problem becomes determinate if other conditions are imposed to the expression 
of the force, e.g.: ( )t�F F , ( )�F F r  or ( )� �F F r . If the equation of the trajectory 
is given in the form 0 0( ; , )t�r r r v , hence function of the position and the velocity at 
a given moment, then we may compute 0 0( ; , )t� �v r r v , 0 0( ; , )m m t� � ��F a r r v ; 
eliminating 0r  and 0v , we are led – in general – to a law of the form ( , ; )t�F F r v . 

The mixed basic problem can be studied analogously. 

1.1.5 Equations of motion in curvilinear co-ordinates 
Using the curvilinear co-ordinates 1 2 3, ,q q q , linked to the position vector and  

to orthogonal Cartesian co-ordinates by relations of the form (A.1.32), (A.1.33),  
and taking into account Lagrange’s formula (5.1.25), which gives the components 
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(contravariant components) of the acceleration in the frame specified by the basis’ 
vectors ie , we may write the law of motion in the form 

2 21 d
2 d

ij
i

j j

v vmg F
t q q

( ($ � � %
� �	 
* +( (& � � '�

,   1,2, 3i � , (6.1.24) 

where iF  are the components (contravariant components) of the given force F . 
The results in Chap. 5, Subsec. 1.2.4 lead to 

� �2 2 2sin rm r r r F� ��� � ���� � , 

� �2 21 d
sin2

d 2
r

m r F
r t �� ��$ %� �* +& '

� � , 

� �2 2d sin
sin d
m r F
r t ���

�
�� , 

(6.1.25) 

in spherical co-ordinates, with 

r rF F F� �� �� � �F i i i . (6.1.25') 

Analogously, in cylindrical co-ordinates, one obtains 

� �2
rm r r F�� ���� ,   � �2d

d
m r F
r t �� �� ,   zmz F��� , (6.1.26) 

where 

r r z zF F F� �� � �F i i i ; (6.1.26') 

in particular, in polar co-ordinates in the plane 1 2Ox x , we may write 

r rF F� �� �F i i ,   � �2
rm r r F�� ���� ,   � �2d

d
m r F
r t �� �� . (6.1.26'') 

Using the components (5.1.19) of the acceleration, we obtain Euler’s equations of 
motion 

mv F��� ,   
2mv F��
� ,   0 F�� , (6.1.27) 

in intrinsic co-ordinates, where , ,F F F� � �  are the components of the given force in 
Frenet’s frame of reference. The third of these equations shows that – at any moment – 
the particle P  moves subjected to the action of the force F , so that this one is situated 
in the osculating plane of the trajectory, corresponding to the position of the particle at 
the respective moment. 
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Let us multiply the equations (6.1.24) by ikg  and let us sum, taking into account the 

relation jij
ik kg g 
� ; let us introduce also the components ik ikQ F g�  (covariant 

components) of the force, which are called generalized forces and are given by 

k k
k

Q
q
(

� � � �
(

rF e F . (6.1.28) 

By means of the kinetic energy (6.1.13), we may write the equations of motion of the 
particle in the form 

d
d k

k k

T T Q
t q q

( (� � � �	 
( (� ��
,   1,2, 3k � , (6.1.24') 

obtaining thus the corresponding Lagrange’s equations. In this context, the co-
ordinates kq , 1,2, 3k � , are called generalized co-ordinates too. Using the Euler-
Lagrange derivative, we may also write 

" # 0k kT Q� � ,   1,2, 3k � . (6.1.24'') 

Taking into account the conditions in which the formula (5.1.25) has been 
established, we may state that the equations (6.1.24') are valid also for a movable 
system of curvilinear co-ordinates, hence for which 1 2 3( , , ; )q q q t�r r . Noting that 

i iq� � ��v e r , it results that the kinetic energy T  may be expressed as a sum of a 
quadratic form, a linear form and a constant with respect to the quantities kq� , called 
generalized velocities; in this case, in the equations (6.1.24'), the derivative of maximal 
order is kq�� , hence the generalized acceleration. These equations are thus of second 
order, the unknown functions being the generalized co-ordinates ( )k kq q t� , 

1,2, 3k � . The boundary conditions are – usually – initial conditions of the form 

0
0( )k kq t q� ,   0

0( )k kq t q�� � ; (6.1.29) 

such a boundary value problem in which the generalized co-ordinates and the 
generalized velocities (hence the position and the velocity of the particle) are given for 
a certain moment (usually, the initial moment) is called a Cauchy type problem. In the 
particular case in which r  does not depend explicitly on time ( ��r 0 ), the formula 
(5.1.22') allows to write the equations of motion in the form 

  

  i j ik

i
m q q q F

j k
� � N �� �� �	 
 O	 
� �� ! P �
�� � � ,   1,2, 3i � , (6.1.24''') 

where we have introduced Christoffel’s symbol of second kind. 
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1.2 General theorems 
In what follows, the theorems of existence and uniqueness are given and stress is put 

on the notion of first integral. To may obtain first integrals of the equations of motion, 
one states the universal theorems in the motion of a particle, obtaining the 
corresponding conservation theorems too; the first integral of areas is put in connection 
with the notion of central force. We mention also the Galileo-Newton transformation 
group, which corresponds to the principle of relativity. 

1.2.1 Theorems of existence and uniqueness 
For the sake of simplicity, we consider the vector equation (6.1.22) or the system of 

three scalar equations (6.1.22') in orthogonal Cartesian co-ordinates; obviously, the 
results which will be obtained hold also for the equations of motion in curvilinear co-
ordinates. 

We replace the system of three differential equations of second order by a system of 
six differential equations of first order, written in the normal form 

i ix v�� ,   i
i
F

v
m

�� ,   1,2, 3i � , (6.1.30) 

where 1 2 3( , , ; )i iv v x x x t� , 1 2 3 1 2 3( , , , , , ; )i iF F x x x v v v t� . Such a system is called 
non-autonomous; if the time does not intervene explicitly in iv  and iF , then the system 
is called autonomous (or dynamic). We associate to this system the initial conditions 
(the position and the velocity of the particle at the initial moment) 

0
0( )i ix t x� ,   0

0( )i iv t v� ,   1,2, 3i � , (6.1.30') 

the boundary value problem (6.1.30), (6.1.30') being thus a Cauchy type problem. The 
boundary value problem (6.1.22'), (6.1.30') is equivalent to the boundary value one 
(6.1.30), (6.1.30'); for this latter problem we may prove 
Theorem 6.1.2 (of existence and uniqueness; Cauchy-Lipschitz). If the functions iv  
and iF , 1,2, 3i � , are continuous on the heptadimensional interval D, specified by 

0 0 0 0
i i i i ix X x x X� � � � , 0 0 0 0

i i i i iv V v v V� � � � , 0 0 0 0t T t t T� � � � , 0 ,iX  
0

0, constiV T � , 1,2, 3i � , and defined on the Cartesian product of the phase space 
(of canonical co-ordinates 1 2 3 1 2 3, , , , ,x x x mv mv mv ) by the time space (of co-ordinate 
t ), and if Lipschitz’s conditions 

� � � �
3

1 2 3 1 2 3
1

1
, , ; , , ;i i j j

j
v x x x t v x x x t x x

�
� � �T , 

� � � �1 2 3 1 2 3 1 2 3 1 2 3, , , , , ; , , , , , ;i iF x x x v v v t F x x x v v v t�  

� �3

1

1
j j j j

j

m x x v v
��

� � � �T  
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are verified for 1,2, 3i � , where T  is a time constant independent of iv  and t , while 
�  is a time constant equal to unity, then it exists a unique solution ( )i ix x t� , 

( )i iv v t�  of the system (6.1.30) which satisfies the initial conditions (6.1.30') and is 
defined on the interval 0 0t T t t T� � � � , where 

0 0

0min , , ,i iX V
T T �� �� 	 


� �
TV V ,   � �max , i

i
F

v
m

�� �V D . 
 

The continuity of functions iv  and iF  on the interval D  ensures the existence of the 
solution, after the theorem of Peano. For the uniqueness of the solution, the conditions 
of Lipschitz must be fulfilled too; the latter conditions may be replaced by other less 
restrictive conditions, in conformity to which the partial derivatives of first order of 
functions iv  and iF , 1,2, 3i � , must exist and be bounded in absolute value on the 
interval D. Besides, the conditions in Theorem 6.1.2 are sufficient conditions of 
existence and uniqueness which are not necessary. 

We notice that the existence and the uniqueness of the solution have been put in 
evidence only on the time interval " #0 0,t T t T� � , in the neighbourhood of the initial 
moment 0t  (besides, the moment 0t  must not be – necessarily – the initial moment, but 
may be a moment arbitrarily chosen); taking, for instance, 0t T�  as initial moment, it 
is possible, respecting the above reasoning, to extend the solution on an interval of 
length 12T  a.s.o., if – certainly – the sufficient conditions of existence and uniqueness 
of the theorem hold in the neighbourhood of the new initial moment. Thus, we can 
prolong the solution for " #1 2,t t t� , corresponding to an interval of time in which 
takes place the considered mechanical phenomenon (even for ( , )t � �� � ). Often, 
even the solution of the boundary value problem is not unique from a mathematical 
point of view, the principle of inertia may bring the necessary precision for the searched 
solution, which becomes unique from a mechanical point of vies, as it was shown by V. 
Vâlcovici (see Chap. 1, Subsec. 1.2.1). 

Other theorems emphasize some important properties of the solution; thus, we state 
Theorem 6.1.3 (on the continuous dependence of the solution on a parameter). If the 
functions 1 2 3( , , ; , )iv x x x t � , 1 2 3 1 2 3( , , , , , ; , )iF x x x v v v t �  are continuous with respect 
to the parameter " #1 2,� � ��  and satisfy the conditions of the existence and 
uniqueness theorem, while the constant T  of Lipschitz does not depend on � , then the 
solution ( , )ix t � , ( , )iv t � , 1,2, 3i � , of the system (6.1.30), which satisfies the 
conditions (6.1.30'), depends continuously on � . 

Analogously, one may state theorems concerning the continuous dependence of the 
solution on the initial conditions (that allows to get an approximate solution, fulfilling 
the initial conditions with a certain approximation) or on several parameters. 
Concerning the analyticity problem, we mention 
Theorem 6.1.4 (on the analytical dependence of the solution on a parameter; 
Poincaré). The solution ( , )ix t � , ( , )iv t � , 1,2, 3i � , of the system (6.1.30), which 
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satisfies the conditions (6.1.30'), depends analytically on the parameter " #1 2,� � ��  
in the neighbourhood of the value 0� ��  if, in the interval " #1 2,� �3D , the 
functions iv  and iF  are continuous with respect to t  and analytical with respect to 

ix , iv , 1,2, 3i � , and � . 
One may also state 

Theorem 6.1.5  (on the differentiability  of  the  solution).  If  in  a  neighbourhood
 of  a point � �0 0 0 0 0 0

01 2 3 1 2 3, , , , , ;x x x v v v tP  the functions 1 2 3( , , ; )iv x x x t and 

1 2 3 1( , , , ,iF x x x v  2 3, ; )v v t , 1,2, 3i � , are of class kC , the solutions ( )ix t  and 
( )iv t  of the boundary value problem (6.1.30), (6.1.30') are of class 1kC �  in the same 

neighbourhood. 
The points P  in the neighbourhood of which the boundary value problem (6.1.30), 

(6.1.30') has not solution or even if the solution exist, this one is not unique, are called 
singular points; the integral curves constituted only of singular points are called 
singular curves, the respective solution being a singular solution. In the case of singular 
points, supplementary conditions are necessary, leading to the choice of one of the 
branches of the many-valued solution. 

1.2.2 First integrals. General integral. Constants of integration 
We call integrable combination of the system (6.1.30) a differential equation which 

is a consequence of this system, but which can be easily integrated, for instance an 
equation of the form 

1 2 3 1 2 3d ( , , , , , ; ) 0f x x x v v v t � . (6.1.31) 

One obtains thus the finite relation 

1 2 3 1 2 3( , , , , , ; )f x x x v v v t C� ,   constC � , (6.1.31') 

which links the co-ordinates 1 2 3, ,x x x  and the components of the velocity 1 2 3, ,v v v  to 
the time t ; the function f  which is reduced to a constant along the integral curves is 
called first integral of the system (6.1.30). 

If we determine 6k �  first integrals, for which 

1 2 3 1 2 3( , , , , , ; )j jf x x x v v v t C� ,   constjC � ,   1,2,...,j k� , (6.1.32) 

the matrix 

� �
� �

1 2

1 2 3 1 2 3

, ,...,
, , , , ,

kf f f
x x x v v v
($ %� * +(& '

M  
 

being of rank k , then all the first integrals are functionally independent (for the sake of 
simplicity, further we say independent first integrals) and we may express k  unknown 
functions of the system (6.1.32) with respect to the other ones; replacing in (6.1.30), the 
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problem is reduced to the integration of a system of equations with only 6 k�  
unknowns (hence, a smaller number of unknowns). If 6k � , then all the first integrals 
are independent, so that the system (6.1.32) of first integrals determines all the 
unknown functions. We notice that for 6k �  the first integrals (6.1.32) are no more 
independent; we may thus set up at the most six independent first integrals. 

Solving the system (6.1.32) for 6k � , we obtain (the matrix M  is a square matrix 
of sixth order for which det 0�M ) 

� �1 2 6; , ,...,i ix x t C C C� ,   � �1 2 6; , ,...,i iv v t C C C� ,   1,2, 3i � , (6.1.33) 

hence the general integral of the system of equations (6.1.30). Analogously, the general 
integral of the vector equation (6.1.22) is 

� �1 2 6; , ,...,t C C C�r r ; (6.1.34) 

eventually, we have 

� �1 2; ,t�r r K K . (6.1.34') 

Thus, we put in evidence six scalar constants or two vector constants of integration. 
Because the vector functions (6.1.34) and (6.1.34') verify the equation (6.1.22) for any 
constants of integration, we may state that the same particle acted upon by the same 
force, has various possibilities of motion. Imposing the initial conditions (6.1.30'), 
which may be written also in the vector form 

0 0( )t �r r ,   � � � �0 0 0t t� ��v r v , (6.1.30'') 

we get 

� � 0
0 1 2 6; , ,...,i ix t C C C x� ,   � � 0

0 1 2 6; , ,...,i iv t C C C v� ,   1,2, 3i � ;  

the conditions (6.1.30') being independent, we can write 

� �
� �

0 0 0 0 0 0
1 2 3 1 2 3

51 2 3 4 6

, , , , ,
det 0

, , , , ,
x x x v v v
C C C C C C

($ %
�* +(& '

, 
 

so that, on the basis of the theorem of implicit functions, we deduce 

� �0 0 0 0 0 0
0 1 2 3 1 2 3; , , , , ,j jC C t x x x v v v� ,   1,2,..., 6j � .  

Thus, finally, we have 

� �0 0 0 0 0 0
0 1 2 3 1 2 3; , , , , , ,i ix x t t x x x v v v� ,  � �0 0 0 0 0 0

0 1 2 3 1 2 3; , , , , , ,i iv v t t x x x v v v� , 
1,2,..., 6j � , 

 
 

(6.1.35) 
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or 

� �0 0 0; , ,t t�r r r v ,   � �0 0 0; , ,t t�v v r v . (6.1.35') 

Hence, in the frame of the conditions of the theorem of existence and uniqueness, the 
principle of action of forces (Newton’s law) and the principle of initial conditions 
determine, univocally, the motion of the particle in a finite interval of time; by 
prolongation, the affirmation may become valid for any t . Thus, the deterministic 
aspect of Newtonian mechanics is put into evidence. 

Sometimes, one may perform a computation in two steps. Starting from the system of 
differential equations of second order (6.1.22'), we can find three integrable 
combinations leading to three first integrals written in the form 

� �1 2 3 1 2 3, , , , , ;i ix x x x x x t C� �� � � ,   1,2, 3i � ; (6.1.36) 

if, starting from these relations, in a second step, we build up other three integrable 
combinations, leading to the first integrals 

� �1 2 3 1 2 3 3, , ,; ; , ,i ix x x t C C C C� �� ,   1,2, 3i �  (6.1.36') 

the problem is solved. Indeed, noting that 

� �
� �

1 2 3

1 2 3

, ,
det 0

, ,x x x
� � �($ % �* +(& '

, 
 

we find the first group of relations (6.1.33). 
In the case of a two-dimensional problem remain four scalar constants of integration, 

the solution (6.1.35) being of the form 

� �0 0 0 0
0 1 2 1 2; , , , ,x x t t x x v v� �� ,   � �0 0 0 0

0 1 2 1 2; , , , ,v v t t x x v v� �� ,   1,2� � , (6.1.37) 

corresponding to the system of equations 

mx F� ���� ,   1,2� � ; (6.1.37') 

as well, in the case of a unidimensional problem to which corresponds the equation 
( 1Ox Ox� ) 

mx F��� ,  (6.1.38) 

we get the solution 

� �0 0 0; , ,x x t t x v� ,   � �0 0 0; , ,v v t t x v� , (6.1.38') 

which introduces only two constants of integration. 
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1.2.3 Principle of relativity. Galileo-Newton group 
We notice that the equation of motion (6.1.22) of the particle P  is written in an 

inertial frame of reference �R  with respect to which we suppose that the basic 
principles which set up the mathematical model of mechanics hold. Let be a frame R  
in a rectilinear and uniform motion of translation, specified by the velocity 

0 const� �
������

v , with respect to the frame �R . Assuming that the motion with respect to 
the frame R  is a relative motion, while the motion with respect to �R  is an absolute 
one, the velocity and the acceleration of transportation are given by 0t ��v v , t �a 0 , 
respectively. We notice that the frame R  does not rotate ( � 07 ) and use the formulae 
(5.3.3) and (5.3.5) for the composition of velocities and accelerations, respectively; we 
may thus write 

0� �� �v v v ,   � �a a ,   � ��� ��r r ,   0� �� �� �r r v . (6.1.39) 

In the frame R  one obtains the equation of motion 

m ���r F ,  

which is of the same form as the equation (6.1.22), the acceleration ��r  and the given 
force ( ( ), ( ); ) ( , ; )t t� � �� � �F F r r v r F r r  being – obviously – expressed in the new 
system of co-ordinates. We may thus state 
Theorem 6.1.6 (of relativity; Galileo). If there exists an inertial frame of reference, 
then there exists an infinity of inertial frames, obtained one from the other by a 
rectilinear and uniform motion of translation. 

This theorem has been stated by Galileo as a principle and is known as the principle 
of relativity (corresponding to the classical model of mechanics). From the point of 
view of the mathematical modelling of mechanics, it results that – using only 
experiments of mechanical character – an observer linked to the frame R  cannot put in 
evidence the motion with respect to the frame �R . In other words, one cannot 
determine the absolute motion (with respect to an absolute frame, which – as a matter of 
fact – does not exist) of a particle, but only abstraction making of a rectilinear and 
uniform motion; hence, one can emphasize only the relative motion with respect to an 
inertial frame of reference. 

The relation of passing from the frame R  to the frame �R  (hence the 
transformation � �R R ) is obtained from (6.1.39), and is given by 

0t� �� �r r v ,   t t� � . (6.1.40) 

Choosing conveniently the two frames R  and �R , without loss of generality of the 
mechanical phenomenon, we may express the relation of transformation (6.1.40) in the 
form (we use right-handed orthonormed frames for which the axes 2O x� �  and 2Ox , as 
well as 3O x� �  and 3Ox  are parallel, respectively, while the axes 1O x� �  and 1Ox  are 
collinear (Fig.6.3)) 
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01 1x x v t� �� � ,   2 2x x� � ,   3 3x x� � ; (6.1.40') 

Figure 6.3.  Principle of relativity. The Galileo group. 

it results that the set of these transformations contains only one essential parameter, that 
is the magnitude 0v �  of the velocity of the frame R  with respect to the frame �R . At 
the moment 0t �  (which can be taken as initial moment) the two frames coincide; we 
notice that the inverse transformation ��R R  takes place too. As well, considering 
also a frame ��R  and the transformation �� ��R R , of the form 0t�� � � �� �r r v , 
t t�� �� , we observe that, by composition of the two transformations, we obtain the 
transformation � ��R R , of the form 0t�� ��� �r r v , t t�� � , hence a transformation 
of the same set of transformations, if we accept the law of composition of velocities of 
the relative motion 

0 0 0�� �� �v v v ; (6.1.41) 

in the case of particular frames which have the properties of Fig.6.3, hence in the case 
of the transformation (6.1.40'), the law of composition of velocities is 

0 0 0v v v�� �� � . (6.1.41') 

It results that the set of transformations (6.1.40) forms a group, denoted by 	  and 
called the Galileo group; this group contains three parameters. 

We may attach to this group the group of time translations, denoted by T and 
containing one parameter, specified by 

0t t t� � � , (6.1.42) 

which leads to a change of initial moment (which becomes 0t ), as well as the group of 
space translations in 3E , denoted by T , containing three parameters and expressed in 
the form 

0� �� �r r r , (6.1.42') 

so that the two frames can no more coincide. Combining these transformations, we may 
write 
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0 0t� � �� � �r r v r ,   0t t t� � � . (6.1.42'') 

We obtain thus a transformation which forms a group with seven parameters; in such a 
transformation, the axes of the right-handed orthonormed frames R  and �R  remain 
parallel to themselves. We obtain a rotation of the frame R  with respect to the frame 

�R  by the transformation (see also Chap. 2, Subsec. 1.1.2) 

� �r r4 ,   i ij jx x�� � ,   1,2, 3i � , (6.1.43) 

which forms the group of proper (finite) rotations in 3E , denoted by SO(3) (the special 
orthogonal group in 3E ); this group contains only three distinct constants (which – 
eventually – may be Euler’s angles), because the tensor 4  verifies the six relations of 
orthogonality (3.1.35). 

Finally, starting from the transformations (6.1.40), (6.1.42), (6.1.42') and (6.1.43), 
we may set up the transformation 

0 0t� � � �r r v r4 ,   0t t t� � � , (6.1.44) 

which forms a group with ten parameters, denoted by G  and called the Galileo-Newton 
group; the groups 	 ,  T, T  and SO(3) are subgroups of the group G. In particular, for 

� 14  we find again the transformation (6.1.42''). 

1.2.4 General theorems 
Starting from the equation of motion (6.1.22), written with respect to an inertial 

frame of reference R, considered fixed, we may state some theorems with a general 
character, consequence of this equation, which are known as the general (universal) 
theorems of the dynamics of the particle. 

Taking into account the momentum (6.1.1) and that the mass m  of the particle is 
constant, we may write the equation (6.1.22) in the form 

d
dt

�� HH F� ,   i iH F�� ,   1,2, 3i � , (6.1.45) 

corresponding to the second law of mechanics, so as it was stated by Newton (see also, 
Chap. 1, Subsec. 1.2.1); we may thus state 
Theorem 6.1.7 (theorem of momentum). The derivative with respect to time of the 
momentum of a free particle is equal to the resultant of the given forces which act upon 
it. 

This form of Newton’s second law is the same as that stated by Einstein in the 
Special Theory of Relativity. 

If we perform a left vector product of the relation (6.1.22) by r  and notice that 

" #d ( ) ( ) ( ) ( )
d

m m m m
t

3 3 � 3 � 3� ���r v r v r v r r� ,  
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introducing also the moment of momentum (6.1.2), then we may write 

d
d
O

O Ot
� 3 �� K

K r F M� ,   Oi OiK M�� ,   1,2, 3i � ; (6.1.46) 

we obtain thus 
Theorem 6.1.8 (theorem of moment of momentum). The derivative with respect to time 
of the moment of momentum of a free particle with respect to a fixed pole is equal to the 
moment of the resultant of the given forces which act upon it, with respect to the same 
pole. 

By means of the notion of hodograph, introduced in Chap. 5, Subsec. 1.2.1, we may 
give a kinematic interpretation to the Theorems 6.1.7 and 6.1.8 too, stating: 
Theorem 6.1.7'. The velocity of a point which describes the hodograph of the 
momentum of a free particle with respect to a fixed pole is equipollent to the resultant 
of the given forces which act upon it. 
Theorem 6.1.8'. The velocity of a point which describes the hodograph of the moment 
of momentum of a free particle with respect to a fixed pole is equipollent to the moment 
of the given forces which act upon it, with respect to the same pole. 

The torsor of the momentum, specified by the relation (6.1.4) allows to write 

d ( )
( ) ( )

d
O

O Ot
=

= � =�
H

H F� , (6.1.47) 

where we took into account the formulae (6.1.45), (6.1.46); therefore, we state 
Theorem 6.1.9 (torsor’s theorem). The derivative with respect to time of the torsor of 
the momentum of a free particle with respect to a fixed pole is equal to the torsor of the 
resultant of the given forces which act upon it, with respect to the same pole. 

The relation (6.1.45) may be written also in the form 

d dtH F� , (6.1.45') 

wherefrom 

2

1
2 1( ) ( ) d

t

t
t t t) � �H H H F� � ; (6.1.45'') 

the variation of the momentum of a free particle in a finite interval of time is thus 
emphasized. The quantity 2

1
d

t

t
t� F  represents the impulse of the given force, 

corresponding to the interval of time " #1 2,t t . 
As well, another form of the relation (6.1.46) is 

d dO O tK M� , (6.1.46') 

so that 

2

1
2 1( ) ( ) d

t
O O O Ot

t t t) � �K K K M� � , (6.1.46'') 
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and the variation of the moment of momentum of a free particle in a finite interval of 
time is put into evidence; the quantity 2

1
d

t
Ot
t� M  represents the impulse of the moment 

of the given force with respect to the pole O , corresponding to the interval of time 
" #1 2,t t . Analogously, we get the variation of the torsor of the momentum of a free 
particle in a finite interval of time in the form 

� �2

1
( ) d

t
O O t

t)= � = �H F . (6.1.47') 

The above considerations play an important rôle in the case of an interval of time and 
– particularly – in the case of discontinuous phenomena. 

If we return to the kinetic energy T , introduced in Subsec. 1.1.2, we may write the 
relation 

d d dT W� �F r� ; (6.1.48) 

hence, we state 
Theorem 6.1.10 (theorem of kinetic energy). The differential of the kinetic energy of a 
free particle is equal to the elementary work of the resultant of the given forces which 
act upon it. 

Dividing the relation (6.1.48) by dt  and taking into account (6.1.16'), we can write 
this theorem in a form closer to that of the previous theorems, i.e. 

d
d
TT P
t

� �� , (6.1.48') 

obtaining thus 
Theorem 6.1.10' (theorem of kinetic energy; second form). The derivative with respect 
to time of the kinetic energy of a free particle is equal to the power of the resultant of 
the given forces which act upon it. 

We notice that the elementary work is an exact differential only in the case of a 
conservative force (which derives from a simple or a generalized potential). In general, 
this work is not a total differential (it is a Pfaff form) and the theorem of kinetic energy 
is written in the form (for " #1 2,t t t� ) 


1 2

2 1 2 1( ) ( )
P P

T T t T t T T W) � � � � �  


2 2

1 2 1 1
d d d

t t

P P t t
t P t� � � � �� � �F r F v , (6.1.48'') 

integrating between 1P  and 2P ; we may thus state 
Theorem 6.1.10'' (theorem of kinetic energy; finite form). The variation of the kinetic 
energy of a free particle in a finite interval of time is equal to the work of the resultant 
of the given forces which act upon it in that interval of time. 

The scalar product of relation (6.1.45'') by 2v  leads to 
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2

1

2
2 1 2 2 d

t

t
m m t� � � � �v v v v F ;  

introducing the notations 

2
1 1

1
2

T m� v ,   2
2 2

1
2

T m� v ,   2 1T T T) � � , 

2
0 0

1
2

T m� v ,   0 2 1� �v v v , 
(6.1.49) 

we may write 

2

1
0 2 d

t

t
T T t) � � � �v F , (6.1.50) 

wherefrom we state 
Theorem 6.1.11. The sum of the variation of the kinetic energy of a free particle in a 
finite interval of time and the kinetic energy of the variation of the velocity in the same 
interval of time is equal to the scalar product of the impulse of the resultant of the given 
forces corresponding to the considered interval of time by the velocity of the particle at 
the final moment. 

The scalar product of the relation (6.1.45'') by 1v  leads – analogously – to 

2

1
0 1 d

t

t
T T t) � � � �v F ; (6.1.50') 

we thus state 
Theorem 6.1.11'. The difference between the variation of the kinetic energy of a free 
particle in a finite interval of time and the kinetic energy of the variation of the velocity 
in the same interval of time is equal to the scalar product of the impulse of the resultant 
of the given forces, corresponding to the considered interval of time, by the velocity of 
the particle at the initial moment. 

Summing the relations (6.1.50) and (6.1.50') and taking into account the relation 
(6.1.48''), we get 


2

1 2 1
1 2

1 ( ) d
2

t

P P t
T W t) � � � � �v v F , (6.1.51) 

and we may state 
Theorem 6.1.12 (Kelvin). The work of the resultant of the given forces which act upon 
a free particle in a finite interval of time (the variation of the kinetic energy of the 
particle) is equal to the scalar product of the impulse of this resultant, corresponding to 
the considered interval of time, by the semisum of the velocities of the particle at the 
initial and the final moment. 

Subtracting the relations (6.1.50) and (6.1.50') one of the other, we may write 

2

1
0 0

1 d
2

t

t
T t� � �v F ; (6.1.51') 
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we get 
Theorem 6.1.12' (analogous of Kelvin’s theorem). The kinetic energy of the variation 
of the velocity of a free particle in a finite interval of time is equal to half of the scalar 
product of the impulse of the resultant of the given forces, corresponding to the 
considered interval of time, by the variation of the velocity in the same interval of time. 

 
Figure 6.4.  General theorems with respect to a movable pole. 

The general theorems stated above take place in an inertial frame of reference R, 
considered fixed; the theorems of moment of momentum and of torsor, which depend 
on the pole O , maintain their form also with respect to another pole Q , rigidly linked 
to the frame R  (fixed with respect to this frame). If the pole Q  is movable and the 
calculation is made with respect to the frame R  too, the momentum H  remains 
invariant, but the moment of momentum and the moment of the resultant of given 
forces become (Fig.6.4) 

( )O Q Q Q� 3 � � 3 � � 3�K r H r r H K r H , 

O Q Q� � 3M M r F ; 

 

in this case, replacing in relation (6.1.46) and taking into account the relation (6.1.45), 
we may write 

d
d
Q

Q Q Qt
� � � 3� K

K M v H , (6.1.52) 

obtaining thus a generalized form of the theorem of moment of momentum. As a 
consequence, the formula (6.1.47) is generalized in the form 

, -
d ( )

( ) ( ) ,
d
Q

Q Q Qt
=

= � � = � 3�
H

H F 0 v H . (6.1.52') 

1.2.5 Conservation theorems 
If the resultant F  of the given forces which act upon the particle P  fulfils certain 

conditions, then the general theorems presented in the previous subsection allow to state 
some conservation theorems. Thus, if the force F  is parallel to a fixed plane (is normal 
to a fixed direction of unit vector u  with respect to the frame R  or has a zero 
component), then the theorem of momentum allows to write 
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d( )
0

dt
�

� � � � � � � � �� � �
H u

H u H u H u F u , 
 

wherefrom 

( ) i i i im H u mv u C� � � � � �H u v u ,   constC � ; (6.1.53) 

we obtain thus a scalar first integral of the equations of motion. Hence, if the force F  is 
parallel to a fixed plane, then the projection of the velocity of the free particle P  on the 
normal to this plane is conserved (is constant) in time; associating a particle P �  to the 
projection of the particle P  on this normal, we may state that the particle P �  has a 
uniform motion. Because 

d( ) ( ) ( )
d

m m m C
t

� � � � � ��v u r u r u ,  

it results 

( ) i im mx u Ct C �� � � �r u ,   , constC C � � , (6.1.53') 

being thus led to a new scalar first integral, independent of the previous one; the 
mentioned condition allows us to set up two independent scalar first integrals. As well, 
if the force F  has a fixed direction (is normal to two distinct fixed directions with 
respect to the frame R  or has two zero components), then one obtains four 
independent scalar first integrals of the form (6.1.53), (6.1.53'), while the projection of 
the velocity of the particle on a plane normal to the given force (determined by the two 
fixed directions) is conserved in time. Eliminating the time between the two first 
integrals of the form (6.1.53'), we may state that – in this case – the trajectory of the 
particle P  is a plane curve, the support of the force F  being contained in the plane of 
the curve too. We may start also from the equation of motion 

( )m F t���r u ,   vers const� �
������

u F ,  

wherefrom one obtains the vector 

d ( )dm t F t t t�� � �� �r C u C ,   , const� �
������

C C ,  

as a linear combination of the constant vectors u  and C , hence it is contained in the 
plane defined by these vectors. Associating a particle P �  to the projection of the 
particle P  on a normal to the direction of the force F  in the considered plane, we 
notice that this particle has a uniform and rectilinear motion. 

Finally, if the force F  vanishes (is normal to three distinct fixed directions), then we 
may build up three independent scalar first integrals of the form (6.1.53). Besides, 

�F 0  leads to ��H 0 , so that 

m� �H v C ,   const�
������

C ,   i iH C� ,   1,2, 3i � ; (6.1.53'') 
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hence we get a vector first integral, equivalent to three independent scalar first integrals. 
We may state 
Theorem 6.1.13 (conservation theorem of momentum). The momentum (and the 
velocity) of a free particle is conserved in time if and only if the resultant of the given 
forces which act upon it vanishes. 

We notice that the relation m m� ��v r C  leads to 

m t �� �r C C ,   , const� �
������

C C ,   i i imx C t C �� � ,   1,2, 3i � ; (6.1.53''') 

we obtain thus a new vector first integral, equivalent to three scalar first integrals. The 
conservation theorem of momentum allows to set up two independent vector first 
integrals or six independent scalar first integrals (the maximal number of independent 
scalar first integrals which can be obtained). The motion of the particle P  is thus 
rectilinear and uniform, being completely determined with respect to the frame R. 
Besides, this result corresponds to the principle of inertia, which appears thus as a 
particular case of the principle of action of forces; however, this principle preserves its 
independence, because it is not necessary to introduce the notion of zero resultant 
( �F 0 ), as well as because it can lead to a selection of the solution of the problem 
with initial conditions (of Cauchy type) if not all the conditions asked by the sufficient 
theorem of existence and uniqueness are fulfilled. As it was seen above, this principle is 
not in contradiction with the other principles. We notice also that this principle 
maintains its form in relativistic mechanics, even if it cannot be deduced by 
particularizing. 

Analogously, if the moment OM  is contained in a fixed plane (is normal to a fixed 
axis  , O � , of unit vector u , with respect to a frame R, or has a vanishing 
component), the theorem of moment of momentum leads to 

d ( ) 0
dO O Ot

� � � � � ��K u K u M u ,  

so that 

( , , ) i i jO Oi ijk km K u mx v u C� � � �� �K u r v u ,   constC � , (6.1.54) 

resulting thus a new scalar first integral of the equations of motion. The mentioned 
condition holds if and only if the force F  is coplanar (concurrent or parallel) with the 
axis   ( 0M � ); in this case, the projection of the moment of momentum OK  on the 
axis   is conserved in time. If, in particular, the axis   coincides with the axis 3Ox , 
we have 

� � � �1 2 2 1 1 2 2 1m x v x v m x x x x C� � � �� � ,   constC � . (6.1.54') 

As well, if the moment OM  has a fixed support (is normal to two distinct fixed axes 

1  and 2  with respect to the frame R  or has two zero components), then we obtain 



www.manaraa.com

Dynamics of the particle with respect to an inertial frame of reference 

 

379 

two independent scalar first integrals of the form (6.1.54). This condition holds if and 
only if the force F  is contained in a fixed plane �  (normal to the direction of the 
moment OM  and passing through 1 2O  � A ) or the support of the force F  passes 
through the point O . Indeed, if the axes 1  and 2  coincide with the axes 1Ox  and 

2Ox , respectively, the relations 

2 3 3 21 0OM x F x F� � � ,   3 1 1 32 0OM x F x F� � �   

lead to 

� �1 2 3 1 2 2 1 31 2 3 0O O Ox M x M x x F x F x M� � � � � � � ;  

hence, we may have 3 0x �  or 3 0OM � . 
In the first case, the field of forces F  being coplanar, the trajectory of the particle P  

is a plane curve contained in the plane � , while the moment of momentum OK  is 
normal to this plane. In the second case, O �M 0  (the moment OM  is normal to three 
distinct axes, so that we may set up three independent first integrals of the form 
(6.1.54). Besides, O �M 0  leads to O �K 0 , so that 

( )O m� 3 �K r v C ,   const�
������

C ,   j iOi ijk kK mx v C�� � ,  1,2, 3i � ,   (6.1.54'') 

hence a vector first integral, equivalent to three scalar first integrals; we may state 
Theorem 6.1.14 (conservation theorem of moment of momentum). The moment of 
momentum of a free particle with respect to a fixed pole is conserved in time if and only 
if the moment of the resultant of the given forces which act upon it, with respect to the 
same pole, vanishes. 

We notice that the conservation theorem of momentum entails the conservation 
theorem of moment of momentum; hence, the vector first integral or the three 
corresponding scalar first integrals, given by the moment of momentum conservation 
theorem, are not independent of the six scalar first integrals given by the momentum 
conservation theorem. In this case, we may write 

( ) constO= �
������

H  (6.1.54''') 

and we may state 
Theorem 6.1.15 (conservation theorem of torsor). The torsor of the momentum of a 
free particle with respect to a fixed pole is conserved in time if and only if the resultant 
of the given forces which act upon it vanishes. 

Considering only the vector first integrals (6.1.53'') and (6.1.54''), which form the 
first integral of the torsor (6.1.54'''), one obtains six scalar first integrals (we do not take 
into account the vector first integral (6.1.53''')), which are not independent, being linked 
by the relation 0� �C C  (consequence of the relation ( , , ) 0O m m� � �H K v r v ). 
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We notice that, in the frame of the Theorem 6.1.15, the torsor of the force F  
vanishes too. As a matter of fact, the torsor conservation theorem allows to write nine 
scalar first integrals, from which only six are independent. 

If the force F  is contained in the fixed plane 1 2Ox x , then we have 3 0F � , 

1 2 0O OM M� �  and we may build up four first integrals 

1 3 3f v C� � ,   2 3 3 3f x C t C �� � � ,   1
3 2 3 3 2

C
f x v x v

m
� � � ,   

2
4 3 1 1 3

C
f x v x v

m
� � � ,   3 3 1 2, , , constC C C C� � , 

 

which are independent, because the matrix 

� �
� �

1 2 3 4

3 2 3 21 2 3 1 2 3

3 1 3 1

0 0 0 0 0 1

0 0 1 0 0 0, , ,
0 0, , , , ,

0 0

f f f f
v v x xx x x v v v

v v x x

$ %
* +

( * +$ % � * +* + � �(& ' * +
* +� �& '

 

 

is of rank four (e.g., the determinant of the fourth order formed by the last four columns 
does not vanish). If we put the initial conditions in the plane 1 2Ox x , then we notice that 

3 3 0C C �� � ; the other first integrals lead to 1 2 0C C� � . The co-ordinates 

1 1 ( )x x t�  and 2 2 ( )x x t�  and the components of the velocity 1 1 ( )v v t� , 

2 2 ( )v v t�  remain to be determinate. Thus, the theorems of linear and angular 
momentum may give independent first integrals; but such a result cannot be obtained 
always. Thus, if the force F  is parallel to the fixed axis 3Ox  (without having – 
necessarily – a fixed support), then we have 1 2 0F F� � , 3 0OM �  and we may set 
up five first integrals 

1 1 1f v C� � ,   2 1 1 1f x C t C �� � � ,   3 2 2f v C� � ,   4 2 2 2f x C t C �� � � ,   

3
5 1 2 2 1

C
f x v x v

m
� � � ,   1 1 2 2 3, , , , constC C C C C� � � ; 

 

one may easily see that the last first integral is a consequence of the four first integrals, 
having only four independent first integrals. 

Using the considerations made in Subsec. 1.1.2, let us suppose that the resultant F  
of the given forces is a conservative force which derives from a simple or generalized 
potential; in this case, the elementary work is a total differential and the formula 
(6.1.48) leads to 

T U h� �  (6.1.55) 

or to 

0T U h� � , (6.1.55') 
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where consth � , hence to a scalar first integral. Introducing the potential energy 
(6.1.14) or (6.1.14') and the mechanical energy (6.1.15), we may write 

E T V h� � � ,   consth �  (6.1.55'') 

too, obtaining thus 
Theorem 6.1.16 (mechanical energy conservation theorem). The mechanical energy of 
a free particle is conserved in time if and only if the resultant of the given forces which 
act upon it is conservative.  

Thus, the denomination given to these forces, which form a conservative field, is 
justified; h  is the energy constant. 

The mechanical energy conservation theorem allows to determine the magnitude of 
the velocity of the particle without knowing its trajectory; we may thus write 

" #2 2 ( )v h V
m

� � r . (6.1.56) 

We notice that – in particular – the motion of a particle constrained to stay on an 
equipotential surface and acted upon by the corresponding conservative force is 
uniform. 

The constants corresponding to the first integrals introduced above may be 
determined observing that the latter ones are conserved in time (the respective functions 
have the same value at any moment t , inclusive at the initial moment 0t t� ). Thus, in 
the case of the linear momentum conservation theorem it results 0m�C v , in the case 
of the angular momentum conservation theorem we have 0 0( )m� 3C r v , while in 
the case of the mechanical energy conservation theorem we may write 

2
0 0/2 ( )h mv V� � r . 

1.2.6 Theorem of areas. Central forces 
Starting from the velocities torsor (5.1.16'), multiplying by the mass m  and taking 

into account (6.1.1), (6.1.2), we find again the torsor of momentum (6.1.4); multiplying 
– analogously – the accelerations torsor (5.1.20') by m  and taking into account 
(6.1.45), (6.1.46'), we obtain the torsor theorem (6.1.47). We can thus see that the areal 
velocity and acceleration play for the angular momentum and its derivative a rôle 
similar to that played by the velocity and the acceleration for the linear momentum and 
its derivative, respectively. Thus, if the force F  is coplanar (concurrent or parallel) 
with an axis   of unit vector u  ( 0M � ), then the projection of the areal velocity 

OI  of the free particle P  on the axis   is constant in time 

1 1( , , )
2 2i i jO Oi ijk ku x v u C�� � � � � �u r v uI ,   constC � , (6.1.57) 

obtaining a scalar first integral equivalent to (6.1.54); associating a particle P �  to the 
projection of the particle P  on a plane �  normal to the axis  , we may state that the 
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areal velocity of the particle P �  with respect to the trace of the axis   on the plane �  
is conserved in time. Assuming that the axis   coincides with the axis 3Ox , we may 
write 

� � � �1 2 2 1 1 2 2 13
1 1
2 2O x v x v x x x x C� � � � � �� � ,   constC � . (6.1.57') 

As well, if the moment OM  has a fixed support, then we obtain two independent 
scalar first integrals of the form (6.1.57). If the force F  is contained in a fixed plane 
� , then the trajectory of the particle P  is a plane curve, while the moment of 
momentum is of the form ( )O OK t�K u , where vers O�u K  is normal to the plane 
� ; one can easily see that 

" #( ) ( ) 0O Om K t� � � 3 � � �r K r r v u r ,  

hence 0� �u r , so that this is the equation of the plane � , which passes through O . 
The condition O �M 0  is verified if and only if the support of the given force F  

passes through the pole O ; such a force is called central force. In such a case, the 
moment of momentum conservation theorem takes place; we also obtain 

1 1
2 2O � 3 �r v CI ,  const�

������
C ,  1 1

2 2j iOi ijk kx v C� � � � ,  1,2, 3i � ,   (6.1.57'') 

hence, a vector first integral, equivalent to three scalar first integrals, and we may state 
Theorem 6.1.17 (areal velocity conservation theorem). The areal velocity of a free 
particle with respect to a fixed pole is conserved in time if and only if the resultant of 
the given forces which act upon it is a central force (its support passes – permanently – 
through the same pole). 

In the latter case � � � �1/2 ( , , ) 1/2O � � � �r r v r C rI ; hence, the trajectory of the 
particle P  is a plane curve, contained in the plane 

0� �C r ,   const� �
������

C 0 , (6.1.58) 

which passes through the pole O . If �C 0 , then it results that r  and v  are collinear 
vectors; the equation ( )t���r r , �  scalar, leads to 

0
( )d

0

t

te � � ���r r , (6.1.58') 

the trajectory of the particle being rectilinear. We notice that 0 0� 3C r v . As a 
conclusion, if the moment OM  has a fixed support, then the trajectory of the particle 
P  is rectilinear or a plane curve (contained in the plane � ) as the vectors 0r  and 0v  
of the initial conditions have or not the same support. 
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Assuming that the plane �  coincides with the plane 1 2Ox x , the particle P  
describes the curve C , the trajectory of the particle P �  being the curve C � , the 
projection of the curve C  on the plane �  (Fig.6.5); if the trajectory C  is a plane 
curve, in the conditions mentioned above, then P P� � . We may write 

Figure 6.5.  Areas theorem. 

� � 2
1 2 2 13

1 1 1
2 2 2O x x x x r C� �� � � ��� � , (6.1.59) 

where we used polar co-ordinates in the plane � ; the first integral 2r C� ��  is called 
also the areas first integral. Noting that 

 3 d /dO O t� � A , where we have attached the 
sign +, to the area 

 OA , corresponding to a positive rotation in the plane � , we get 

� �
 0

1
2O C t t� �A , (6.1.59') 

and are led to 
Theorem 6.1.18 (areas theorem). The area described by the vector radius of a free 
particle, beginning with its initial position, is proportional to the interval of time 
covered if and only if the resultant of the given forces which act upon it is a central 
force. 

We can also say that the vector radius describes equal areas in equal times. The 
constant C  is called the areas constant. We mention that this theorem has been stated 
in the same conditions in which the areal velocity conservation theorem takes place; but 
it can be applied to the particle P �  too (Fig.6.5), in the case in which we may write 
only a single scalar first integral of the form (6.1.57). 

Taking into account the observations made at the beginning of this subsection, the 
angular momentum theorem allows to write 

2 O Om �� MI  (6.1.60) 

and we may state 
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Theorem 6.1.19 (areal acceleration theorem). The product of the double mass of a free 
particle by its areal acceleration with respect to a fixed pole is equal to the moment of 
the resultant of the given forces which act upon it, with respect to the same pole. 

Hence, the equation (6.1.60) plays – with respect to the moment OM  – the same rôle 
as that played by Newton’s equation (1.1.89) with respect to the force F . 

2. Dynamics of the particle subjected to constraints 
Assuming that the particle is subjected to ideal constraints or to constraints with 

friction, we complete – in what follows – the general and conservation theorems 
previously stated and emphasize the differential principles of mechanics for a particle. 
Using then the general results thus obtained, we study the motion of a particle 
constrained to stay on a curve or on a surface; the case of constraints with friction is 
also taken into consideration. By means of the generalized co-ordinates, we may study 
the motion of a particle with only one degree of freedom in the conservative case, as 
well as in a dissipative case. 

2.1 General considerations 
The case of one or two ideal holonomic (rheonomic or scleronomic) constraints is 

considered and the equation of motion, the general and the conservation theorems are 
completed by introducing the constraint forces. We mention also the presentation of 
other differential principles of mechanics (d’Alembert, d’Alembert-Lagrange), 
equivalent to Newton’s differential principle. 

2.1.1 Ideal constraints. Introductory notions 
We introduced in Chap. 3, Sec. 2.2 the notion of constraint, together with its multiple 

implications. Using the considerations made on this occasion, we assume that a particle 
may be subjected to two holonomic (finite, of geometric nature) bilateral constraints of 
the form (3.2.17); if a third constraint, compatible with the first two ones, would appear, 
then the position of the particle would be specified from geometric point of view 
(uniqueness or not). The case of non-holonomic constraints of the form (4.1.37') will be 
studied subsequently by analytical methods. As well, we admit the existence of 
unilateral constraints of the form (3.2.8') in some particular problems. 

If the particle is constrained to stay on a curve C , then its co-ordinates must verify 
the relations 

� �1 1 2 3, , ; 0f x x x t � ,   � �2 1 2 3, , ; 0f x x x t �  (6.2.1) 

or the relations 

� �1 1 2 3, , 0f x x x � ,   � �2 1 2 3, , 0f x x x � , (6.2.1') 

as the constraint is rheonomic or scleronomic, respectively; in the first case, the curve is 
movable, while in the second one it is fixed. The particle remains with only one degree 
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of freedom and its position may be specified by means of a single independent 
parameter q  (obtained by eliminating the two considered constraints) in the form 

( ; )q t�r r ,   ( ; )i ix x q t� ,   1,2, 3i � ,   ( )q q t� , (6.2.2) 

in the general case of a rheonomic constraint. In particular, the generalized co-ordinate 
q  may be the curvilinear co-ordinate s  on the curve C  or even the time t . 

Analogously, to determine the positions of a particle constrained to stay on a surface 
S  of equation 

� �1 2 3, , ; 0f x x x t �  (6.2.3) 

or 

� �1 2 3, , 0f x x x � , (6.2.3') 

as the constraint is non-stationary (movable surface) or stationary (fixed surface), 
respectively, there are necessary two parameters 1 2,q q  (obtained by the elimination of 
the considered constraint), corresponding to two degrees of freedom; it results 

1 2( , ; )q q t�r r ,   1 2( , ; )i ix x q q t� ,   1,2, 3i � ,   ( )q q t� �� ,   1,2� � . (6.2.4) 

The generalized co-ordinates 1 2,q q , may – eventually – be the co-ordinates on the 
surface S . 

Using the axiom of liberation from constraints, we introduce the constraint force R  
so that, corresponding to the formula (3.2.35'), the equation of motion (6.2.2) becomes 

m m� � ���a r F R ,   i i i ima mx F R� � ��� ,   1,2, 3i � ; (6.2.5) 

in such conditions, the particle behaves as a free one. If the constraints are ideal, then 
one obtains the virtual work 0RWB � � B �R r ; in the cases considered above, the 
constraint force R  is normal to the surface S , hence it is of the form 

grad f��R ,   ,i iR f�� ,   1,2, 3i � ,   �  scalar, (6.2.6) 

or it belongs to the normal plane to the curve C , hence it is of the form 

1 1 2 2grad gradf f� �� �R ,  1 1, 2 2,i i iR f f� �� � ,  1,2, 3i � , 1 2,� �  scalars,  (6.2.6') 

at the point occupied by the particle (corresponding to the formula (3.2.37)). A 
constraint with friction implies a constraint force tangent to the surface S  or to the 
curve C , which is determined by a supplementary modelling of the mechanical 
phenomenon. 

We observe that all the results obtained in the case of a free particle may be used also 
for a particle subjected to constraints if to the resultant F  of the given forces is  



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

 

386 

added also the resultant R  (unknown) of the constraint forces. In the first basic 
problem, besides the trajectory (the vector function ( )t�r r ) is asked also the 
constraint force R  (which involves – in general – three unknown scalar components). 
In the second basic problem, one must determine the forces F  and R ; as in the case 

�R 0 , the problem has not a unique solution. As well, neither in the case of the mixed 
basic problem the solution is not unique. 

In what concerns the theorem of existence and uniqueness, they remain further valid 
if the functions (6.2.1') and (6.2.3') are of class 1C  and their derivatives of first order 
fulfil conditions of Lipschitz type. 

2.1.2 General theorems 
Corresponding to the results in Subsec. 1.2.4, we may write 

� ��H F R ,   i i iH F R� �� ,   1,2, 3i � , (6.2.7) 

( )O O O� 3 � � ��K r F R M M ,   Oi Oi OiK M M� �� ,   1,2, 3i � , (6.2.7') 

thus stating: 
Theorem 6.2.1 (theorem of momentum). The derivative with respect to time of the 
momentum of a particle subjected to constraints is equal to the resultant of the given 
and constraint forces which act upon it. 
Theorem 6.2.2 (theorem of moment of momentum). The derivative with respect to time 
of the moment of momentum of a particle subjected to constraints, with respect to a 
fixed pole, is equal to the moment of the resultant of the given and constraint forces 
which act upon it, with respect to the same pole. 

Introducing the notion of hodograph, we may state theorems analogous to Theorems 
6.1.7' and 6.1.8'. 

Noting that 

( ) ( ) ( )O O O= � = � =� H F R , (6.2.7'') 

we may state 
Theorem 6.2.3 (theorem of torsor). The derivative with respect to time of the torsor of 
momentum of a particle subjected to constraints, with respect to a fixed pole, is equal to 
the torsor of the resultant of the given and constraint forces which act upon it, with 
respect to the same pole. 

Introducing the impulse of the constraint force 2

1
d

t

t
t� R  and the impulse of the 

moment of the constraint force 2

1
d

t
Ot
t� M , corresponding to the interval of time 

" #1 2,t t , we may write 

2 2

1 1
d d

t t

t t
t t) � �� �H F R , (6.2.8) 

2 2

1 1
d d

t t
O O Ot t

t t) � �� �K M M , (6.2.8') 
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� � � �2 2

1 1
( ) d d

t t
O O Ot t

t t)= � = � =� �H F R . (6.2.8'') 

The relation (6.1.48) is completed in the form 

d d d d dRT W W� � � � � �F r R r  (6.2.9) 

and we may state 
Theorem 6.2.4 (theorem of kinetic energy). The differential of the kinetic energy of a 
particle subjected to constraints is equal to the sum of the elementary works of the 
resultants of the given and constraint forces which act upon it. 

As it was seen in Chap. 3, Subsec. 2.2.9, in the case of scleronomic (or – more 
general – catastatic) constraints, we have d 0RW � ; in this case, the Theorem 6.2.4, 
corresponding to a particle subjected to constraints, is of the same form as the Theorem 
6.1.10, corresponding to a free particle. In what concerns Theorems 6.1.10' and 6.1.10'', 
one can make analogous observations. 

We notice that, if we take the moment of momentum with respect to a pole Q , 
movable with respect to the origin O , the formula (6.1.52) leads to 

Q Q Q Q� � � 3�K M M v H . (6.2.10) 

2.1.3 Conservation theorems 
Using the results given in Subsec. 1.2.5, we may build up first integrals, in certain 

conditions, in the case of a particle subjected to constraints too. Thus, if the sum 
�F R  is parallel to a fixed plane (is normal to a fixed direction of unit vector u , 

( ) 0� � �F R u ), then we may write the first integral (6.1.53); analogously, if the sum 

O O�M M  is contained in a fixed plane (is normal to a fixed axis  , O � , of unit 
vector u , � � 0O O� � �M M u ), then one obtains the first integral (6.1.54). 

If � �F R 0  (necessary and sufficient condition of static equilibrium), then we 
may state a momentum conservation theorem, while if O O� �M M 0  (necessary 
condition of static equilibrium), then we may state a moment of momentum 
conservation theorem. The first condition mentioned above allows to state a torsor 
conservation theorem too. 

In the case of scleronomic constraints and of a conservative force we may write also 
a mechanical energy conservation theorem. 

The moment of momentum conservation theorem is equivalent to the areal velocity 
conservation theorem; these theorems take place if and only if the sum �F R  passes 
through the fixed pole O  (it is a central force). 

As in the case of a free particle, one can obtain only six independent first integrals; 
but these ones are sufficient to determine the motion. Even if the constraint force R  is 
not known a priori, the conditions imposed above are often fulfilled, and we may set up 
first integrals in the case of the particle subjected to constraints too. 
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2.1.4 Differential principles of mechanics 
The equation of motion of a particle P  subjected to constraints is written in the form 

(6.2.5); this equation represents Newton’s principle (the first differential principle of 
mechanics). But this basic principle can be expressed also in other equivalent forms, 
which are useful in various particular cases; if we consider these forms as consequences 
of Newton’s principle, then they will be theorems. 

Introducing the force of inertia 

m� � ��F r , (6.2.11) 

the law of motion becomes 

� � �F F R 0  (6.2.12) 

 
Figure 6.6.  D’Alembert’s theorems. 

and we may state (Fig.6.6) 
Theorem 6.2.5 (d’Alembert). The motion of a particle subjected to constraints takes 
place so that – at any moment – it is in dynamic equilibrium under the action of the 
resultant of the given and constraint forces, as well as of the force of inertia. 

We introduce the force 

m� � � � ��F F F rG , (6.2.13) 

which is called the lost force of d’Alembert; in this case, the equation becomes (Fig.6.6) 

� �R 0G  (6.2.14) 

and we can state 
Theorem 6.2.6 (d’Alembert). The motion of a particle subjected to constraints takes 
place so that the constraint force be equilibrated – at any moment – by the lost force of 
d’Alembert. 

We notice that the relation (6.2.13) may be written also in the form 

( ) m� � � � � ��F F rG G ;  

hence, only the component m � ���r F  of the force F  contributes to the motion of the 
particle, while the component G  is lost because it equilibrates the constraint force 
(justifying thus the given denomination). 

Formally, the equation (6.2.14), which represents the necessary and sufficient 
condition for dynamic equilibrium (characterizing – entirely – the motion of the particle 
subjected to constraints), is not different from the relation (4.1.4), which represents the 
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necessary and sufficient condition of static equilibrium. As a consequence, all the 
considerations made for static problems, starting form the relation (4.1.4), may be 
transposed for similar problems of dynamic character, replacing the given force F  by 
the lost force of d’Alembert G ; e.g., the condition (4.1.56), written for only one 
particle, leads to the theorem of torsor, characterized by the formula (6.2.7''). As well, 
we may use the results in Chap. 4, Subsecs. 1.1.5, 1.1.6, 1.1.8, corresponding to the 
particle constrained to stay on a surface or on a curve. 

If 0RWB � , then we may write the relation (4.1.58) for a single particle in the form 

0WB � � B �rG , (6.2.15) 

stating 
Theorem 6.2.7 (theorem of virtual work; d’Alembert-Lagrange). The motion of a 
particle subjected to ideal constraints takes place so that the virtual work of the lost 
force of d’Alembert, which acts upon the particle, vanishes for any virtual displacement 
of it. 

In the case of unilateral ideal constraints of the form (3.2.16iv) or of the form 
(3.2.16), the virtual work of the lost force of d’Alembert verifies the relation 

0WB � � B �rG . (6.2.15') 

We notice that each of the above theorems may stay at the basis of the Newtonian 
mathematical model of mechanics, representing thus a differential principle of 
mechanics. 

2.2 Motion of the particle with one or two degrees of freedom 
In what follows, we consider the motion of a particle (frictionless or with friction), 

constrained to stay on a curve or on a surface. A study is then made for the case in 
which the particle has only one degree of freedom (conservative or dissipative case). 

2.2.1 Motion of a particle constrained to stay on a curve 
Let P  be a particle in motion on a smooth movable or fixed curve C  (Fig.6.7) of 

equations (6.2.1) or (6.2.1'). The constraint force will be expressed in the form (6.2.6'), 
while the equation of motion will be 

1 1 2 2grad gradm f f� �� � ���r F ; (6.2.16) 

in components, we may write 

1 1, 2 2,i i i imx F f f� �� � ��� ,   1,2, 3i � . (6.2.16') 

The equations (6.2.1) and (6.2.16') form a system of five scalar equations for the 
unknown functions ( )i ix x t�  and for the parameters 1�  and 2� , which specify the 
constraint force. 

We notice that, in the case of the rheonomic constraints, 
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grad d d 0f f t� �� � ��r ,   1,2� � ,  

Figure 6.7.  Motion of a particle constrained to stay on a curve C. 

the real work of the constraint forces is written in the form 

� �1 1 2 2 1 1 2 2d d grad d grad d dRW f f f f t� � � �� � � � � � � � �� �R r r r ,  

being non-zero; indeed, taking into account the variation in time of the curve, the real 
displacement of the particle is not tangent to the curve frozen at the moment t , in the 
normal plane of which is the constraint force R . 

If the constraint is scleronomic or, at least, catastatic, then the work d 0RW � ; in 
this case, the curve C  is fixed and the trajectory coincides with it, the constraint force 
belonging to the normal plane to the trajectory at the point P . In the theorem of kinetic 
energy (6.2.9), the constraint force does no more appear, and we may specify the 
position of the particle on the trajectory. The parametric representation (6.2.2) becomes 

( )i ix x q� , 1,2, 3i � , so that we obtain 

� �2d ( , ; )
d 2 i i
m x x q Q q q t q

t
� � �� � � , (6.2.17) 

where d ( )/di ix x q q� � , while ( , ; ) ( , ; ) ( , ; ) ( )i iQ q q t q t F q q t x q� � �� �� � � �F r r r , which 
determines the generalized co-ordinate ( )q q t� . In particular, if the given force 
depends only on the position of the particle ( ( )�F F r ), then we have ( )Q Q t� , so 
that 

� �
0

2 2
0 ( )d

2
q

q

m v v Q � �� � � .  

Noting 

0

2
0

1 2( ) ( )d
q

qi i
q v Q

x x m
� � �$ %� �* +� � & '� , (6.2.18) 

the equation (6.2.17) becomes 
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� �22 d ( )
d
qq q
t

�� ��  
 

and we obtain 

0
0

d
( )

q

q
t t

�
� �

� � 2� , (6.2.18') 

where the position of the particle at the initial moment has been emphasized. The sign 
taken in this formula is that of the generalized velocity q�  (the sign of the initial 
velocity, which is preserved if q�  does not vanish); if q�  vanishes, then the velocity v  
vanishes too, while the sign is specified by the sense of the velocity v , hence by the 
sense of the tangential component of the given force F . 

The trajectory and the velocity of the particle being determined, in the case of a fixed 
curve, as well as in the case of a movable one, we may put in evidence the constraint 
force R , by calculating the scalars 1�  and 2�  from two of the equations (6.2.16') (the 
system (6.2.16') is – in this case – compatible). 

Projecting the equation of motion (6.2.5) on the axes of Frenet’s intrinsic frame, in 
case of stationary constraints, we obtain 

( , ; )mv ms F s s t�� �� �� � ,   
2vm F R� ��
� � ,   0F R� �� � . (6.2.19) 

The first of these equations does not contain the constraint force, so that it determines 
the motion of the particle along the trajectory (as a matter of fact, multiplying both 
members of the equation by ds , we get the theorem of kinetic energy), while the other 
two equations give the components of the constraint force in the plane normal to the 
trajectory (in a simpler form as that previously mentioned) 

2vR F m� � �
� � � ,   R F� �� � . (6.2.20) 

The first equation (6.2.19) shows that the law of motion does not change if the curve is 
deformed without changing its length or by modifying the force F , but maintaining its 
tangential component (only the constraint force is changing); in particular, we may 
transform the curve into a straight line, reducing the problem to the study of a 
rectilinear motion. 

If F  is a conservative force, deriving from a simple potential ( )U U� r  or from a 
generalized potential (the simple part of which is 0 0 ( )U U� r ), then we may write a 
conservation theorem of energy in the form (6.1.55) or (6.1.55'); the component of the 
constraint force along the principal normal is thus of the form 

2 ( )R F U h� � �
� � � � , (6.2.20') 
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and is obtained without knowing the motion of the particle on the trajectory (in case of 
a generalized potential we replace the function U  by the function 0U ). 

In the general case of rheonomic constraints we may use Lagrange’s equations 
(6.1.24'); because we have only one generalized co-ordinate q , we obtain the 
differential equation ( ( ; )q t�r r ) 

d
( , ; )

d
T T

Q q q t
t q q

( (� � � �	 
( (� �
�

�
, (6.2.21) 

where 

21
2

T m q
q t
( (� �� �	 
( (� �

�r r ,   ( , ; )Q t
q
(

� �
(

� rF r r , (6.2.21') 

the unknown function being ( )q q t� . In particular, we may consider ( ; )s t�r r , 
where s  is the curvilinear co-ordinate along the curve C ; a scalar product of the 
equation of motion (6.2.5) by the unit vector d /ds� r= , tangent to the curve C , 
leads to ( 0� �R = ) 

m F�� � � ���r F= = ;  

but 

s
t

(
� �

(
� � rr = ,   

2

2s s
t
(

� � �
(

�� ��� � rr = = , 
 

so that the equation of motion, which is a generalization of the equation (6.2.19), 
becomes 

2

2ms F
t

�
(

� � �
(

�� r
= , (6.2.22) 

where the unknown function is ( )s s t� . 

2.2.2 Motion of a particle constrained to stay on a surface 
Let P  be a particle in motion on a smooth movable or fixed surface S  (Fig.6.8) of 

equation (6.2.3) or (6.2.3'). The constraint force is given by (6.2.6) and the equation of 
motion becomes 

gradm f�� ���r F ; (6.2.23) 

in components, we may write 

,i i imx F f�� ��� ,   1,2, 3i � . (6.2.23') 
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The equations (6.2.3) and (6.2.23') form a system of four scalar equations for the three 
unknown functions ( )i ix x t�  and for the parameter � , which specifies the constraint 
force. Thus, the equations (6.2.23') allow to write 

Figure 6.8.  Motion of a particle constrained to stay on a surface S. 

1 1 2 2 3 3

,1 ,2 ,3

mx F mx F mx F
f f f
� � �

� �
�� �� ��

.  

Adding also the equation (6.2.3), we may determine the trajectory of the particle; the 
parameter �  is then given by any of the equations (6.2.23'). 

In the case of a unilateral constraint (case in which the particle may leave the surface, 
remaining on one part of it), one must take into consideration the direction of the 
constraint force R . Thus, if the force R  is directed towards the part in which the 
particle may leave the surface, that one will remain on the surface. We notice that the 
force R  is directed towards the part of the surface for which 0f �  if 0� � ; hence, 
the particle remains on the surface only if the parameter �  maintains its sign. 
Consequently, if this parameter vanishes and changes of sign, then the particle leaves 
the surface and moves – further – as a free particle. 

In the case of a rheonomic constraint, we may write 

grad d d 0f f t� � ��r ,  

and the real work of the constraint force is given by 

d d grad d dRW f f t� �� � � � � � �R r r ;  

indeed, the real displacement of the particle is not tangent to the surface frozen at the 
moment t , while the constraint force R  is normal to this surface at the point P . If the 
constraint is scleronomic (or – at least – catastatic), then d 0RW � , and the theorem of 
kinetic energy can be written in the form (6.1.48); because the particle is constrained to 
stay on a surface, and has two degrees of freedom, it is necessary one equation more to 
can specify the motion. 

Using Darboux’s frame, we may write, in case of a fixed surface, 
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mv F��� ,   
2

n
n

vm F R
�

� � ,   
2

g
g

vm F
�

� ; (6.2.24) 

the first and the last equation determine the motion corresponding to the two mentioned 
degrees of freedom, while the second equation gives the constraint force 

2

n
n

vR F m
�

� � � . (6.2.25) 

If the force F  is conservative, deriving – for instance – from a simple potential 
( )U U� r , we may use the formula (6.1.55), and the constraint force is given by 

2 ( )n
n

R F U h
�

� � � � . (6.2.25') 

In the case of a given zero force ( �F 0 ), the first equation (6.2.24) shows that the 
motion of the particle is uniform (the magnitude v  of the velocity is constant in time). 
The component of the acceleration along the tangent to the trajectory vanishes, so that 
the acceleration is directed towards the principal normal J  to the trajectory. The second 
equation (6.2.24) emphasizes ( 0nF � ) that the acceleration vector is normal to the 
surface S ; hence, at the point P , the principal normal to the trajectory of the particle 
has the same support as the normal to the surface S  ( 3 �n 0J ). The last equation 
(6.2.24) shows that ( 0gF � ) the geodesic curvature vanishes; hence, the trajectory of 
the particle P  is a geodesic of the surface S , the motion being uniform. This result 
may be put in connection with the principle of inertia, the straight line being a geodesic 
of the space 3E ; in this case, n� � � , while 0R � . It results the constraint force in 
the form 

2
0

n

v
R m

�
� , (6.2.26) 

where 0v  is the magnitude of the initial velocity. For instance, a particle which is 
constrained to stay on a fixed sphere and is acted upon by a zero force describes a great 
circle of it. 

We notice that the trajectory is a geodesic if the necessary and sufficient condition 
0gF �  is fulfilled, hence if the force F  belongs to the osculating plane of the 

trajectory (determined by the unit vectors =  and J , 3 �n 0J ); in this case, the 
motion is uniform only if 0F� � , hence if the given force is normal to the surface S . 
If the particle has a uniform motion on a geodesic circle (1/ constg� � , in the sense 
of Darboux), then we have constgF � , 0F� � , so that the given force is normal to 
the trajectory, its projection on the tangent plane being constant during the motion. As 
well, if nR F� �  during the motion, then the trajectory is an asymptotic line of the 
surface. 
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As in the preceding subsection, in the case of rheonomic constraints we may use 
Lagrange’s equations (6.1.24') in the form (we have two generalized co-ordinates 1q  
and 2q , so that � �1 2, ;q q t�r r ) 

1 2 1 2
d

( , , , ; )
d

T T
Q q q q q t

t q q �
� �

( (� � � �	 
( (� �
� �

�
,   1,2� � , (6.2.27) 

where 

2

1 2
1 2

1
2

T m q q
q q t
( ( (� �� � �	 
( ( (� �

� �r r r ,   ( , ; )Q t
q�
�

(
� �

(
� rF r r ; (6.2.27') 

the unknown functions 1 ( )q t  and 2 ( )q t  may be – eventually – curvilinear co-ordinates 

1s  and 2s  on the surface S . In this case, taking into account the formula (6.1.24''') and 
the results in Chap. 5, Subsec. 1.2.3, the equations of motion read 

� �1 2

  
,  ms m s s g Q s s��

� �� �

�

� �
� N

� � O
! P

�� � � ,   Q
s�
�

(
� �

(
rF ,   , 1,2� � � , (6.2.28) 

and the unknown functions are 1 1 ( )s s t�  and 2 2 ( )s s t� . Making 1 2 0Q Q� �  and 
noting that one can take the time t  proportional to the curvilinear co-ordinate s  on the 
trajectory (the motion is uniform), we find the equations of the geodesic curves 

 
0  s s s� ��

�

� �
� N

�� � �� � O
! P

,   1,2� � , (6.2.29) 

where /s s s� �� � ( ( , 1,2� � . 
We have seen that the conservation theorem of the mechanical energy allows – in the 

conditions in which this theorem takes place – to determine easily the constraint force, 
if the trajectory of the particle is known. In what concerns the conservation theorem of 
moment of momentum, the condition 

( ) grad f�3 � � 3 � 3 �r F R r F r 0   

must hold; this condition is fulfilled for any �  if 3 �r F 0  and grad f3 �r 0 . We 
obtain a scalar first integral if the components of the two moments along one of the axes 
(for instance, 3Ox ) vanish. Thus, we start from 1 ,2 2 ,1 0x f x f� � ; the associate system 
of differential equations 

1 2 3

2 1

d d d
0

x x x
x x

� �
�

 
 

leads to the integrals 2 2
1 2 1x x C� � , 3 2x C� , so that � �2 2

1 2 3, 0f f x x x� � � . 
Hence, the surface S  must be a surface of rotation (with 3Ox  as symmetry axis); 
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indeed, the support of the constraint force intersects – at any moment – the rotation 
axis. If the particle P  is constrained to stay on a surface of rotation, while the force F  
is coplanar with the symmetry axis of the surface, then we may write a first integral of 
the form (6.1.54'). 

2.2.3 Motion of a particle subjected to constraints with friction 
In the case of a constraint with friction, the constraint force R  has not only the 

normal component N , which does not allow the particle to leave the constraint, but also 
a tangential one �T 0 , which hinders the particle to move in the frame of this 
constraint. As in the static case, considered in Chap. 4, Subsec. 1.1.8, in what follows 
we use the Coulombian model introduced in Chap. 3, Subsec. 2.2.11, for the force of 
friction; we assume that the constraints are holonomic and scleronomic. The force of 
friction is tangent to the rough surface or curve on which stays the particle, its direction 
being opposite to that of the motion. 

In the case of a particle constrained to stay on a rigid fixed or movable curve C , of 
equations (6.2.1), the equation of motion reads 

m � � ���r F N T . (6.2.30) 

We introduce also the relations 

f�T N ,   r

rv
� �

vT T , (6.2.31) 

where rv  is the relative velocity of the particle; we notice that vers vers r� �T v 0 . 
If the particle is constrained to stay on a rigid fixed or movable surface S , of equation 
(6.2.3), then the equations which determine the unknown quantities will be of the form 
(6.2.30) and (6.2.31) too. The relative velocity is given by r t� �v v v , where 

( ) ( )t Q t t QP� � 3
����

v v 7  is the velocity of transportation of the surface (or of the 
curve); Q  is a point of the surface (or curve), while ( )t7  is the instantaneous rotation. 

Eliminating the force of friction T , we obtain the vector equation 

t

t
m N fN

�
� � �

�
�� v vr F n

v v
, (6.2.32) 

where vers grad f�n , or the vector equation 

1 1 2 2 1 2
t

t
m N N f

�
� � � � �

�
�� v vr F n n N N

v v
, (6.2.32') 

where vers grad f� ��n , 1,2� � . If the surface S  (or the curve C ) is fixed, then 
the velocity of transportation vanishes ( t �v 0 ). 

If we consider the motion on a fixed curve with respect to Frenet’s frame, then we 
get 
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signmv F fN v�� �� ,   
2vm F N� ��
� � ,   0 F N� �� � , (6.2.33) 

with 2 2N N N� �� � ; the equations (6.2.33) and (6.2.1') determine thus the unknown 
functions ( )i ix x t� , 1,2, 3i � , as well as the components ,N N� �  of the constraint 
force. Eliminating the constraint force, we may write the equation 

22
2d

sign
d
v v

mv mv F f F m F v
s � �� �

� �� � � � �	 

� �

� , (6.2.34) 

which gives the velocity ( )v v s� . In the case of a plane curve, the force F  belonging 
to the respective plane, we have 0F� � and we get 

� �2 2dd 1
d 2 d

vv v
mv m F f m F

s s � ��
� �� � �	 

� �

� , (6.2.34') 

where the sign corresponds to a direction of the constraint force opposite to the motion. 
Integrating, we have 

2 ( )v s�� , (6.2.35) 

where 

" #2 ( ) 2 ( ) 2 ( )
0

2( ) e e e ( ) ( ) d
sf s f s fs C F fF

m
� � � �

� �� � � �� � ��� � , (6.2.35') 

with 

d( ) ss�
�

� � ,   constC � . (6.2.35'') 

Hence, we obtain 

0
0

d
( )

s

s
t t

�
� �

� � � , (6.2.35''') 

the motion of the particle on the fixed curve C  being thus specified; returning to the 
equations of motion (6.2.33), we emphasize the constraint force too. 

In the case of a particle constrained to move on a fixed surface S , we introduce 
Darboux’s trihedron and find the equations 

mv F fN�� �� ,   
2

n
n

vm F N
�

� � ,   
2

g
g

vm F
�

� ; (6.2.36) 
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these three equations, together with the equation (6.2.3'), form a system of four 
equations for the unknown functions ( )i ix x t� , 1,2, 3i � , and the constraint force 
N . Eliminating the constraint force between the first two equations, we get a new 
equation which, together with the third equation (6.2.36), constitutes a system of two 
differential equations for the unknown curvilinear co-ordinates ( )s s t� �� , 1,2� � , 
on the surface S ; thus, the relation (6.2.3') is eliminated, and the co-ordinates which we 
use are generalized co-ordinates. The constraint force may be easily determined from 
the second equation (6.2.36). If 0gF � , then the motion takes place as in the case in 
which the surface is smooth; that motion is uniform if and only if F fN� � , hence if 
and only if the tangential component of the given force equilibrates the force of sliding 
friction. 

2.2.4 Motion of a particle with a single degree of freedom in the conservative case 
In the case of a particle (or of a mechanical system) with a single degree of freedom, 

for which the equation of motion is of the form 

( )q f q��� , (6.2.37) 

where q  is the generalized co-ordinate, we may set up a first integral of energy of the 
form 

� �" #2 2
0 02 ( )q q U q U q� � �� � ,   ( ) ( )dU q f q q� � , (6.2.38) 

by introducing the simple potential U  (or the scalar potential 0U  of a generalized 
potential); hence, the corresponding mechanical system is a conservative system. As 
well, one can show that a unidimensional conservative mechanical system (with a single 
degree of freedom) or a pluridimensional one (if we succeed, by means of the first 
integrals, to eliminate the corresponding parameters, obtaining a unidimensional one) 
leads to an equation of motion of the form (6.2.37). We notice that this equation 
corresponds to a non-linear free oscillation, without damping; the function ( )f q  is thus 
a calling force. The equation (6.2.38) can be integrated in the form (6.2.18'), using the 
notation 

� �" #2
0 0( ) 2 ( )q q U q U q� � � �� . (6.2.38') 

One takes the sign + or – in (6.2.18') as the function ( )q t  is monotone increasing or 
decreasing, respectively. It is necessary that ( ) 0q� � , so that the motion be real. 
Observing that � � 2

0 0 0q q� � �� , we may assume that the function ( )q t  begins to 
increase together with t  (corresponding to the direction of the initial velocity); the sign 
+ is thus chosen. A study of the variation of the function ( )q�  and of its zeros leads to 
interesting conclusions concerning the motion of the particle (or of the mechanical 
system). 

Noting q p�� , we may replace the equation (6.2.37) by the system 
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d
d
q p
t
� ,   d ( )

d
p f q
t
� , (6.2.39) 

which leads to 

( )d
d

f qp
q p

� ; (6.2.39') 

the motion of the particle is thus equivalent to the motion of a representative point P  in 
the phase space of co-ordinates ,q p . The trajectory C  in this space pierces the Oq -
axis by a right angle, and the tangent to it is parallel to this axis for ( ) 0f q � , 0p � ; 
if we have also 0p � , then one obtains a singular point, corresponding to a position of 
equilibrium, as it results from the system (6.2.39). 

Expressing the first integral (6.2.38) in the form 

2 2 ( )p V q h� � ,   2
0 02 ( )h q V q� �� ,   ( ) ( )V q U q� � , (6.2.40) 

Figure 6.9.  Motion of a particle with a single degree of freedom 
 in the conservative case. 

where h  is the energy constant, we notice that the trajectory C  is symmetric with 
respect to the Oq -axis and is situated in the domain 2 ( )V q h� . On the basis of the 
Lagrange-Dirichlet theorem (see Chap. 4, Subsec. 1.1.7), to the points of local 
minimum of the potential energy ( )V q  correspond stable positions of equilibrium, 
while to the points of maximum correspond labile positions of equilibrium (Fig.6.9). 
From the first equation (6.2.39), we see that – for 0p �  – q  increases together with 
the time t , so that we may specify the direction of the trajectory. We obtain the period 
of the motion in the form 
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dp
T

q
� �� , (6.2.41) 

integrating along a closed curve. 

2.2.5 Study of a dissipative mechanical system with a single degree of freedom 
If, during the motion, intervenes the friction too, then the mechanical energy is no 

more conserved, but diminishes in time, due to the phenomenon of dissipation. 
Assuming that the force of friction is a function of velocity, the equation of motion 
becomes 

( ) ( )q f q F q� ��� � ,   ( ) 0qF q �� � , (6.2.42) 

the last relation emphasizing that the damping force ( )F q�  is opposite to the velocity; in 
fact, the equation (6.2.42) characterizes the damped non-linear free oscillations, in the 
unidimensional case (with a single degree of freedom). In the case of forced 
oscillations, this equation is completed in the form 

( ) ( ) ( )q f q F q t� � ��� � F ,   ( ) 0qF q �� � , (6.2.42') 

where we have introduced also the perturbing force ( )tF . In the case in which the 
product ( )qF q� �  is positive for small values of the velocity modulus q�  and negative for 
great values of the same modulus, one obtains self-sustained oscillations. 

As in the case of undamped oscillations, the equation (6.2.42) leads to 

( ) ( )d
d

f q F pp
q p

�
�  (6.2.43) 

in the phase space, a field of vectors being thus defined, excepting the positions of 
equilibrium (singular points). In the case in which the calling force ( )f q  is linear 
( ( )f q q� ) one can build up a polygonal line, which approximates the integral curve; 
this procedure, due to Liénard, has been extended by J.L. Brown for the case in which 

( )f q  is a non-linear function (the case of non-linear free oscillations). 
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Chapter 7 

PROBLEMS OF DYNAMICS OF THE PARTICLE 

One of the most important cause (input) which leads to the motion of a mechanical 
system is the gravitational field, in particular the terrestrial one; some results concerning 
the motion of a free particle in vacuum or in a resistent medium are also given, and 
some considerations concerning the pendulary motion of a particle subjected to 
constraints are made. Other important classical problems of dynamics of the particle are 
then presented and notions on the stability of its equilibrium are given. 

1. Motion of the particle in a gravitational field 
First of all, we deal with some particular cases of motion of a free particle, i.e., the 

rectilinear and the plane motion, as well as the motion of a heavy particle; another case 
of motion of a particle subjected to constraints, that is the plane and the three-
dimensional pendulary motion, is then studied. 

1.1 Rectilinear and plane motion 
Of a particular interest in the study of the three-dimensional motion of a free or 

constraint particle is the motion of its projection on a fixed straight line or plane; we are 
thus led to consider some particular cases of rectilinear and plane motions of a particle. 

1.1.1 Rectilinear motion of a particle 
We choose as rectilinear trajectory of a free particle P  a straight line parallel to the 
1Ox -axis, of equations 0

2 2 constx x� � , 0
3 3 constx x� � ; the equations (6.1.22') 

show that the resultant F  of the given forces must verify the conditions 2 3 0F F� � , 
hence it must have a fixed direction (the same as that of the 1Ox -axis); but the latter 
conditions are not sufficient to obtain the mentioned trajectory. Indeed, the above 
conditions lead to 2 3 0x x� ��� �� , hence to � �0 0

0k k kx x t t x� � �� , corresponding to the 
initial conditions � � 0

0k kx t x� , � � 0
0k kx t x�� � , 2,3k � ; to obtain the searched 

trajectory, one must have 0 0
2 3 0x x� �� �  too and we may state 

Theorem 7.1.1. The trajectory of a free particle is rectilinear if and only if the resultant 
of the given forces acting upon it has a fixed direction and its initial velocity has the 
same direction. 

401  
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In this case, the support of the force F  coincides with the rectilinear trajectory, 
while ther equation of motion is reduced to ( 0

2 2x x� , 0
3 3x x� ) 

mx F��� , (7.1.1) 

where ( )x x t� , ( , ; )F F x x t� �  and where, for the sake of simplicity, we have 
omitted the index 1; the initial conditions are of the form 

� �0 0x t x� ,   � �0 0v t v� . (7.1.1') 

If the resultant of the given forces depends only on time ( ( )F F t� ), then – by 
successive integrations – we get 

0
0( ) ( ) ( )d

t

t
mv t mx t mv F � �� � � �� , (7.1.2) 

� �
0 0

0 0 0( ) d ( )d
t

t t
mx t mx mv t t F

�
� � �� � � � � � . (7.1.2') 

In particular, if 0 constF ma� � , we obtain 

� �0 0 0( )v t v a t t� � � ,   � � � �20
0 0 0 0( )

2
a

x t x v t t t t� � � � � . (7.1.3) 

Assuming that ( )F F x�  (the resultant of the given forces depends only on the 
position), we may use the results obtained in Chap. 6, Subsec. 2.2.1 concerning the 
dynamics of a particle constrained to move on a given fixed curve; the formula (6.2.18') 
allows to write 

0
0

d
( )

x

x
t t

�
� �

� � 2� ,   
0

2 2( ) ( )d
x

x
x v F

m
� � �� � � ,   � � 2

0 0 0x v� � � . (7.1.4) 

We notice that the sign in the above formula corresponds to the sign of the initial 
velocity 0v . If 0 0v � , then � �0 0x� �  and we must take the sign for which 

( ) 0x� � . If ( )x�  is a monotone increasing or decreasing function, then the sign + or 
–, respectively, is taken; noting that ( ) (2/ ) ( )x m F x� � � , it results that, in the case of 
a vanishing initial velocity, the particle moves on the trajectory, departing from the 
initial position, in the same direction as that of the force. In the above considerations, 
we assumed tacitly that, if 0 0v � , then ( ) 0x� � � , because � �0 0F x � ; hence, 0x  is 
only a simple zero for ( )x� . 

Let 1x  and 2x  be two consecutive simple zeros of ( )x� , so that 01 2x x x� � ; in 
this case 

� � � �1 2( ) ( )x x x x x x� �� � � ,   ( ) 0x� � ,   " #1 2,x x x� . (7.1.5) 
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The particle ( )P x  departs from the point 0 0( )P P x�  with the velocity 0 0v �  (let 
be 0 0v � ) and oscillates between the positions 1 1( )P P x�  and 2 2( )P P x�  
(Fig.7.1); assuming that the particle reaches the position 2P  at the moment t �  with the 
velocity ( 0) 0v t � � � , then the position 1P  at the moment t ��  with the velocity 

( 0) 0v t �� � � , and returns to 0P  at the moment t ���  with the velocity ( 0) 0v t ��� � � , 
we obtain 

� � � �
2

0
0

1 2

d
( )

x

x

x
t t

x x x x x�
� � �

� �� ,   
� � � �

1

2 1 2

d
( )

x

x

x
t t

x x x x x�
�� �� � �

� �� ,   

� � � �
0

1 1 2

d
( )

x

x

xt t
x x x x x�

��� ��� �
� �� , 

so that 0 /2t t t t t t T�� � ��� �� �� � � � � � . After an interval of time 

� � � �
2

1 1 2

d
2

( )
x

x

x
T

x x x x x�
�

� �� , (7.1.5') 

called the period of the motion, the particle returns to the same position 0P  with the 
same velocity; because the position 0P  is arbitrary, while T  does not depend on this 
position, it follows that the motion is periodic. In this case, the function ( )x x t�  given 
by the relation (7.1.4) is a periodic function. 

Figure 7.1.  Rectilinear motion of a particle. 

If the resultant of the given forces depends only on the velocity ( ( )F F v� ), then 
we use the equation of motion written in the form (1.1.89''), obtaining thus 

0
0

d
( )

v

v

m
t t

F
�
�

� � � ; (7.1.6) 

hence, if it is possible, we calculate � �0v x t t�� � �� , wherefrom 

� �
0

0 0 d
t

t
x x t� � �� � �� , (7.1.6') 

the initial conditions (which imply two constants of integration) being also verified, so 
that the problem is solved. If the function �  cannot be determined, then we may write 

0
0

d
( )

v

v

m
x x

F
� �
�

� � � , (7.1.7) 
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being thus led to the parametric representation ( )x x v� , ( )t t v� , where v  is the 
hodographic variable; thus, for any v  with ( ) 0F v � , we may associate to the 
moment t  a position x  of the particle (the velocity of the particle at that moment is 
v ). Assuming that from the relation (7.1.7) we obtain the function 

� �0v x x x� � �� � , it results 

� �0
0

0

dx

x
t t

x
�

�
� �

�� �
, (7.1.7') 

so that we may determine 0 0( ; , )x x t t x� . 
If the force F  depends on two or three of the variables , ,x v t , the problem becomes 

more intricate, and may be solved from case to case. 
If � �0 0; ,x f t x v�  is given, one can enunciate the inverse problem: to determine the 

force F  which leads to such a motion. We obtain thus � �0 0; ,v f t x v� �  and 
� �0 0; ,a f t x v� �� ; eliminating the constants 0x  and 0v , we find the solution of the 

problem � �0 0; ( ; , ), ( ; , ) ( ; , )F mf t x t x v v t x v F t x v� ��� , which is univocally 
determinate. If only a particular motion ( )x f t� , which leads to ( )v f t� � , ( )a f t� �� , 
is known, then the solution of the problem is indeterminate; it becomes determinate if 
we introduce supplementary conditions, e.g., imposing that the force F  do depend only 
on one of the variables t , x  or v . 

1.1.2 Plane motion of a particle 
 Let us suppose that the trajectory of a particle P  is contained in the fixed plane 

0
3 3 constx x� � , parallel to the plane of co-ordinates 1 2Ox x ; in this case, the 

resultant of the given forces F  must verify the condition 3 0F � , hence it must be 
parallel to the same fixed plane (it must be normal to a fixed direction, the same as that 
of the 3Ox -axis). But the latter condition is not sufficient to obtain the mentioned 
trajectory; indeed, the condition 3 0F �  leads to 3 0x ��� , wherefrom 

� �0 0
03 3 3x x t t x� � �� , corresponding to the initial conditions � � 0

03 3x t x� , 
� � 0

03 3x t x�� � . To can obtain the trajectory mentioned above, we must have 0
3 0x ��  

and may state 
Theorem 7.1.2. The trajectory of a free particle is a plane curve if and only if the 
resultant of the given forces acting upon it is parallel to a fixed plane (is normal to a 
fixed direction) and its initial velocity has the same property. 

Obviously, the plane which contains the trajectory (which contains the force F  and 
the initial velocity 0v  too) passes through the initial position of the particle, and the 
equations of motion are reduced to ( 0

3 3x x� ) 

� �1 2 1 2, , , ;mx F x x x x t� ���� � � ,   1,2� � ; (7.1.8) 
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the initial conditions are of the form ( ( )x x t� �� ) 

� � 0
0x t x� �� ,   � � 0

0x t x� ��� � ,   1,2� � . (7.1.8') 

If the functions F�  fulfil certain conditions, the integration of the system of 
equations (7.1.8) may become easier. Such a case is that in which the motions of the 
particles associated to the projections of the particle P  on the two axes in the plane 
may be studied independently, being governed by equations of the form 

� �1 1 1 1, ;mx F x x t��� � ,   � �2 2 2 2, ;mx F x x t��� � . (7.1.9) 

A particular case of a given force parallel to a fixed plane is the force of constant 
direction; the trajectory of the particle is thus in the plane determined by the initial 
velocity and by the direction of the force. Let us suppose that this plane is parallel to the 

1 2Ox x -plane ( 0
3 3 constx x� � ). The equation of motion can be written in the form 

1 0mx ��� , 2 2mx F��� , wherefrom 

� �0 0
01 1 1x v t t x� � � ; (7.1.10) 

in this case, one can eliminate 1x  and 1x�  from � �2 2 1 2 1 2, , , ;F F x x x x t� � � , so that the 
second equation of motion will be given by  

� �2 2 2 2, ;mx F x x t��� � . (7.1.10') 

 
Figure 7.2.  Plane motion of a particle. 

The equations in intrinsic co-ordinates (6.2.19) are of the form (Fig.7.2) 

2 sinmv F ��� ,   
2

2 cosvm F �
�

� , (7.1.11) 

where �  is the curvature radius of the trajectory; we notice also that 

0
1cosv v� � . (7.1.11') 

Eliminating the velocity v  we get 

� �23 0
2 1cos constF m v� � � � ; (7.1.12) 
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in the particular case in which 2 constF � , it results 

3cos const� � � , (7.1.12') 

hence the intrinsic equation of a parabola. 
Assuming that the functions � �0 0 0 0

1 2 1 2; , , ,x f t x x v v� ��  are given, one may 
enunciate the inverse problem: to determine the force F  of components F� , 1,2� � , 
which leads to this motion. We can calculate � �0 0 0 0

1 2 1 2; , , ,v f t x x v v� �� � , 

� �0 0 0 0
1 2 1 2; , , ,a f t x x v v� �� �� ; eliminating the constants of integration 0 0 0 0

1 2 1 2, , ,x x v v , we 
find the solution � �1 2 1 2; , , ,F F t x x v v� �� , 1,2� � , of the problem, which is 
univocally determinate. As in the previous subsection, if only one particular motion is 
known, then the solution of the problem is indeterminate; one must introduce 
supplementary conditions to obtain a determinate solution. 

For instance, assuming that the trajectory of the particle is expressed in the form 
� �2 1x f x� , the force F  which acts upon this particle being parallel to the 2Ox -axis, 

we may write 

� � � � � � � �" #20
2 1 1 1 2 1 2 2 1, , , ;F m v f x G x x x x t x f x��� � �� � , (7.1.13) 

where G  is an arbitrary function of class 0C  (as in Chap. 6, Subsec. 1.1.4); the 
indetermination of the solution of the second basic problem is thus obvious. 

More general, we may consider the motion of a particle P  the projection of which 
(we assume that to each projection we associate a particle of the same mass as the 
particle P , but – for the sake of simplicity – we mention it no more) on a plane and on 
an axis non-parallel to that one or on three non-coplanar axes may be studied 
independently (as plane or rectilinear motions, respectively). 

1.2 Motion of a heavy particle 
In what follows, we consider first of all the general motion of a heavy particle in 

vacuum or in a resistent medium; the results thus obtained will be then particularized 
for the case of a rectilinear trajectory. Analogously, we present the study of the motion 
of a heavy particle constrained to stay on a curve or on a plane. 

1.2.1 Motion of a heavy particle in vacuum 
In the preceding subsection we have considered the motion of a particle acted upon 

by a force of constant direction. In particular, it is interesting to assume that the 
magnitude of the force is constant in time too; we will thus study the motion of a heavy 
particle P  (the motion of a particle in the gravitational field of the Earth), of mass m , 
in vacuum. The equation of motion reads ���r g , where g  is the gravity acceleration, 
so that 

� � � �2
0 0 0 0

1
2
t t t t� � � � �r g v r ,   � �0 0t t� � �v g v , (7.1.14) 
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where we took into account the initial conditions 

� �0 0t �r r ,   � �0 0t �v v ; (7.1.14') 

these results correspond to the formulae (5.1.35), which specify the motion of a particle 
of constant acceleration. As we know, the trajectory is a plane curve; indeed, the vector 

0�r r  is a linear combination of the constant vectors g  and 0v . Without any loss of 
generality, we may suppose that 0 0t � , 0 �r 0 , so that 

2
0

1
2
t t� �r g v ,   0t� �v g v ; (7.1.14'') 

hence, we obtain the remarkable relations 

� �2
0

1 1
2 2
t t t� � � � �r g v v v . (7.1.14''') 

We assume that 0 �v 0  and that it has not the same support as g ; in this case, the 
velocity v  cannot vanish, while the second relation (7.1.14''') allows to determine the 
velocity of the particle P  by a simple drawing if its position is known or allows to 
determine graphically its position if its velocity is known. 

Figure 7.3.  Motion of a heavy particle in vacuum: Cauchy problem (a); bilocal problem (b). 

Projecting the equations (7.1.14'') on two orthogonal axes in the plane 1 2Ox x  (we 
take 2g� �g i , � �0 0 1 2cos sinv � �� �v i i , /2 /2� � �� � � ), we obtain the 
parametric equations of the trajectory (Fig.7.3,a) 

01 cosx v t �� ,   2
02

1 sin
2

x gt v t �� � � , (7.1.15) 

wherefrom, eliminating the time t , we may write 

2
2 1 12 2

0
tan

2 cos
gx x x

v
�

�
� � � ; (7.1.15') 
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hence, the trajectory of the particle P  is a parabola, as it was shown in Subsec. 1.1.2 
and in Chap. 5, Subsec. 1.3.1. The velocity of the particle at a given moment is given by 

01 cosv v �� ,   02 sinv gt v �� � � , (7.1.16) 

so that 

2
0 02

cos2
cos

v v gx v �
�

� � � , (7.1.16') 

where we took into account the formula (7.1.11') too. Choosing the angle �  as 
generalized co-ordinate, taking into account (7.1.15), (7.1.16') and eliminating the time 
t , we may write 

� �
2 2
0

01
cos

tan tan
v

x
g

� � �� � � ,   

� �
2 2
0 2 2

2
cos

sec sec
v

x
g

� � �� � � . 
(7.1.15'') 

The potential of the conservative force mg  is 2U mgx� � , so that we may write the 
conservation theorem of mechanical energy in the form 

2

22
vm mgx h� � � ,   consth � ; (7.1.15''') 

we find thus again the expression (7.1.16') of the magnitude of the velocity. 
If 0� � , then we obtain the basic problem of ballistics in the case in which the 

friction with the air is neglected. The particle (eventually, a projectile) reaches the 
highest point P  of the trajectory for 2 0v � , hence at the moment 

� � 0
0 2/ sin /t v g v g�� � ; the co-ordinates of this point are 

0 0 0
2 1 22

1 sin
2
v v v

x
g g

�� � ,   
� �202

20 2
2 sin

2 2
vv

x
g g

�� � , 
 

and we find again Torricelli’s formula (5.1.37) in the form 

0
2 2v gh� ,   2h x� . (7.1.17) 

We obtain thus the component 0
2v  of the velocity by which we may launch the 

projectile to reach the height h ; because the angle �  is not involved in the formula, 
one states that it remains valid for the motion on a vertical line ( /2� �� ) too. The 
formula (7.1.16') may be written also in the form � �2 2

0 22 /2v g v g x� � ; we may thus 
state that the magnitude of the velocity at a given moment is equal to that of a falling 
particle, without initial velocity, from the height 2

0 /2v g . 
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If 0� � , then the particle departs from a point on the decreasing branch of the 
parabola. 

The point 1P  of abscissa � �2
012 / sin2x v g ��  is the most distant point reached by 

the projectile on a horizontal plane, at the moment 2t , the magnitude of the velocity 
being the same as that at the initial moment; the range of the throw is maximal for 

/4� �� , i.e., 2
01max2 /x v g� . If we wish to reach a point 1P  of abscissa 12x , then 

the initial conditions must verify the relation 2
0 1sin2 2v gx� �  (a bilocal problem). To 

the same magnitude 0v  of the initial velocity there correspond two angles: /4� ��  
and /2� ��  (symmetric with respect to the angle /4� , because /4� ��  

� �/2 /4� � �� � � ) under which one may reach the same point 1P  (Fig.7.3,b); in 
particular, if 0 12v gx� , then we have /4� �� . To the two shooting angles there 
correspond the shooting heights � �2 2

0 /2 sinh v g ��  and � �2 2
0 /2 cosh v g �� . 

The projectile passes through the point � �1 2,P � �  if the condition 

2 2
1 12

1 22 2
0 0

tan tan 0
2 2
g g
v v
� �� � � �� � � �  

 

is fulfilled; as in the particular case considered above, one may reach the point P  
shooting a projectile under two angles specified by 

22
0 1

22 2
1 0 0

2
tan 1 1

2
gv g

g v v
�� �

�
$ %� �

� 2 � �* +	 

� �& '

. (7.1.18) 

To reach a point P  by a projectile, that one must be in the interior of the safety 
parabola (Fig.7.3,a) 

2
02

2 12
0 22

vgx x
gv

� � � , (7.1.18') 

which passes through the points � �2
max 00, /2P v g  and � �2

01max / , 0P v g ; no point in 
the exterior of this parabola may be reached by an initial velocity of magnitude 0v . 
This parabola is the envelope of the family of trajectories (7.1.15') for 0 constv �  and 
�  variable. 

The semilatus rectum of the parabola (7.1.15') is � �2 2
0 / cosp v g �� , so that the 

locus of the focus � � � �� �2 2
0 0/2 sin 2 , /2 cos2F v g v g� ��  is the quarter of circle 

(Fig.7.3,a) 

4
02 2

1 2 24
v

x x
g

� � , (7.1.19) 
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the centre of which is the origin and which passes through the point maxP ; all these 
parabolas have as directrix a parallel to the 1Ox -axis of equation 2

02 /2x v g� , which 
passes through the vertex of the safety parabola. The locus of the vertices of the 
trajectories (7.1.15') is the ellipse (Fig.7.3,a) 

2
02 2

1 2 2
2

4
v

x x x
g

� � , (7.1.20) 

the minor axis of which is maxOP , the major axis being parallel to the 1Ox -axis (the 
half of it is equal to 2

0 /2v g ). 

1.2.2 Motion of a heavy particle in a resistent medium 
In the case of a particle P  which is moving in a resistent medium, besides the given 

force (eventually, the gravity force) intervenes also a force R , called resistance, 
corresponding to the resistance of the medium; under the action of the forces F  and 
R , the particle moves as a free one. As a matter of fact, the force R  is the resultant of 
superficial actions (pressure and friction) on the body, which may be modelled as a 
particle. Such a body is, for instance, a projectile in motion, which has a spherical form 
and is not subjected to rotations; from the point of view of the mathematical modelling, 
the projectile is reduced to its centre of gravity. The resistent medium may be the air, 
the influence of which cannot be – in general – neglected; the respective problems form 
the so-called external ballistics. It is assumed that the force R  has the same support as 
the velocity v , but is of opposite direction. The magnitude of this force depends – 
especially – on the magnitude v  of the velocity; one may conceive also a dependence 
on the density or on the pressure of the air, on the absolute temperature, on the form of 
the projectile etc. (e.g., after Langevin, � �/R apf v T� , consta � , where p  is the 
pressure of the air, while T  is the absolute temperature). We will suppose that 

( )versmg v�� �R v ,   (0) 0� � ,   lim ( )
v

v�
��

� � , (7.1.21) 

where ( )v�  is a strictly increasing function (the resistance of the air increases together 
with the velocity v ); there exists – obviously – a value vD  and only one for which 

( ) 1v� D � . 
Returning to the demonstration in Subsec. 1.1.1, we notice that the trajectory of the 

particle is rectilinear, e.g., parallel to the 1Ox -axis, of equations 0
2 2 constx x� � , 

0
3 3 constx x� � , if 2 3 0F F� � , as it results from the equations 

( )i i imx F mg v x�� ��� � ,   1,2, 3i � ,   ( ) ( )/v v v� �� .  

But these conditions imposed to the force F  lead to ( ) 0k kmx g v x�� ��� � , wherefrom 

0
( ( ))d0e

t

t
g v

k kx x � � �� ��� � ,   2,3k � ; 
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the trajectory coincides with that imposed if and only if 0 0kx �� , so that we may state 
Theorem 7.1.1'. The trajectory of a free particle in a resistent medium, modelled by the 
relation (7.1.21), is rectilinear if and only if the resultant of the given forces acting 
upon it has a fixed direction, and its initial velocity has the same direction. 

Analogously, proceeding as in Subsec. 1.1.2, we obtain 
Theorem 7.1.2'. The trajectory of a free particle in a resistent medium, modelled by the 
relation (7.1.21), is a plane curve if and only if the resultant of the given forces acting 
upon it is parallel to a fixed plane (is normal to a fixed direction), and its initial 
velocity has the same property. 

In the case of a heavy particle P  in a resistent medium, the equation of motion is 

( )g v�� ��� �r g r , (7.1.22) 

where we assume that – in general – the initial velocity 0v  is not directed along the 
vertical of the position of launching ( 0v  has not the same direction as g ); 
corresponding to the Theorem 7.1.2', the trajectory is a plane curve (contained in a 
vertical plane). Using Frenet’s trihedron, we may write 

" #sin ( )v g v� �� � � ,   
2

cosv g �
�

� , (7.1.22') 

 
Figure 7.4.  Motion of a heavy particle in a resistent medium. 

where �  is the angle made by the velocity v  with the 1Ox -axis. We notice that 
cos 0� � , hence /2 /2� � �� � � ; the concavity of the trajectory is directed 
towards the negative ordinates (Fig.7.4), so that to d 0s �  corresponds d 0� �  (the 
angle �  is decreasing). It follows d /d d /ds v t� � �� � � � , so that the second 
equation (7.1.22') takes the form 

cosv g� �� �� . (7.1.22'') 
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We have thus obtained a system of two differential equations (7.1.22'), (7.1.22'') for the 
unknown functions ( )v v t�  and ( )t� �� , with the initial conditions � �0 0v t v� , 
� �0 0t� �� . Eliminating the time t , we may write the equation 

( )d tan
d cos

vv v
�

�
� �

$ %� �* +& '
, (7.1.23) 

which defines the function ( )v �  with the initial condition � �0 0v v� � . This equation 
of the hodograph of motion, which can be written also in the form 

d( cos )
( )

d
v

v v
�

�
�

� , (7.1.23') 

is the basic equation of the external ballistics. The equation (7.1.22'') allows then to 
determine (usually, one takes 0 0t � ) 

0
0

1 d
cos
vt t

g
�

�

� �
�

� � � , (7.1.23'') 

wherefrom  – afterwards – we may obtain ( )t� �� . Noting that 1d cos dx v t�� , 

2d sin dx v t�� , there result the parametric equations of the trajectory in the form 

0

0 2
1 1

1 ( )dx x v
g

�

�
� �� � � ,   

0

0 2
2 2

1 ( )tan dx x v
g

�

�
� � �� � � , (7.1.23''') 

where we take 0 0
1 2 0x x� �  if the particle (the projectile) is launched from the origin 

O . In the case of an object launched from an airplane at the height h  we take 0
1 0x � , 

0
2x h� ; the initial velocity 0v  is the velocity of the airplane at the moment of 

launching the object. 
From the second equation (7.1.22') one observes that ( �  is only decreasing and 

greater than /2��  for t  finite, hence cos 0� � ) the velocity v  is finite and non-
zero. An extreme value of v  is given by d /d 0v t � ; we obtain thus ( ) sinv� �� � . 
Because the velocity v  is finite, from (7.1.22'') it follows that �  has an extreme value 
for d /d 0t� � , hence for cos 0� � ; but the angle �  is decreasing, so that we have 
lim /2
t

� �
��

� � . We notice that for v vD� , � � 1v� D � , we have 0v �� , the function 

( )v�  being monotone decreasing. Hence, the velocity v  has an inferior limit ( 0v � ) 
and a superior one (v vD� ). The trajectory has a vertical asymptote 1 1x x� , with 

0

2

2
1 1

0
2

1lim ( )dx x v
g �

�

��
� �

��� �
� � � , (7.1.24) 
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and the corresponding velocity is given by 
/2 0

lim ( )v v
� �

� D
�� �

� . Because of the 

resistance of the air, we notice that the range of throw of the projectile is smaller. 
Besides, for two points P  and P �  of the trajectory, which have the same ordinate 2x , 
it results � � �� ; hence, the two branches (increasing and decreasing) of the 
trajectory are not symmetric. Applying the theorem of kinetic energy, we may write 
� �2

2d /2 d ( ) dmv mg x mg v v t�� � � , so that, integrating between the points ( )P t  
and ( )P t� � , we obtain 

� � " #2 21 ( ) ( )d 0
2

t

t
v v g v v� � � �

�
� � � � �� ,  

wherefrom 0v v �� � . 
Modelling the projectile as a rigid solid, one can take into account also its rotation, 

being led to a deviation from the vertical plane of the trajectory. 
In particular, d’Alembert has considered the law of resistance ( ) nv v� �� , 0n � , 

�  being a positive constant with dimension. The equation (7.1.23') leads to 

1

1
( cos )d ( cos )

d cos

n

n
v

v
� �

�
� �

�

�� ; 
 

integrating, we get 

" # � �, -
0 0

1/
0 0 0

cos
cos

1 ( ) ( ) cos nn
n n

v
v

n v

��
� � � � � �

�
� �

, (7.1.25) 

where we have introduced the integral 

0 1
d( )

cos
n n

� �� �
��� � . (7.1.25') 

For small velocities, one can use Stokes’ law ( 1n � ); thus, we obtain 1 ( ) tan� � �� , 
so that 

� �
0 0

0 0

cos
( )

cos sin
v

v
v

��
� � � �

�
� �

. (7.1.25'') 

For velocities till 250 m/s one may take 2n � , obtaining Euler’s law; we notice that 

� �2
1 tan

( ) ln tan
2 cos 4 2

� � �� �
�

$ %� � �* +& '
. (7.1.26) 

Let us consider now n � � ; for n  odd ( 2 1n p� � ), we have 
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1
2 1 2 2 1

1

2 ( 1)( 2)...( )sin( ) sec sec
2 1 (2 3)(2 5)...(2 2 1)

p k
p p k

n
k

p p p k
p p p p k

�� � � �
�

� � �

�

� � �$ %
� �* +� � � � �& '

 , 

 (7.1.26') 

while for n  even ( 2n p� ) we may write 

1
2 2 2

1

(2 1)(2 2)...(2 2 1)sin( ) sec sec
2 2 ( 1)( 2)...( )

p
p p k

n k
k

p p p k
p p p p k
�� � � �

�
�

�

� � � �$ %
� �* +� � �& '

  

� �(2 1)!!
ln tan

2 ! 4 2p
p
p

� ��
� � . (7.1.26'') 

The velocity ( )v �  is then easily given by the formula (7.1.25), obtaining the time t  
and the parametric equations of the trajectory from the formulae (7.1.23''), (7.1.23'''). 

Legendre considers the resistance law ( ) nv v� � �� � , where , , 0n� � � , while 
1� �  (otherwise, the particle – without initial velocity – comes against a resistance 

mg�  and can no more fall); also in this case, the problem may be solved by 
quadratures. 

We observe that, by the substitution " #sin ( ) 1/v v y� �� � , the equation (7.1.23) 
reads 

2 3 2d ( )d ( ) 1 2 ( )
d d

vy v v y v v y
v v

�
� �$ %� � � �$ %& ' * +& '

; (7.1.27) 

Drach has determined all the forms of the function ( )v�  for which the solution of this 
equation may be obtained by quadratures. 

1.2.3 Rectilinear motion of a heavy particle 
If, in the motion of the heavy particle P  considered above, the initial velocity 

vanishes ( 0 �v 0 ) or is collinear with g , then the trajectory is rectilinear (along the 
local vertical). Taking the Ox -axis along the direction of the gravity acceleration g , 
the equations (7.1.14) become 

� � � �2
0 0 0 0

1
2

x g t t v t t x� � � � � ,   � �0 0v g t t v� � � , (7.1.28) 

for the motion in vacuum, with the initial conditions � �0 0x t x� , � �0 0v t v� ; taking 

0 0t �  and 0 0x � , we may write 

2
0

1
2

x gt v t� � ,   0v gt v� � , (7.1.28') 

without loosing anything from the generality. 
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Eliminating the time t  between the equations (7.1.28), we obtain the relation 
between the velocity v  and the co-ordinate x  in the form 

� �2
0 02v v g x x� � � , (7.1.28'') 

corresponding to Torricelli’s formula (7.1.17). A particle which is falling with the 
initial velocity 0v  from a height h  (in this case 0 0x x� � ) comes down with the 

velocity 2
0 2v v gh� �  after an interval of time � � � �2

0 0/ 1 2 / 1v g gh v� � . A 

particle which is thrown up with the initial velocity 0v  (in this case 0 0x x� � ) attains 
the height 2

0 /2h v g�  after an interval of time 0 /v g ; after another interval of time 

0 /v g , the particle comes back to the initial position with the same velocity 0v . 
In the case of a resistent medium, it is convenient to distinguish between the 

descendent and the ascendent motion along the local vertical. In the first case, if we 
assume an initial velocity 0 0v � , with the same direction as the Ox -axis, then the 
equation (7.1.22) leads to 

" # " #1 ( ) ( ) ( )v g v g v v� � �D� � � �� , (7.1.29) 

the velocity vD  being introduced in the previous subsection. It results that 

0
0

d1
( ) ( )

v

v
t t

g v
�

� � �D� �
�� , (7.1.29') 

and we may obtain ( )v v t� ; noting that d dx v t� , we get also 

0
0

d1
( ) ( )

v

v
x x

g v
� �

� � �D� �
�� . (7.1.29'') 

If 0v vD� , then ( ) ( )v v� �D �  is positive at the beginning, while the equation (7.1.29) 
shows that the velocity v  increases. From (7.1.29') we notice that for v vD�  we have 
t � � , so that vD  is a superior limit for the velocities; hence, the velocity v  increases 
till this limit. Analogously, if 0v vD� , then the velocity v  decreases till the limit value 
vD  (in this case 0v �� ). We may thus state that, for any initial velocity 0v , the particle 
falls with a velocity which tends to become uniform (tends to vD  for t � � ); if 

0v vD� , then the motion of the particle is uniform. 
If a heavy body, which may be modelled by a heavy particle, is launched by a 

parachute, then the velocity is – at the beginning – increasing (a motion approximately 
uniform accelerated, as in vacuum, the resistance of the air being negligible); when the 
parachute is opening, the resistance of the air increases very much and the falling 
velocity tends to vD  (a motion approximately uniform). As well, let us consider two 
equal bodies (e.g., two whole spheres, of the same radius, but of different matter), 
modelled by two particles of masses 1m  and 2m ; at equal velocities, these bodies come 
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against the same resistance of the air. Hence, 1 1 2 2( ) ( )m g v m g v� �� , where 1 ( )v�  
and 2 ( )v�  are the functions corresponding to the forces 1 2�R R . Observing that 

1 1 2 2( ) ( ) 1v v� �D D� �  and making 1v vD� , we may write 1 1( )v� D  
� �2 1/m m� 2 1( )v� D 1� , so that 2 1 1 2( ) /v m m� D � ; hence, if 1 2m m� , then it 

results 2 1 2 2( ) ( ) 1v v� �D D� � , so that 1 2v vD D� . We may thus state that the heaviest 
particle has a limit velocity of falling in the air greater than that of the lighter one. 

If the motion is ascendent and if we assume an initial velocity 0 0v �  directed in the 
same direction as the Ox -axis (taken in the opposite direction of the gravity 
acceleration g ), then the equation (7.1.22) reads 

" #1 ( )v g v�� � �� ; (7.1.30) 

we find thus 

0
0

d1
1 ( )

v

v
t t

g
�
� �

� �
�� ,   

0
0

d1
1 ( )

v

v
x x

g
� �
� �

� �
�� . (7.1.30') 

The particle attains a height 

0

0

1 d
1 ( )

v v vh
g v�

�
�� , (7.1.30'') 

after an interval of time 

0

0

1 d
1 ( )

v vt
g v�

�
�� . (7.1.30''') 

If ( ) 0v� � , then we notice that one obtains greater values for h  and t  (the integrand 
will be greater); hence, a heavy particle launched up along the vertical, with an initial 
velocity 0v , reaches in the air a smaller height in a shorter time as in the vacuum. 
After an interval t  of time, the particle stops and then comes down, as in the previous 
considerations, and – by coming down – has an initial zero velocity (hence, smaller than 
vD ). The particle reaches the initial position with a velocity 0v , specified by the 
relation 

0

0

1 d
1 ( )

v v vh
g v�

�
�� , 

 

as it results form (7.1.29''); comparing with the relation (7.1.30''), in which the integrand 
is smaller, we notice that 0

0v v� , so that in the air the falling velocity is smaller than 
the launching one. One returns to that position after an interval of time 

0
0

0

1 d
1 ( )

v vt
g v�

�
�� . 
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To compare with the relation (7.1.30'''), we observe that 

0

0

d1d
1 ( )
v

t
g v�

�
�

,   
0

0
0

1 dd
1 ( )
vt

g v�
�

�
; 

 

as well 

0 0
0 0

0
0

d1 1 dd
1 ( ) 1 ( )
v v v vh

g v g v� �
� �

� �
. 

 

We get 

� � � �0 00
0

0

d1d 1 0
1 ( )

v v
t t

g vv �
� � � �

�
, 

 

so that 0t t�  (because for 0 0v �  we have 0 0t t� � ); hence, in the air, the 
falling time is greater than that of rising (for the same height h ). 

The integrals may be easily calculated for ( ) nv v� �� , n � � , 0n � , �  positive 
constant. 

1.2.4 Motion of a heavy particle constrained to stay on a curve 
Let P  be a heavy particle constrained to move on a fixed curve C , neglecting the 

resistance of the air; assuming that the Ox -axis is directed along the local vertical, 
opposite to the gravity acceleration, we may write the conservation theorem of 
mechanical energy in the form 

2

2
vm mgx h� � � ,   consth � , 

 

wherefrom 

2 2 ( )v g a x� � ,   h
a
mg

� . (7.1.31) 

Let be the plane �  of equation x a�  and P �  the projection of the particle P  on this 
plane; the velocity of the particle P  is, in this case, given by 

2v gh� ,   h PP �� , (7.1.31') 

and is equal to that of a heavy particle which falls from P �  in P , without initial 
velocity. 

Let us suppose that the curve C  is closed. If the curve does not pierce the plane � , 
that one being above it (we may assume to have an initial velocity 0v  for any initial 
position 0P  of applicate 0x , so that 2

0 0 /2a x v g� �  be as great as we wish), then the 
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formula (7.1.31') shows that the velocity does never vanish; the motion is periodic, the 
point of maximal applicate having the minimal velocity, while that of minimal applicate 
has the maximal one. 

If the velocity 0v  is not sufficient great, the plane pierces the curve C  at the points 
P  and P �  (Fig.7.5). We suppose that the particle is launched from the point 0P  of 
minimal applicate 0x  with the initial velocity 0v ; it reaches the point P  after an 
interval of time 

0

1 d
2

a

x

sT
a xg

�
�� , (7.1.32) 

where d ds v t�  is the element of arc on the arc 0P P . If the tangent at P  is not 
horizontal, then the particle returns at 0P  in a time T  with the velocity 0v  and then 
reaches P �  in a time T � , which is calculated by the same formula (7.1.32), ds  being 

an arc element on the arc 0P P � . Hence, the motion of the particle is oscillatory between 
the points P  and P � , each simple oscillation being of duration T T �� . 

Figure 7.5.  Motion of a heavy particle constrained to stay on a curve. 

Let us consider now that the motion of the particle is with friction in a resistent 
medium; for the sake of simplicity we assume that the curve C  is situated in a vertical 
plane. We choose an origin O �  for the curvilinear co-ordinate s . As well, we introduce 
the normal constraint force N , the tangential constraint force versfN� �T v , where 
f  is the sliding friction coefficient, and the resistance ( )versmg v�� �R v . The 
equations of motion in intrinsic co-ordinates are written in the form 

" #sin ( )mv mg v fN� �� � � �� ,   
2

cosvm N mg �
�

� � , (7.1.33) 
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where �  is the curvature radius, while �  is the angle formed by the tangent to the 
curve C  with the horizontal line. Eliminating the constraint force N  between the two 
equations and noting that � �22 d /dv v s�� , we obtain the equation 

� �
" #

2 2d
2 sin cos ( ) 2

d
v vg f v f
s

� � �
�

� � � � � , (7.1.33') 

which determines the unknown function ( )v v s� ; then one may calculate s  and t  by 
quadratures. The points on the curve for which  

sin cos sin( )/ cos 0f� � � � �� � � �   

hence for which � �� , where �  is the angle of sliding friction, represent limit 
positions of equilibrium for the particle. 

1.2.5 Motion of a heavy particle constrained to stay on a plane 
Let be a heavy particle P  situated on a plane �  which makes the angle 

0 /2� �� �  with the horizontal plane (Fig.7.6). Assuming a sliding friction of 
coefficient tanf �� , the force of friction is � , fN� � , where N  is the constraint 
force, normal to the plane; taking into account the condition (4.1.50) and observing that 
the given force has the magnitude F mg�  and the normal component 

cosnF mg �� � , it results the condition of equilibrium 2 2cos cos� �� . Hence, if 
the angle �  is at the most equal to the angle of friction, then the particle is in 
equilibrium in any position. 

 
Figure 7.6.  Motion of a heavy particle constrained to sliding friction on a plane. 

If the particle is in motion and the mentioned condition is not fulfilled, then its 
position will be given by the equation 

m m fN
v

� � ��� vr g N ,   cosN mg ��  (7.1.34) 
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in the plane 3 0x � ; choosing the axes 1Ox  (the intersection of the plane �  with the 
horizontal one) and 2Ox  in this plane, we obtain 

1 cos sin cos cosx v v fg� � � � �� � � ����� , 

2 sin cos sin cos sinx v v g fg� � � � � �� � � � ����� , 

 

where �  is the angle made by the velocity v  with the 1Ox -axis. It results 

cos sin sinv fg g� � �� � �� ,   sin cosv g� � �� �� ,  

wherefrom 

� �d cottan
d cos
v fv ��
� �
� � ; (7.1.34') 

this equation is of the form (7.1.23) and it may be analogously studied. Noting that 
cot constf � � , we get 

� � � � cot
0

0 0cos cos tan cot
4 2 4 2

f
v v

��� � �� � $ %� � �* +& '
 (7.1.34'') 

and then 

0

0 2
1 1

1
( )d

sin
x x v

g
�

�
� �

�
� � � ,   

0

0 2
2 2

1
( )tan d

sin
x x v

g
�

�
� � �

�
� � � , (7.1.34''') 

with 0/2� � �� � � . We notice that 

 

/ 2 0

for  cot 1,
lim

0  for  cot 1,

f
v

f� �

�

��� �

� ����  ��!
 

 

assuming that 0 /2� �� . 
In the case of a horizontal plane ( 0� � ) it results 0� �� , hence 0� �� ; the motion 

is rectilinear and uniformly delayed. The equation (7.1.34) can be decomposed in two 
equations 

m fN
v

� �� vv ,   m � �g N 0 , (7.1.35) 

as the vectors are contained in the � -plane or are normal to this one. There results 
N mg�  and the velocity 

0
d

( )0e
t

t

fg
v

�
�

� ��v v , (7.1.35') 
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a confirmation that the trajectory is rectilinear. Choosing this trajectory as Ox -axis, we 
obtain 

� �0 0v fg t t v� � � � ,   � � � �2
0 0 0 02

fgx t t v t t x� � � � � � ,   

0
0 0

v
t t t t

fg
D� � � � , 

(7.1.35'') 

where the time tD  is given by the condition � � 0v tD � ; timing the time tD , one may 
obtain – experimentally – the coefficient of sliding friction f . After a time 0t tD � , the 
particle travels through the distance 2

0 /2l v fg� ; inversely, measuring l  one 
determines the initial velocity  

0 2v fgl� . (7.1.35''') 

We may thus estimate the velocity of a car if we know the braking distance l . 
If the initial velocity vanishes ( 0 0v � ), then it results 3 /2� �� , so that the 

sliding of the particle on the inclined plane takes place along the line of greatest slope, 
the trajectory being rectilinear; using the above equations, the acceleration at a given 
moment is specified by (along the 2Ox -axis) 

2
sin( )

cos
a g

� �
�
�

� � . 
 

Figure 7.7.  Motion of a heavy particle constrained to sliding friction on an inclined plane: 
motion continues on a horizontal plane (a); motion continues on  

an inclined plane (b); silo’s problem (c). 

Applying the theorem of kinetic energy in a finite form (6.1.48''), we obtain the velocity 
at the point B , assuming that the body, modelled as a particle, departs from A  without 
initial velocity (Fig.7.7,a); noting that 

0AT � ,   21
2B BT mv� ,   

sin( )
(sin cos )

sin sin cosAB
h

W mg f mgh
� �

� �
� � �

�
� � � , 

 

it follows 
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sin( )
2

sin cosBv gh
� �
� �

�
� . (7.1.36) 

In the absence of frictions, 2Bv gh� , as in the case of a free falling along the 
vertical (Torricelli’s formula). Applying further the theorem of kinetic energy, we see 
that the body moves on the horizontal line till the point C , so that (Fig.7.7,a)  

sin( )
sin sin

BC h
� �
� �

�
� ; (7.1.36') 

in the case of vanishing friction, C  tends to infinity. If the plane BC  makes the angle 
�  with the horizontal line, the body moves till the height 2h , given by (Fig.7.7,b) 

2 1 1
sin sin( )
sin sin( )

h h h
� � �
� � �

�
� �

�
; (7.1.36'') 

in the case in which the friction is vanishing, we have 2 1h h� . This is the problem of 
the sledge. If, from the point B , the particle is falling freely till the point C  (the 
problem of the silo, Fig.7.7,c), then the motion takes place along a parabola, so that 

2
2 2 2

1 tan
2 cosB

gh B C B C
v

�
�

� �� � . (7.1.36''') 

1.3 Pendulary motion 

As we have seen in Subsec. 1.2.4, a heavy particle constrained to stay on a fixed 
curve has an oscillatory motion; such a motion is called also a pendulary motion. In 
what follows, we consider the case of a curve in a vertical plane, in particular the case 
in which the curve is a circle, an ellipse or a cycloid; we study then the general case of 
motion, as well as the case of small displacements in the neighbourhood of a stable 
position of equilibrium. Starting from the motion of a heavy particle on a surface of 
rotation, we present the general problem of the spherical pendulum too. 

1.3.1 Simple pendulum 
A simple pendulum (or mathematical pendulum) is a heavy particle which moves 

without friction on a circle C  of radius l , situated in a vertical plane. The constraint 
may be bilateral (e.g., a ball modelled as a particle constrained to move in the interior of 
a circular tube (Fig.7.8,a) or a ball linked to the centre O  of the circle by an 
inextensible and incompressible bar OP , of negligible mass with respect to that of the 
particle (Fig.7.8,b)) or unilateral (e.g., a ball linked to the centre O  by an inextensible 
and perfectly flexible thread (Fig.7.8,c) or a ball constrained to move on a whole 
cylinder, which has a horizontal axis (Fig.7.8,d)). 

If we choose the Ox -axis in the same direction as that of the gravity acceleration g  
(Fig.7.9), then the theorem of kinetic energy in finite form, applied between the points 

0P  and P , allows to write 
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2 2 2
0 0 0 02 ( ) 2 (cos cos ) 2 ( )v v g x x v gl g a x� �� � � � � � � � � ,   

2
0

0 2
v

a x
g

� � , 
(7.1.37) 

 
Figure 7.8.  Motion of a heavy particle constrained to stay on a circle in a vertical plane: bilateral 

constraint (a,b); unilateral constraint (c,d). 

where 0 0v l�� �  is the modulus of the initial velocity (for the sake of simplicity, we will 
say the initial velocity) at the point 0P  (corresponding to the results in Subsec. 1.2.4). 
The equation x a�  is that of a straight line which may be reached by a particle 
launched up, along the local vertical, with the initial velocity 0v ; the motion is 
characterized by the constant a  in the case of a bilateral constraint. Indeed, if the 
straight line x a�  pierces the circle C  ( l a l� � � ), then the motion is oscillatory, if 
this line is tangent to the circle (a l� � ), then the motion is asymptotic, while if the 
line does not pierce the circle (a l� � ), then the motion is circular. We notice that for 
a l�  we have 0 0v � , corresponding a stable position of equilibrium; we cannot have 
a l� . From (7.1.37) it results that the velocity v l�� �  may vanish for an angle given 
by 2

0 0cos cos /2v gl� �� �  or by � �2 2 2
0 0sin ( /2) sin /2 /4v gl� �� � . This 

condition can never be satisfied if 2
0 4v gl�  (or 2 2

0 4� ��� , 2 /g l� � ), the motion 
being circular. If 2

0 4v gl� , then the condition may be fulfilled for some values of the 
angle 0� , hence for some initial positions, e.g., for 0 0� � ; in this case, the motion is 
oscillatory. If 2

0 4v gl� , then we must have 0 0� � , the motion being asymptotic. 
First of all, let us suppose that the motion is oscillatory; we denote cosa l �� , 

where 0 � �� �  is the angle corresponding to the limit position P  (for which 
0v � ) of the particle P , specifying thus the amplitude of the motion. The relation 

(7.1.37) becomes 
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2 22 (cos cos )� � � �� �� ; (7.1.38) 

differentiating with respect to time, we may also write (we suppose 0� �� ) 

2 sin 0� � �� ��� . (7.1.38') 

This equation (called the equation of the mathematical pendulum) is often encountered 
in problems of mechanics in one of the two equivalent forms mentioned above; in fact, 
the relation (7.1.38) corresponds to a first integral of the equation of motion (7.1.38'). 

The particle departs from the initial position 0P  with the velocity 0v  and travels up 
on the circle with a velocity which diminishes in intensity; at the extreme position P , 
the velocity vanishes. Returning on the travelled arc of circle, the velocity increases; the 
particle passes through the initial position 0P  and reaches the lowest point P �  of the 
trajectory, where it has the maximal velocity; then the velocity decreases till the particle 
reaches the point P �  for which � �� � . The particle returns then to P �  and P  a.s.o. 
Hence, the motion is oscillatory. From the relation (7.1.38), we also notice that the 
velocity ( )v t  depends only on the position of the particle, being a periodic function of 
this position (of angle � ); integrating this equation with separate variables, we may 
write (during the motion we have cos cos� �� ) 

0
0 1 d

2 cos cos
t t

�

�

�
� � �

� �
�� , (7.1.39) 

where 0�  corresponds to the position at the arbitrary moment 0t  (which may be 
different from the initial moment 0t ). Hence, one can see that the interval of time 

0t t�  depends only on the positions corresponding to the two moments; it results that 
the oscillatory motion is periodical, of period T . We notice too that changing the 
direction of motion on the arc of circle the sign of the velocity changes; its modulus 

remains the same when passing through the same point, so that the arc PP �  is travelled 
through in an interval of time /2T . Because the relation (7.1.38) is even with respect 
to � , it results that, at points symmetric with respect to the Ox -axis, we have the same 

velocity (travelling up or down); hence, the arc P P�  is travelled through in a quarter of 
period. In this case, the period T  is given by the relation 

0

2 2 d
cos cos

T
� �

� � �
�

�� . (7.1.39') 

Observing that 2 2cos cos 2 sin ( /2) sin ( /2)� � � �� � �$ %& '  and denoting 
sin( /2)� sink �� , sin( /2)k �� , we may write 

0
0

2 2

1 d
1 sin

t t
k

�

�

�
� �

� �
�� , (7.1.40) 
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where 0�  is specified by the relation � �0 0sin /2 sink� �� ; denoting sin z� � , we 
may also write 

� � � �0
0

2 2 2

d1
1 1

z

z
t t

k
�

� � �
� �

� �� , (7.1.40') 

where 0z  is specified by the relation 0 0sin z� � . Introducing, after Legendre, the 
elliptic integral of the first kind 

� � � �
sin

2 2 2 2 20 0

d d( , )
1 sin 1 1

zF k
k z k z

� ���
�

� �
� � �� � , (7.1.41) 

where �  is the amplitude, while k  is the modulus of the integral, we obtain 

" #0 01 ( , ) ( , )t t F k F k� �
�

� � � . (7.1.40'') 

Denoting u t�� , we may write 

0 0( , ) ( , )u u F k F k� �� � � , (7.1.40''') 

where 0 0u t�� . Taking 0 0t � , with no loss of generality, and assuming that 
0 0� � , there results � �0 0 0 0 , 0z u F k� �� � � � , so that 

( , )u F k�� . (7.1.42) 

As it was noticed by Abel, it is easier to express the angle �  as a function of the 
variable u , in the form 

sin snu� � , (7.1.42') 

where sn  is the symbol of the elliptic sine (the amplitude sine), one of the Jacobi’s 
elliptic functions; analogously, one may use the elliptic cosine (the amplitude cosine), 
denoted by the symbol cn  ( cos cnu� � ). 

Starting from the formula (7.1.39'), the period of the motion is given by 

� � � �
/2 1

2 2 2 2 20 0

d4 4 4 d
( )

1 sin 1 1

z
T K k

k z k z

� �
� � ��

� � �
� � �� � ,   

g
l

� � , 
(7.1.43) 

where ( ) ( /2, )K k F k��  is the complete elliptic integral of the first kind. Observing  
that 2 1k � , one obtains  the  development  into  series  (we use Newton’s  binomial series) 
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� � 1/22 2 2 2
2 2

1

(2 )!
1 sin 1 sin

2 ( !)
n n

n
n

n
k k

n
� �

��

�
� � �  . 

 

This series is absolute and uniform convergent on the interval " #0,2� , and we may 
integrate it term by term; taking into account Wallis’ formula 

/2 2
2 20

(2 )!
sin d

22 ( !)
n

n
n
n

� �� � �� , (7.1.44) 

one obtains the period 

" #2 2
4 4

1

(2 )!
2 1 sin

22 ( !)
n

n
n

nl
T

g n
��

�

�

� N
� � O

! P
 . (7.1.43') 

Because we may develop sin( /2)�  into an absolute convergent series with respect to 
�  too, we obtain also for T  such a development, of the form 

2 4

2
112 1 ...

16 12 16
lT
g

� �� � �� � � �	 

� �

. (7.1.43'') 

We observe that the ratio between the second and the first term of the series is equal to 
2 /16� ; as well, the ratio between the third and the second term is given by 

2(11/12) /16�  a.s.o. Hence, the series is rapidly convergent; practically, we may take 

2
2 1

16
l

T
g

�� � �� �	 

� �

. (7.1.43''') 

If 0.4� �  (it corresponds to the angle 22 55 06� ��0 ), then the correction brought by the 
second term of the development is not greater than %1 . The astronomic watches have 
amplitudes of 1 30�0 , corresponding a correction of approximately 0.05‰ . In general, 
the period T  depends on the angle � , but is independent of the mass m  of the 
particle. In the case of small oscillations around a stable position of equilibrium (in 
Chap. 4, Subsec. 1.1.7 we have seen that the point P �  represents a stable position of 
equilibrium), the equation (7.1.38') has the form (we approximate sin �  by � ) 

2 0� � �� ��� , (7.1.45) 

wherefrom 

( ) cos( )t t� � � �� � , (7.1.45') 

the angle �  being specified by the initial conditions, while the period is given by 
Galileo’s formula 
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2
2

l
T

g
� �
�

� � ; (7.1.45'') 

we notice that this result (intuited by considerations of homogeneity in Chap. 1, Subsec. 
2.2.4) approximates the development into series (7.1.43''). The period T  thus obtained 
depends on the length l  of the pendulum and on the gravity acceleration g  at the 
respective place on Earth’s surface. Because this period does not depend on the 
amplitude � , we say that the respective motion is isochronic (the small oscillations 
around a stable position of equilibrium take place in the same interval of time). A 
particle P  left free from P  without initial velocity reaches the lowest position P �  in a 
time equal to /4T , which does not depend on the initial position (angle � ); in this 
case, this motion is called tautochronous. 

Figure 7.9.  Simple pendulum. 

The equation of motion along the principal normal to the trajectory is written in the 
form (Fig.7.9) 

2
cosmv R mg

l
�� � , 

 

where R  is the constraint force directed towards the centre O ; taking into account 
(7.1.37), we get 

(3 2 ) (3 cos 2 cos )mgR x a mg
l

� �� � � � . (7.1.38'') 

One obtains max (3 2 cos )R mg �� � . The constraint force diminishes if the particle 
P  becomes closer to the extreme positions P  and P � ; it vanishes for 2 /3x a� , then it 
changes of sign (in case of a bilateral constraint). From (7.1.37) too, we notice that 
x a�  during the motion; the constraint force vanishes if 2 /3a a� , hence for 0a � . 
On the other hand, 2 /3a l� � , so that 3 /2a l� � ; it results that the constraint force 
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vanishes only for 3 /2 0l a� � �  (hence, cos 0� �  and /2� �� ). Replacing the 
expression of a , we find the condition 

� �0 0 02 3 2gx v g l x� � � , (7.1.46) 

which must be fulfilled by the initial velocity, at the initial position, so that the particle 
be capable to reach the position (in any case, above the horizontal diameter) at which 
the constraint force may vanish. In particular, if 0x l� , then we have 

02 5gl v gl� � . (7.1.46') 

Figure 7.10.  Simple pendulum; unilateral constraint. 

If the constraint is unilateral, being obtained with the aid of a perfect flexible, 
torsionable and inextensible thread, then that one is tensioned if R  is positive. At the 
moment at which 0R �  (at the point Q , Fig.7.10), the particle leaves the circle and 
moves as a free particle acted upon by its own weight. It will describe thus an arc of 
parabola of vertical axis, which is connected to the circle at the point in which the 
constraint force vanishes; the particle moves further till it meets again the circle at the 
point Q . If 0 00 2v gx� � , then the motion is oscillatory even in the case of a 
unilateral constraint. 

1.3.2 Circular and asymptotic motion 

If 2
0 4v gl� , hence if a l� � , then the equation (7.1.38) takes the form 

� �2 2 22 ( cos ) 2 2 sin
2

l g l a g l a l �� �� � � � ��  

� �2 22 ( ) 1 sin
2

g l a k �
� � � , 

 
 
 
(7.1.47) 
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where 2 2 /( )k l l a� � , 20 1k� � ; hence, the angular velocity ��  (the velocity v  
too) never vanishes, and maintains its sign. The motion of the particle becomes circular 
and periodic (the velocity depends only on the position). 

Denoting 2 / 2 ( )l g l a� � � , we get 

� � � �0 0
0 0

2 2 22 2

dd
2 1 11 sin

2

z

z
t t t

kk

�

�

�� � �
� � �

� � � �
� ��

� � ,    (7.1.47') 

where 0�  corresponds to an arbitrary moment 0t  (in general, distinct from the initial 
moment) and where we have made a change of variable sin( /2)z �� , denoting also 

0 0sin( /2)z �� . Assuming that 0 0 0t �� � , it results 0 0z � , so that we may use 
the equations 

sin sn
2

u�
� ,   cos cn

2
u�

� , (7.1.47'') 

where we have introduced the notation /u t �� . The period T  in which the whole 
circumference is described is equal to twice the time necessary to arrive from the lowest 
point ( x l� ) to the highest one (x l� � ); hence ( 0 0 0t �� � ) 

� � � �
1

2 2 20 02 2

d d
2

1 11 sin
2

z
T

z k zk

� �� �
�

� �
� ��

� �  

� � � �2 2
2 41 1 31 ...

2 2 4
k k�� �$ %� � � �* +�& '

. (7.1.47''') 

The corresponding constraint force is given by the same relation (7.1.38''); if 
� �0 03 2v g l x� � , then the constraint force does not vanish and remains with its 

positive sign, and if the relation is an equality, then the constraint force vanishes at the 
highest point (x l� � ). We notice that 

max (3 2 cos )R mg �� � ,   min (3 2 cos )R mg �� � � ,   
max min 5R R mg� � � . 

(7.1.48) 

If a l� � , hence if 2
0 4v gl� , then the equation of motion becomes 

2 2 2 22 (1 cos ) 4 cos
2
�� � � �� � �� ; (7.1.49) 

by integration, one obtains 

� �0
0

1 1tan ( ) tan ( )
4 4

t te�� � � � �� � � . (7.1.49') 
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For t � �  we have � �� ; the particle reaches the highest point on the trajectory (a 
labile position of equilibrium) in an infinite time; the respective motion is called an 
asymptotic motion. The constraint force is given by 

(3 2 ) (2 3 cos )mgR x l mg
l

�� � � � ; (7.1.49'') 

in this case max 5R mg� , for 0� � . The minimal constraint force minR mg� � , for 
� �� , can be obtained only in the case of a bilateral constraint; in the case of a 
unilateral one, beginning with the point Q , determined by 2 /3x l� �  (hence, by 
cos 2/3� � � , corresponding to 131 48 37� � ��� 0 ), the motion is on an arc of parabola. 

Analogously, one may study the problem of the swing, which may be modelled as a 
simple pendulum with a thread of length variable in time ( ( )l l t� ). 

1.3.3 Motion of a simple pendulum in a resistent medium 

Introducing the resistance R  of the medium, tangent to the trajectory and of 
direction opposite to that of the velocity, and writing the equation of motion along the 
tangent, one obtains 

sinml mg R� �� � ��� . (7.1.50) 

Considering a resistance proportional to the velocity (viscous damping), of the form 
2R ml� �� � , 0� � , in the case of small oscillations ( sin � �1 ), the equation (7.1.50) 

becomes 

22 0� �� � �� � ��� � ; (7.1.51) 

assuming that 2 2� ��  and denoting 2 2 2� � �� � , we obtain the general integral 

( ) e ( cos sin )tt A t B t�� � ��� � , (7.1.51') 

where the constants A  and B  may be determined by the initial conditions � �0 0t� �� , 
� �0 0t� ��� � . We may thus write (for the sake of simplicity, we assume that 0 0t � ) 

� �0 0 0
1( ) e cos sintt t t�� � � �� � �
�

� $ %� � �* +& '
� , (7.1.52) 

� �2
0 0 0

1( ) e cos sintt t t�� � � � � �� �
�

� $ %� � �* +& '
� � � . (7.1.52') 

If, in particular, we have 0 0� �� , then the particle departs without initial velocity from 
the point 0P  and reaches the point 1P , where the velocity 
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2
0

1 sinte t�� � � �
�

�� ��  
 

vanishes at the moment 1 /t � ��  (Fig.7.11); then the motion follows the same law, 
the particle returning till the point 2P  at a time 2 2 /t � ��  a.s.o. The oscillations are 

isochronic, the period 2 22 / 2 /T � � � � �� � �  (greater than that of the motion in 
vacuum) not depending on the amplitudes 0 1 2 3 ...� � � �� � � � ; we notice also 
that 

/
01 2 1 3 2/ / / ... e �� �� � � � � � �� � � � ,  

so that the absolute values of the amplitudes form a geometric series of ratio /e �� �� . 
Hence, the motion is damped in an infinite time, the particle reaching the lowest 
position (stable position of equilibrium). 

Figure 7.11.  Simple pendulum in a resistent medium. 

If, in the case of oscillations of finite amplitude, we consider a resistance 
proportional to the square of the velocity (aerodynamic damping), then 2 2R mlk �� � , 
and the equation (7.1.50) becomes 

2 2 2 sin 0k� � � �� � ��� �  (7.1.53) 

for an ascendent motion; in the case of a descendent motion, we replace 2k  by 2k� . 
Noting that � �2d /d d /2d� � � � � �� ��� � � � , we may write the equation (7.1.53) in the 
form 

� �2
2 2 2d1 sin

2 d
k

�
� � �

�
2 � �

�
� , (7.1.53') 

the general integral of which is given by 

� �2
2

2 2 2
4

2e cos 2 sin
4 1

kC k
k

� �� � �� �
�

�� � , (7.1.53'') 
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where C  is a constant which must be determined; the relation (7.1.53'') represents, in 
fact, an equation with separate variables, and the quadrature may be calculated for small 
amplitudes. 

1.3.4 Elliptic pendulum 
Let P  be a heavy particle constrained to move on an ellipse of semiaxes a  and b  of 

equation 

2 2
1 2
2 2 1
x x
a b

� � , (7.1.54) 

situated in a vertical plane, the 1Ox -axis being the descendent vertical. Using the 
parametric representation 

1 cosx a q� ,   2 sinx b q� ,   0 2q �� � ,  

the theorem of kinetic energy � �2 2
1 2 1d /2m x x mgx� �$ %& '� �  leads to 

� � � �2 2 2 2 2 2 2sin cos sin cos sina q b q q a b q qq ag q� � � � ��� � . (7.1.55) 

In the case of small motions around the point 0 ( , 0)P a , which is a stable position of 
equilibrium, we have sinq q1 , cos 1q 1 , 2 0q 1� , so that the equation (7.1.55) 
becomes 

2 0q q�� ��� ,   2
2
ag
b

� � ; (7.1.55') 

it results � �0 0cosq q t t�� � , the motion being periodic, isochronic, of period 

2 b
T

ag
�

� . (7.1.55'') 

If a b l� � , then one obtains the results in Subsec. 1.3.1, for instance Galileo’s 
formula (7.1.45'').  

1.3.5 Cycloidal pendulum 

Let us consider the motion of a heavy particle P  on a cycloid C  with a horizontal 
basis, situated in a vertical plane and having the concavity towards the positive 
direction of the 2Ox -axis. The axis 1Ox  is tangent to the cycloid as its lowest point, 
while the 2Ox -axis (an ascendent one) is the symmetry axis of the cycloid (Fig.7.12). 
Starting from the definition of the cycloid as a locus (see Chap. 5, Subsec. 1.3.4), we 
obtain its parametric equations in the form 

1 ( sin )x a � �� � ,   2 (1 cos )x a �� � ,   " #,� � �� � ,  
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where 2 2x a�  is the straight line on which the generating circle C  (of centre O �  and 
radius a ) of the cycloid is rolling without sliding. Departing from 2 2 2

1 2d d ds x x� � , 
we find 2 2d 2 cos( /2)d 2 / ds a a x x� �� � ; by integration, we obtain 22 2s ax�  

4 sin( /2)a �� , so that 2d /d /4x s s a� . Euler’s equations of motion are written in 
the form 

2d
d
x

mv ms F mg
s�� � � �� �� ,   

2mv F R��
� � , 

 

 
Figure 7.12.  Cycloidal pendulum. 

wherefrom it results 

2 0s s�� ��� ,   2
4
g
a

� � ; (7.1.56) 

hence, 

0 coss s t�� , (7.1.56') 

assuming that the particle is launched without initial velocity from the point 0P , of 
curvilinear co-ordinate 0s , at the initial moment 0t . The period of the motion is 

2 4
4 2
a a

T
g g

� � �
�

� � � ; (7.1.56'') 

this period does not depend on the amplitude 0s , so that the oscillations are isochronic 
(independent of their magnitude). On the other hand, a particle in a free fall from the 
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point 0P  reaches the point O  (the lowest point of the cycloid) in the time /4T , which 
is independent of 0s , hence of the initial position; this is the property of tautochronism 
of the cycloid. We say that the motion is tautochronous, independent of the magnitude 
of the oscillations, the cycloid being thus a tautochronous curve. This property has been 
put in evidence by Huygens, which realized a cycloidal pendulum with the aid of the 
evolute of a cycloid, that one being a cycloid too. The thread by which is connected the 
particle P  (unilateral constraint) is fixed at the point Q  (cuspidal point of a cycloid 
concretely built up); but the resistances which intervene modify considerable the 
motion. 

Taking into account the theorem of the kinetic energy, we may write 
� �2 0

2 22v g x x� � , where  the ordinate 0
2x  corresponds to the initial position 0P . 

Noting that 

2
1d (1 cos )d 2 cos d cos d

2 2
x a a s� �� � �� � � � ,  

we have 1d /d cos( /2)F mg x s mg� �� � � � ; because 2PO PM� �� �� �  
4 cos( /2)a �� , the second equation of Euler gives the constraint force 

0cos cos
cos

2 2 cos
2

R mg
� ��

�

� �
�	 
� �	 


	 

� �

. (7.1.57) 

If, in particular, 0� �� 2 , hence if the particle travels through the cycloid without 
initial velocity, from one of the cuspidal points P  or P � , then it results 

2 cos 2
2

R mg F�
�

� � � ; (7.1.57') 

in this case, we can state, after Euler, that the modulus of the constraint force is the 
double of the modulus of the normal component of the own weight of the particle. 

1.3.6 Motion of a heavy particle on a surface of rotation 

Let us consider the motion of a heavy particle P  on a surface of rotation, the axis of 
rotation of which is vertical (Fig.7.13). The own weight mg  of the particle and the 
constraint force R  (the support of which pierces the 3Ox -axis) act in the meridian 
plane, their moments with respect to the symmetry axis vanishing; hence, we may write 
the first integral of areas for the projection P �  of the particle P  on the plane 1 2Ox x , 
hence also for the particle P , in the form (we use cylindrical co-ordinates) 

2 2
0 0r r C� �� �� � , (7.1.58) 

where � �0 0r r t� , � �0 0t� ��� � . Because the constraint is scleronomic and the given 
force is conservative, we may use also the first integral of energy 
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� �2 2 2 2 2 2
0 02v r r z v g z z�� � � � � ��� � , (7.1.58') 

where � �0 0z z t� , � �0 0v v t� . 
If the surface of rotation is given by ( )r f z�  (the equation of the meridian curve 

C), then we may eliminate the functions ( )r r t�  and ( )t� ��  between the equations 
(7.1.58), (7.1.58'), obtaining the equation with separable variables 

� � � �
2

2 2 2
0 0 21 2 Cz f v g z z

f
�� � � � �� ,   d

d
ff
z

� � , (7.1.59) 

which determines the applicate ( )z z t�  by a quadrature; returning to the equation of 
the surface of rotation and to the first integral of areas, we obtain the other co-ordinates 
of the point P . In the case of a circular cylinder of radius l , the equation (7.1.59) 
becomes ( f l� ) 

� �
2

2 2
0 0 0 22 Cz v g z z

l
� � � �� ,   constC � , (7.1.59') 

Figure 7.13.  Motion of a heavy particle on a surface of rotation. 

in the case of a circular cone of equation r kz� , constk � , we may write 

� � � �
2

2 2 2
0 0 2 21 2 Ck z v g z z

k z
� � � � �� ,   constC � , (7.1.59'') 

while in the case of a sphere of radius l  we obtain ( 2 2 2r z l� � ) 

� � � �2 2 2 2 2 2
0 02l z v g z z l z C� � � � �$ %& '� ,   constC � . (7.1.59''') 

If we represent the surface of rotation by the equation ( )z r�� , we may eliminate 
the functions ( )z z t�  and ( )t� �� ; it results the equation 
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� � � �
2

2 2 2
0 0 21 2 Cr v g z

r
� ��� � � � �� ,   d

dr
�� � � ,   constC � , (7.1.60) 

which specifies the radius ( )r r t�  by a quadrature too. 
Eliminating the time, we obtain the equation of the trajectory of the point P �  in the 

form 

" #
" #, -0

2

0 2 2 2
0 0

1 ( )d
2 ( )

r

r
C

v g z C
� ��� �

� � � �
��

� �
� � �� , (7.1.61) 

where 0 0( )t� �� ; assuming that the surface is algebraic, Kobb has put in evidence the 
cases in which the function ( )r� ��  is expressed by means of elliptic functions. 

In the case of a conservative force, the potential of which depends only on r , the 
problem may be solved only by quadratures too. 

1.3.7 Spherical pendulum 
A heavy particle which moves frictionless on a sphere of radius l  is called spherical 

pendulum. The constraint may be bilateral or unilateral; in what follows we consider the 
case of a bilateral constraint. We choose the equatorial plane of the sphere as plane 

1 2Ox x , the axis 3Ox  being along the descendent vertical; further it is convenient to use 
cylindrical co-ordinates (Fig.7.14). If the constant C  of the first integral of areas 
(7.1.58) vanishes, then 0� �� , hence const� � ; the trajectory of the particle is 
contained in a meridian plane of the sphere, being thus a great circle of it. The spherical 
pendulum is, in this case, a simple pendulum. If the constant C  is non-zero, then we 
have to do with a non-degenerate spherical pendulum. 

Figure 7.14.  Spherical pendulum. 

The equation (7.1.59''') becomes 

2 2 ( )l z P z�� ,   � � � �2 2 2 2
0 0( ) 2P z v g z z l z C� � � � �$ %& ' , (7.1.62) 

so that 
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0
0

d
( )

z

z
t t l

P
�
�

� 2 � ; (7.1.63) 

the first integral (7.1.58) allows to determine the angle �  in the form 

� �0
0 2 2

d
( )

z

z
Cl

l P
�� �

� �
� 2

�� . (7.1.63') 

In the two above formulae one takes the sign of � �0 0z z t�� � , assuming that 0z �� . If 

0 0z �� , then one takes into account the increasing or decreasing of z , starting from 
the initial value 0z . 

First of all, we assume that 0 0z �� ; in this case 0( ) 0P z �  (from (7.1.58), (7.1.58'), 
(7.1.62) it results � �2 2 2

0 0 0 0( )P z r r z� �� � ). However, during the motion one must have 
( ) 0P z �  so that the integrals (7.1.63), (7.1.63') be real. Noting that 0z l�  (for 

0z l�  we have the simple pendulum) and that ( )P �� � � , 2( )P l C2 � � , it 
results that the polynomial ( )P z  is of the form 

1 2 3( ) 2 ( )( )( )P z g z z z z z z� � � � � ,   03 2 1z l z z z l�� � � � � � � � . 
 (7.1.64) 

Figure 7.15.  Spherical pendulum: zone of oscillation on the sphere (a); projection of the  
motion on the equatorial plane: case 2 0z �  (b); case 2 0z �  (c). 

Hence, the particle P  oscillates on the spherical zone contained between the parallel 
circles specified by 1z z�  and 2z z�  (to have ( ) 0P z � ) (Fig.7.15,a). Viète’s 
formula allows to write � �2

3 1 2 1 2( )z z z l z z� � � � ; noting that 2
1 2z z l�  and 

3 0z � , it results that 1 2 0z z� � . Hence, the parallel 1 2( )/2z z z z� � � , 
equidistant to the parallels 1z z�  and 2z z� , is always situated under the equatorial 
circle (in the austral hemisphere). Departing from 0P , let us suppose that z  decreases 
(we have the sign – before the radical); the particle reaches 1P  on the parallel 2z z� , 
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where the trajectory has a horizontal tangent (at this point 0z �� , but 0� �� ). Then, 
the particle rotates about the vertical axis 3Ox  and reaches the point 2P  on the parallel 

1z z� , where the tangent to the trajectory is horizontal too; further, the particle reaches 

the point 3P  on 2z z�  a.s.o. The particle P  travels through the arc of trajectory 1 2P P  
in the interval of time 

1

2

d
2 ( )

z

z

T z
l

P z
� � ; (7.1.65) 

the same interval of time is necessary to travel through the arcs 2 3P P , 3 4P P  a.s.o. We 
notice that the meridian planes of the points of contact of the trajectory with the 
extreme parallels are planes of symmetry of this trajectory; indeed, for two points P  
and P  of the same parallel z  we have 

� �
1

2 2 2 2
d

( )
z

z
Cl

l P
�� � � �

� �
� � � �

�� . 
 

The necessary intervals of time to travel through the arcs 2PP  and 2P P  are equal too, 
being given by 

1 d
( )

z

z
l

P
�
�� .  

We observe that after a time T  we find again the same values for z  and z� . 
If 0 0z �� , then we have 0( ) 0P z �  too. Assuming that 0( )/2P z�  

2 2
0 0 0 0gr z v� � � , the particle is launched from one of the extreme parallels (we have 

01z z�  or 02z z� ) with a horizontal initial velocity (hence, tangent to the respective 
parallel); in the case of the parallel 2z z�  one takes the sign + before the radical, while 
if one departs from the parallel 1z z�  the sign – is used. If 0( ) 0P z� � , then the 
equation ( ) 0P z �  has a double root 2 2

0 0 01 2 /z z z gr v� � �  and one may write 
2 2 2

0 32 ( ) ( )l z g z z z z� � � �� ; noting that 3z z� , one can have the latter relation 
only for 0 constz z� � . The trajectory of the particle is the parallel 0z z�  situated 
in the austral hemisphere, because 0 0z � . The spherical pendulum is reduced – in this 
case – to a circular conical pendulum. 

From (7.1.58), we notice that ��  has a constant sign; it results that the point P �  (the 
projection of the particle P  on the equatorial plane) rotates permanently in the same 
direction around the centre O , that direction being specified by the sign of the angular 
velocity �� , hence by the sign of C  (if 0C � , then 0� �  too). The projection of the 
trajectory C  of the particle P  on the equatorial plane is the trajectory C �  of the 
projection P � . If 2 0z � , then the trajectory of this projection is contained between the 
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concentric circles 2 2
1 1r r l z� � � , 2 2

2 2r r l z� � � , 1 2r r� , without any point 
of inflection (Fig.7.15,b); the projection P �  gives the impression that it describes an 
oval which is rotating in the direction of the motion (always in the same direction). One 
can show that � �

1 2 2 3 ...POP POP� � � �� � ; Puiseux proved that these angles are always 
greater than /2� , while Halphen and then Saint-Germain showed that they are at the 

most equal to � . The angle � �
51 1 24POP POP� � � ��  is the angle of precession and 

emphasizes the “delay” of the point 5P �  with respect to the point 1P � , so that the 
trajectory of the point P �  cannot be closed. If 2 0z � , then the corresponding parallel 
is above the equatorial circle, but we have still 1 2r r�  (because 1 2 0z z� � ); the 
trajectory of the projection P �  is tangent to the equatorial circle, and we may have also 
inflection points. The properties which have been mentioned before are maintained 
(Fig.7.15,c). 

With the aid of the substitution 2
1 1 2( )z z z z u� � �  and of the notation 

2
1 2( )k z z� � 1 3/( )z z� 1� , 1 32 / ( )l g z z� � � , we may write the formula 

(7.1.63) in the form 

� � � �0 2 2 20

d
1 1

u ut t
u k u

�� 2
� �� , (7.1.66) 

wherefrom (we take 0 0t �  and the sign + before the integral) 

sn tu
�

� ,   2
1 1 2( )sn tz z z z

�
� � � ; (7.1.66') 

hence, z  is a doubly periodic function of t . The angular velocity ( )t��  is obtained as a 
rational function of sn( / )t � ; one can integrate by decomposing in simple elements, 
using Hermite’s method, obtaining thus the function ( )t� , which is not uniform. But 
Tissot and then Hermite have state how to obtain the co-ordinates 1z  and 2z  as uniform 
functions of t . Greenhill showed that, in the case in which the point 0P  is in the plane 

0z � , the initial velocity being tangent to the equatorial circle, then �  and t  are 
given by pseudoelliptic integrals, which may be expressed by elementary functions. 

The constraint force R  (Fig.7.14) is given by 2 /n nR F mv �� � � ; noting that 
n l� �  and /nF mz l� � , we get 

2
0 0(3 2 )mR v g z z

l
� � �$ %& ' . (7.1.67) 

The force R  is directed towards the centre O  ( 0R �  for 0z � ) if the particle is in 
the austral hemisphere; if P  is in the boreal hemisphere ( 2 0z � ), then it is possible to 
have 0R �  for a parallel z . In the case of a unilateral constraint (the particle is at the 
extremity of a perfectly flexible and inextensible thread), after passing the parallel 
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z z� , the particle may move further on an osculating parabola to the previous 
trajectory on the sphere, in a vertical plane, till it meets again the sphere; then, the 
motion is continued in conformity with the laws established before. In the case of a 
bilateral constraint, the constraint force may change its sign, being directed towards the 
interior of the sphere. We notice that, in general, the resultant of the forces R  and mg  
is tangent to the trajectory at the point P , hence it is contained in the osculating plane 
to the curve at that point. If �R 0 , then the osculating plane is vertical; in this case, 
the trajectory of the projection P �  on the equatorial plane has an inflection point at this 
point. In the case of the circular conical pendulum, the constraint force becomes 

2 2
0 0 0/ /R mgl z mlv r� � ; the projection of this force on the equatorial plane is 
2 2

0 0 0 0 0/ /Rr l mv r mr �� � � , hence a centripetal force. 
Projecting the equation of motion on the Cartesian co-ordinate axes, we obtain 

1
1

x
mx R

l
� ��� ,   2

2
x

mx R
l

� ��� ,   3
3

x
mx mg R

l
� ��� ;  

in the case of small oscillations around the position 1 2 0x x� � , 3x l� , which is a 
stable position of equilibrium, we notice that 

� �
2 2
1 22 2 2

3 1 2 21 ...
2
x x

x l x x l
l
�� �� � � � � �	 


� �
. 

 

In a first approximation 3x l�  (we neglect the second term with respect to unity), and 
we may assume that the motion takes place in the plane tangent at the lowest point of 
the sphere. In this case, the third equation of motion leads to R mg� ; the first two 
equations may be written vectorially in the form 

g
l

� ���r r 0 , (7.1.68) 

where r  is the vector radius in the equatorial plane. One obtains thus an elliptic 
oscillator, which will be studied in Chap. 8, Subsec. 2.1.1. The motion is periodic and 
the trajectory is an ellipse, which may be travelled through in an interval of time given 
by 2 /T l g��  (the period corresponding to a simple pendulum). An approximation 
of second order has been considered by Tisserand; other methods of approximation 
have been used by Resal and Sparre. 

2. Other problems of dynamics of the particle 
After considering the problems of Abel and Puiseux and of tautochronous motions, 

one deals with the motion on a brachistochrone or on a geodesic curve, as well as with 
other cases of motion. Some results concerning the stability of the equilibrium of a 
particle are given too. 
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2.1 Tautochronous motions. Motions on a brachistochrone and on a 
geodesic curve 

In what follows, after presenting the problems of Abel and Puiseux, one considers – 
in particular – the study of tautochronous motions. A particular attention is paid to the 
motion on a brachistochrone curve or on a geodesic one, the study of which needs some 
notions of variational calculus. 

2.1.1 Abel’s problem 
 N.H. Abel tried to determine a curve C , contained in a vertical plane and passing 

through a given fixed point O , so that a heavy particle P , which is moving without 
friction on this curve, starting from the point 0P , situated at an applicate h  above the 
point O , reaches that point, without initial velocity, in an interval of time ( )h� �� , 

" #0,h a� , assuming that the continuous function �  is given. We choose the 
horizontal as 1Ox -axis, the 2Ox -axis being the local ascendent vertical (Fig.7.16); the 
curve C  is specified by the equation � �2s x�� , (0) 0� � , " #1 0,C a� � , where s  
is the curvilinear abscissa. The conservation theorem of mechanical energy gives 

� �2 2
2(d /d ) 2v s t g h x� � � . Noting that ( )s t  is a decreasing function, we may 

write � �2 2 2d 2 d ( )ds g h x t x x��� � � � ; by integration ( 2x h�  for 0t �  and 

2 0x �  for t �� ), we obtain an integral equation of the first kind, with a variable 
superior limit 

� �2 2
0 2

d
2 ( )

h x x
g h

h x
��
�

�
�� . (7.2.1) 

Figure 7.16.  Abel’s problem. 

To solve this integral equation, which is the first one appeared in mathematical 
analysis, we use a particular ingenious procedure due to Abel; we multiply both 
members by d /h u h� , " #0,u a�  and integrate with respect to h  between the 
limits 0  and u , so that 

� �2

2 2
2 20 0 0 02 2

( )d ( )dd d2 ( )d
( )

u u h u u

x

h h x xh hg x x
u h u h h x u h h x

� �
�

�
�� �

� � � � �� � � � � , 
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where the order of integration has been inverted (in fact, a double integral on a 
triangular domain bounded by the lines 2 0x � , 2x h�  and h u�  is calculated). 
Noting that the latter integral is equal to � , one obtains, finally, 

� �
� �2

2 0 2

2 dxg h hx
x h

��
�

�
�� ,   " #2 0,x a� . (7.2.1') 

Following these ideas, Euler and Saladini deal with the determination of a curve C  
in a vertical plane, so that a heavy particle P , which is moving without friction on this 
curve, departing from the point 0P , without initial velocity, reaches an arbitrary point 
P  in the same interval of time as that necessary if the particle would slide along the 
bisecant 0P P , finding thus a lemniscate. O. Bonnet showed that this lemniscate has 
further the above mentioned property if we replace the gravitational field by a field of 
central forces of attraction, proportional to the distance to the pole 0P . As well, Fouret 
considers a particle which is subjected to the action of a field of conservative forces in a 
plane and which departs from the position O  without initial velocity; a problem to 
determinate a family of homothetic curves C  passing through O , so that the particle 
which departs from this pole describes an arc of curve C  till the point P  in the same 
interval of time in which the corresponding bisecant OP  would be travelled through is 
put. The problem has a solution if the potential function is of the form 

2( , ) ( / ( )) ( )U r r� � � � � ��  in polar co-ordinates, �  and �  being arbitrary functions 
of class 1C ; the equation of the curve C  is, in this case, of the form 

( )
d2 2 ( )( )er k

� �
�

� �� �
�

��� ,   constk � . (7.2.2) 

Analogously, one may put the problem to determine the field of conservative forces 
which act upon a particle the trajectory of which is a curve from the family of curves C  
previously considered; if the equation of the curve C  is of the form ( )r k� �� , 

constk � , then the potential function is of the above mentioned form, where 

" #2( )/ ( ) 1d( ) ( )e � � � � �� � � � �� ��� . (7.2.2') 

2.1.2 Puiseux’s problem 
In connection with tautochronous motions we consider – first of all – a particular 

problem, put and solved by Puiseux. It is thus asked to determine a law of force 
( )F F x�  for which a rectilinear and frictionless motion is tautochronous with respect 

to the pole O  of the trajectory (Fig.7.17). The conservation theorem of mechanical 
energy leads to " #2

02 ( ) ( )mx x x� �� ��  where we denoted by 

0
( ) ( )d

x
x F� � �� �� ,   (0) 0� � ,  
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an increasing positive function, because ( )F x  is a function obviously negative for 
0x � , if we assume that 0 0x �  (the force must be directed towards the pole O , 

because the particle must move towards that point). The particle reaches the point O  in 
an interval of time equal to 

0
0 0

0

d
2 ( ) ( )

xm x
x x

�
� �

�
�� . (7.2.3) 

Figure 7.17.  Puiseux’s problem. 

If we denote ( )x z� � , 0 0( )x z� � , 0z z u�  and ( )x z�� , where �  is the inverse 
function, it results 

0 1 0 0
0 0 00

( )d ( ) d
2 2 1

z z z z u z um m
z z u

� �
�

� �
� �

� �� � ; 
 

the condition that 0�  be not dependent on 0x , hence on 0z , is put in the form 

00 0 010
0 00 0 0 0 0

1 1( ) ( ) ( ) ( )d 2 2d d 0
d 2 2

zz u z u z u z z zm mu z
z z z u z z z

� � � �� �� � �� �� �
� � �

� �� �  

 

for any 0z , so that we must have 2 ( ) ( ) 0z z z� ��� �� �  (otherwise we may choose a 

0z  sufficiently small so that the integrand be of a constant sign, so that the condition 
would no more be fulfilled). We get ( ) 2z c z� � , constc � , an additive constant 
being equal to zero, because z  and ( )x z��  vanish simultaneously; it results 

2 2( ) / 4z x x c�� � , so that 2( ) /2F x x c� �� � � � . We see thus that the only force 
( )F F x�  which leads to a tautochronous rectilinear motion is a force in direct 

proportion to the distance (which will be studied in Chap. 8, Subsec. 2.2.1). 
If the resultant of the given forces depends on the position as well as on the velocity, 

the problem is more intricate. Lagrange gave a law for the force for which the 
tautochronism takes place and from which – if the velocity is no more involved – one 
obtains the previous results. But this law does not contain all possible cases; e.g., 
Brioschi gave a more general formula. 

2.1.3 Tautochronous motions 

If we make 0( ) consth� �� �  in the formula (7.2.1'), then we obtain 

0
2 2

2 2
( )

g
s x x

��
�

� � , (7.2.4) 
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denoting 2 2
0 /g a� � � , we find again the equation of the cycloid (Fig.7.12), considered 

in Subsec. 1.3.5. We have seen that the cycloid is a tautochronous curve, the respective 
motion being a tautochronous one with respect to the point of tautochronism O , which 
is reached by the particle, acted upon by its own weight, in the same interval of time 

0� , independent of the initial position, if the initial velocity vanishes. Besides, the 
cycloid is the only tautochronous curve with respect to a gravitational field. 

In general, we say that a motion (hence, a curve C ) is tautochronous if there exists a 
point O �  (called point of tautochronism) on this curve, so that a particle which is acted 
upon by given forces of resultant F  and which, departing from the position 0P , 
frictionless and without initial velocity, reaches the position O �  in an interval of time 
independent of 0P . Projecting the equation of motion on the tangent to the curve, we 
may write 

2

2
dd ( )
dd
i

t i
xsm F F f s
st

� � � , (7.2.5) 

where the second member is function only on the curvilinear co-ordinate s , if we 
assume that the resultant of the given forces depends only on the position ( ( )�F F r ). 
The equation (7.2.5) is identical with the equation of the rectilinear motion on the Os -
axis, if the particle is subjected to the action of a tangential force tF . 

Taking into account the results obtained in the preceding subsection, we must have 
2( )f s k s� � , so that the trajectory C  be tautochronous, that one being a necessary 

and sufficient condition; the point of tautochronism 0s �  is – obviously – a stable 
position of equilibrium. The solution of the problem is indeterminate, to determine it 
being necessary a supplementary condition. For instance, one may put the condition that 
the curve C  lays on a given fixed surface � �1 2 3, , 0x x x �F , adding the obvious 
relation 2d d di ix x s� ; one may obtain thus the parametric equations of the trajectory 

( )i ix x s� , 1,2, 3i � , introducing two new constants of integration besides 2k . In the 
case of a conservative force, we obtain easily 

� �
2

2
1 2 3, ,

2
kU x x x s K� � � ,   constK � . (7.2.6) 

As well, we may put other conditions, e.g., that the curve C  be tautochronous, with the 
same point of tautochronism for other given forces of resultant �F ; we introduce thus a 
new condition of the form 

2d
d
i

i
x

F k s
s

� �� � ,   constk � � . (7.2.5') 

Hence, the curve obtained is tautochronous for a force � � � ��F F , � , � �  constant 
positive scalars. If the second force is conservative too, of potential 
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� �
2

2
1 2 3, ,

2
kU x x x s K
�

� �� � � ,   constK � � , (7.2.6') 

the tautochronous curve will stay on the surface 

� �" # � �" #2 2
1 2 3 1 2 3, , , ,k U x x x K k U x x x K� � �� � � . (7.2.7) 

In the general case of a resistent medium of resistance ( )R v� � , the resultant of 
the given forces depending also on the velocity ( ( , )�F F r v ), the equation of motion 
reads 

� �2

2
dd d
d dd
i

i
xs sm F
s tt

� � � ; (7.2.5'') 

we come thus back to the previous case of rectilinear motion for which a necessary and 
sufficient condition of tautochronism is not known, being possible to use – in particular 
– the law of force given by Lagrange. 

2.1.4 Considerations on variational calculus 

To study the motion on a brachistochrone, there are necessary some results 
concerning variational calculus. Let thus be an integral of the form 

1

0
( ) ( ; , )d

x

x
I y F x y y x�� � , (7.2.8) 

where ( ; , )F x y y �  is a known real function of arguments ,x y  and d /dy y x� � , of 
class 2C  with respect to these arguments; the value of this integral depends on how is 
chosen the function ( )y y x� , wherefrom the notation used, as well as the 
denomination of functional. We assume that the admissible arguments ( )y x  are of 
class 2C  and that, at the extremities of the interval " #0 1,x x , they take the given values 

0 1,y y ; in this case, the set , -( )y x  of the admissible arguments ( )y x  may be seen as a 
family of smooth curves, passing through the points 0 0( , )x y  and 1 1( , )x y  of which we 
must choose one, which minimizes the functional ( )I y . A necessary condition to 
determine this curve is the Euler-Poisson equation 

d
0

d
y

y
F

F
x
�� � , (7.2.8') 

associated to the variational problem ( ) minI y � , where yF  and yF � , represent the 
partial derivatives with respect to the corresponding arguments; developing, one obtains 

2

2
d d 0

dd
yy y y y y x

y yF F F F
xx� � � �� � � � . (7.2.8'') 
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If the condition (7.2.8') or (7.2.8'') holds, we say that the functional is stationary on the 
curve ( )y x . Because this condition is only necessary, one must then verify if the 
solution of the respective differential equation minimizes effectively the functional 

( )I y . 
Let be now a functional of the form 

1 2 1 2 1 2( ) ( , ; , , )d d
D

I u F x x u u u x x� ��  (7.2.9) 

on a set , -1 2( , )u x x  of functions of class 2C , which take continuously given values on 
the frontier of the domain D ; F  is a given function of class 2C  in the arguments 

1 2, ,x x u , 1 1/u u x� ( ( , 2 2/u u x� ( (  on the domain of definition of those 
arguments. The Euler-Ostrogradski� equation corresponding to the problem of 
minimum reads 

� � � �1 2,1 ,2 0u u uF F F� � � , (7.2.9') 

being a necessary condition too. In particular, in the case of the functional 

2 2
1 2 1 2 1 2( ) 2 ( , ) d d

D
I u u u f x x u x x� � �$ %& '��  (7.2.10) 

we find an effective minimum given by Poisson’s equation 

1 2 1 2( , ) ( , )u x x f x x) �  (7.2.10') 

on the domain D . 
Analogously, the functional 

1 2 1 2 11 12 22 1 2( ) ( , ; , , , , , )d d
D

I u F x x u u u u u u x x� ��  (7.2.11) 

leads to the Euler-Ostrogradski� equation 

� � � � � � � � � �1 2 11 12 22,1 ,2 ,11 ,12 ,22 0u u u u u uF F F F F F� � � � � � . (7.2.11') 

As well, for the functional 

1 2 3 1 2 3 1 2 3( ) ( , , ; , , , )d d d
D

I u F x x x u u u u x x x� ��� , (7.2.12) 

defined on a three-dimensional domain, we obtain the Euler-Ostrogradski� equation 

� � � � � �1 2 3,1 ,2 ,3 0u u u uF F F F� � � � . (7.2.12') 

In the case of several functions ( )ky x , 1,2,...,k n� , of the same independent 
variable x , the functional 
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1

0
1 2 1 2 1 2( , ,..., ) ( ; , ,..., , , ,..., )d

x
n n n

x
I y y y F x y y y y y y x� � �� �  (7.2.13) 

leads to the Euler-Lagrange system of equations 

� �d 0
dk k

y yF F
x �� � ,   1,2,...,k n� , (7.2.13') 

which represent necessary conditions of stationarity. 

2.1.5 Motion on a brachistochrone 

The problem to determine a curve C  passing through the points 0P  and 1P  is put, 
so that a particle P , which departs from 0P  with an initial velocity 0v  and is subjected 
to the action of a field of conservative forces gradF U� , does slide frictionless along 
the curve from 0P  to 1P  in a minimal interval of time (Fig.7.18); a curve C  which has 
this property is a brachistochrone curve for the field of given forces. The conservation 
theorem of mechanical energy leads to 

Figure 7.18.  Motion of a particle on a brachistochrone. 

� �22
1 2 3

d
( , , )

2 2 d
m m s
v U x x x h

t
� � � ,   2 0 0 0

0 1 2 3( , , )
2
mh v U x x x� � , (7.2.14) 

wherefrom 
1

0 1 2 3( , , )d
P

P
t m x x x s�� � ,   

" #1 2 3
1 2 3

1
( , , )

2 ( , , )
x x x

U x x x h
� �

�
; (7.2.14') 

noting that ( )s� �� , by the agency of the functions ( )i ix x s� , 1,2, 3i � , and that 
d di is x x s� �� , d /di ix x s� � , we may write the Euler-Lagrange stationarity condition 
(7.2.13') in the form 

� �,
d 0
di ixs

� � �� � ,   1,2, 3i � . (7.2.15) 

Vectorially, we have 

dgrad ( )
ds

� �� � 0= , (7.2.15') 
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where d /ds� r=  is the unit vector of the tangent to the curve. It results 

d
grad

ds
� ��

�
� � � 0= J , (7.2.15'') 

where we took into account the first Frenet formula, 1/�  being the curvature of the 
curve, while J  is the principal normal; a scalar multiplication by =  leads to the identity 
grad d /d d /d 0s s� �� � �r , so that the equations (7.2.15)-(7.2.15'') are reduced to 
only two equations. 

We notice that the equation (7.2.15') is of the same form as the equation of 
equilibrium (4.2.57) of a perfectly flexible, torsionable and inextensible thread, where 

��T = , T ��  being the tension in the thread, while ( ) grads �� �p  is the external 
conservative load on the unit length, which acts upon the thread, corresponding to the 
formula (4.2.58'); as well, the equations (7.2.15) may be put in correspondence with the 
equations (4.2.59). Taking into account (7.2.14'), it results 3

, ,i iU� �� � , 1,2, 3i � , so 

that 3 3( ) grad grads U� � �� � � �p F , where F  is the given force which acts 
upon the particle in motion on a brachistochrone. Projecting on the principal normal to 
the curve C , one obtains 3 / /p F T� �� � � �� � � � � , wherefrom 21/F� � �� � , 
relation which gives the curvature of the brachistochrone as a function of the given 
force which acts upon the particle. From (7.2.14), one may write 2 21/mv �� ; on the 
other hand, the equation of motion in intrinsic co-ordinates reads 2 /mv F R� �� � � , 
where R  is the constraint force which acts upon the particle constrained to stay on the 
curve C , which must be determined. There results 21/F R� � ��� � , so that 

22/N� ���  and 

2N F� �� � ; (7.2.16) 

we may state 
Theorem 7.2.1 (Euler). In the motion on a brachistochrone, the modulus of the normal 
constraint force is twice greater than the modulus of the normal component of the 
resultant of the given forces. 

If constT �� �  along the thread, we may suppose that one stays on a smooth 
surface const� �  (equipotential surface), ( )sp  being a constraint force ( )sR ; in this 
case, the unit vector J  coincides with the unit vector n  of the normal to the surface 
and the brachistochrone is a geodesic curve of the surface. Noting that, in this case, 

3( ) ( )s s��R F , it results that such a situation is obtained only if the field of given 
forces is normal to the searched brachistochrone at each point of it. From this point of 
view, we may search such curves, situated on a surface and corresponding to a field of 
given conservative forces. The equation (7.2.15') reads 

dgrad grad ( )
d

f
s

� � �� � � 0= , (7.2.17) 
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where 1 2 3( , , ) 0f x x x �  is the equation of the surface; to this equation there 
corresponds the equation (4.2.70) of the threads, and the study can be made 
analogously. 

Taking 0 �v 0  and choosing 3U mgx� , where 3Ox  is along the local descendent 
vertical, we get 0h � , so that 31/ 2mgx� � ; the equations (7.2.15) lead to 

1
1

3

d1
d
x

C
x s

� ,   2
2

3

d1
d
x

C
x s

� ,   1 2, constC C � , 
 

wherefrom 1 2 2 1 constC x C x� � , the trajectory being in a vertical plane. Taking this 
plane as 2 0x �  (hence 2 0C � ), it results ( 1 0x �  for 3 0x �  and 2

11/ 2C a� ) 

3
1 3

3
d d

2
x

x x
a x

�
�

; 
 

we denote 3 (1 cos )x a �� �  and get, by integration, 1 ( sin )x a � �� � , so that, in 
case of a gravitational field, the brachistochrone is a cycloid, the concavity of which is 
opposite to the direction of these forces. Euler’s theorem has been verified in Subsec. 
1.3.5 for this particular case. 

2.1.6 Motion on a geodesic curve 
The motion of a particle on a geodesic curve of a smooth fixed surface S  has been 

emphasized in Chap. 6, Subsec. 2.2.2. To have such a trajectory, it is necessary and 
sufficient that 0gF � , hence that the force F  be in the osculating plane of the 
trajectory; on the other hand, the motion is uniform only if 0F� � , hence if the given 
force is normal to the surface S  and has an influence only upon the constraint force 
R . Noting that along a geodesic line we have �n J , the normal n  to the surface 

1 2 3( , , ) 0f x x x �  being collinear with grad f , we may write the equations of the 
geodesic lines in the form 

2

2
d grad
d

f
s

��
r ,   

2

,2
d
d
i

i
x

f
s

�� ,   1,2, 3i � , (7.2.18) 

where �  is an arbitrary scalar and where we took into account the first Frenet formula 
given by 2 2d /ds�� rJ . If the motion of the particle is uniform, then 0d ds v t� , and 
the equations of motion along the geodesic curves are of the form 

grad f����r ,   ,i ix f���� ,   1,2, 3i � ,   2
0v� �� . (7.2.18') 

If 0P  and 1P  are two points on a geodesic line, then the distance l  between these two 
points is 

1 1

0 0d d
P P

i iP P
l s x x s� �� �� � ,   d

d
i

i
x

x
s

� � ; (7.2.19) 
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we put the problem to determine the functions ( )i ix x s�  so that the functional l  be 
stationary (in fact, minimal). Because these functions are linked by the relation 

1 2 3( , , ) 0f x x x � , we use the method of Lagrange’s multiplier, searching functions for 
which the functional 

� �
1

0 d
P

i iP
x x f s�� � ��  

is stationary, �  being an indeterminate parameter; the stationarity conditions (7.2.13') 
give , d /d 0i if x s�� � , 1,2, 3i � , thus finding again the equations (7.2.18), which 
coincide with the equations (7.2.17) for 1� � . It results that the shortest way on a 
surface between two points of it is along the geodesic line which joints them and is 
unique. This property is characteristic for the geodesic lines, which are “the most 
straight lines” on the surface. In particular, if there are straight lines which stay on a 
surface (e.g., the case of a ruled surface), these ones are – obviously – geodesic lines; a 
particle which is acted upon by not one force and is launched along such a straight line 
travels through it corresponding to the principle of inertia, the constraint force 
vanishing. 

If the surface is given by the parametric equations 1 2( , )i ix x q q� , 1,2, 3i � , then 
the distance is written in the form 

1

0 d
P

P
l g q q s��� �� �� � ,   d

d
qq
s
�

�� � ,   
d d
d d
i ix x

g g
q q�� ��
� �

� � , (7.2.19') 

where the Greek dummy indices correspond to the summation with respect to 1 and 2. 
The Euler -Lagrange equations lead to 

� �d2 0
d

g
g q q q

s q
��

��� � �
�

(
� � �� �

(
,   1,2� � ; 

 

differentiating and noting that 

1
2

g gg
q q q q

q q q
�� �� ��

� �� �
� ��

( ((� �� � � �� �	 
( ( (� �
, 

 

we get the equations 

" #, 0g q q q�� � � 
�
 ��� � �� � ,   1,2� � , (7.2.19'') 

where we have introduced Christoffel’s symbol of the first kind. Multiplying by the 
normalized algebraic complement g�� , summing and using Christoffel’s symbol of 
second kind, there result the equations of the geodesic lines in the normal form 

0 

 
q q q� ��

�

� �
� N

�� � �� � O
! P

,   1,2� � ; (7.2.19''') 
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we find thus again the equations (6.2.29), the latter ones being deduced in the 
hypothesis of a uniform motion. In this last case (we have 2 /2 constT mv� �  too), 
we may write 

� �2 2
2 2 2

0 02
d d
d d
s sv g q q g q q v v
t t

� ��� � �� �� � � �� � � � , 
 

what was to be expected, because 1g q q��� �� � �  represents a first integral of the system 
of equations (7.2.19'''), where one of these equations may be replaced by the respective 
first integral. 

 
Figure 7.19.  Motion of a particle on a geodesic curve of a surface of rotation. 

Let us consider, in particular, the case in which the surface S  is a surface of rotation 
of parametric equations 1 cosx r �� , 2 sinx r �� , 3 ( )x z r�� � , where , ,r z�  are 
cylindrical co-ordinates (Fig.7.19); in this case, � �2 2 2 2 2d 1 d ds r r� ��� � � , 

d /dr� �� � . In the case of a uniform motion 2 2 2
0d ds v t� , obtaining thus the first 

integral 

� �2 2 2 2 2
01 constr r v� ��� � � ��� ; (7.2.20) 

we notice that the support of the constraint force passes through the rotation axis, so 
that a first integral of areas for the projection P �  of the particle P  on the plane 1 2Ox x  
reads 

2 2
0 0 constr r C� �� � �� � . (7.2.20') 

The solution of the problem is thus reduced to quadratures. Eliminating the time t  
between the two first integrals, we obtain � �2 2 2 2 4 2 21 d d d /r r r k� � ��� � � , 

2 2 2
0/k C v� , so that the equation of the geodesic curves passing through the point 

( 0 0 0 0, , ( )r z r� �� ) is given by 

" #
0

2

0 2 2
1 ( ) dr

r
k

k
� � �� �

��
��

� �
�� ; (7.2.21) 
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the constant k  of the family of geodesic lines is determined imposing the condition that 
the respective line passes through a second given point. If the geodesic curve 	  pierces 
the meridian C  of the point P  by an incidence angle i , then the components of the 
velocity v  along the meridian and the parallel of the point are cosv i  and sinv i , 
respectively. The moment of the velocity v  with respect to the axis of rotation 3Ox  
will be equal to C  (corresponding to the first integral of areas) and is given only by the 
component sinv i  with the arm level r  (Fig.7.19); it results that sinrv i C� . Because 

0v v� , one obtains Clairaut’s formula 

sinr i k� , (7.2.22) 

where k  is the constant of the family of geodesic lines (the ratio of the constants of the 
two first integrals). Reciprocally, if the relation (7.2.22) takes place for all the points of 
a curve on a surface, then that one is a geodesic line or a parallel of the surface of 
rotation. 

2.2 Other applications 
In what follows, some particular cases of motion of a particle will be presented, e.g., 

the motion of a particle on a circular helix; as well, some particular methods to solve 
problems of dynamics of the particle are considered, for instance the method of 
transformation of motions. 

2.2.1 Motion of a particle on a circular helix 
Let be a heavy particle, constrained to move on a circular helix of parametric 

equations 1 cosx R �� , 2 sinx R �� , 3 /2 tanx p R� � � �� � , where p  is the 
pitch of the helix, while �  is the angle made by the helix with a horizontal parallel of 
the circular cylinder, of radius R , on which the helix is enveloped (see Chap. 5, 
Subsec. 1.3.3, Fig.5.9); in general, we assume that the motion takes place in a resistent 
medium, characterized by a viscous resistance v� , 0� � . Euler’s equations of motion 
read 

mv F v� �� �� ,   
2mv F R� ��
� � ,   0 F R� �� � . 

 

If the initial velocity 0v  is directed so that 0� ��  (the particle “moves down” on the 
helix), then we have 

1 2 3cos (sin cos ) sin� � � �� � �i i i= , 

1 2cos sin� �� � �i iJ , 

1 2 3sin (sin cos ) cos� � � �� � � �i i i5 . 

 

so that, for the given force m�F g  we get the components 

sinF mg� �� ,   0F� � ,   cosF mg� �� � .  
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The equation of projection along the tangent leads to 

� �sin 1 ktgv e
k

� �� � ,   k
m
�

� , (7.2.23) 

where we have put the initial condition (0) 0v � . But / cosv R� �� � � , so that we 
obtain ( (0)tanR h� � � ) 

� �2
sin2

1
tan 2

kth g
kt e

R k R
��

�
�� � � � . (7.2.23') 

In particular, in the case of falling in vacuum ( 0� � , hence 0k � ), we develop 
into series the exponential function, obtaining 

sinv gt �� ,    
2 sin2

tan 4
h gt

R R
��

�
� � . (7.2.23'') 

The other two intrinsic equations give the components of the constraint force. 

2.2.2 The simple pendulum in a motion of rotation 

Let us suppose that the vertical circle on which moves a heavy particle (in particular, 
the simple pendulum considered in Subsec. 1.3.1) is rotating with a constant angular 
velocity �  around its vertical diameter. The co-ordinates of the particle  are 

 
Figure 7.20.  Simple pendulum in a motion of rotation. 

1 sin cosx l t� �� ,   2 cos sinx l t� �� ,   3 cosx l �� � ,  

where the applicate 3x  is directed towards the local ascendent vertical (Fig.7.20). 
Because the constraint is rheonomic, we use Lagrange’s equation (6.2.21), where 

� �2 2 2 21 sin
2

T ml � � �� �� ,   d sin
d

Q m mgl �
�

� � � �
rg ;  

we obtain thus 
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2 sin cos sin 0g
l

� � � � �� � ��� . (7.2.24) 

Introducing the non-dimensional variable t� �� , we also may write this equation 
in the form ( d dt� �� , d /d� � �� � ) 

(cos )sin� � � ��� � � ,   2
g
l

�
�

� ; (7.2.24') 

multiplying by 2��  and integrating, one obtains the first integral 

� �2 2sin 2 cos const� � � �� � �� , (7.2.24'') 

the equation ( )� � ��  of the trajectory being thus obtained by a quadrature. 
The above considerations are valid for pendulary motions as well as for circular 

ones. 

2.2.3 Transformation of motions 
We – often – have seen that in the study of a motion one may use the results obtained 

for other simpler motions. For instance, we have seen that the study of arbitrary 
tautochronous motions is reduced to the study of rectilinear tautochronous motions; that 
is, in fact, a transformation of motions. 

In Subsec. 2.1.5, an interesting analogy between the equilibrium of a perfectly 
flexible, torsionable and inextensible thread and a motion of a particle on a 
brachistochrone has been stated; that one may be considered as a transformation of 
motion too. 

The motion of a particle on a smooth surface may be studied by means of the 
equations (6.2.24) with respect to Darboux’s trihedron. Let us deform the surface, 
assuming that this is possible, so that the lengths of the lines drawn on the surface do 
remain invariable; in such a transformation, also the geodesic curvatures remain 
invariant. Let us modify the force F  so that its projection on the plane tangent to the 
surface (hence, the components F�  and gF ) do remain unchanged; in this case, the first 
and the third equation (6.2.24) which specify the motion remain – further – valid, and 
the motion is the same as in the first case (the study of this new motion may be much 
more simple); obviously, the constraint force given by the second equation (6.2.24) is 
another one. In the case of a developable surface, the problem may be – eventually – 
reduced to a plane problem. For instance, the trajectory of a heavy particle constrained 
to move on a vertical circular cylinder is obtained by enveloping on it a parabola of 
vertical axis (obtained by the motion of a heavy particle in a vertical plane). We notice 
that, in Subsec. 2.2.1, we have considered the case of a heavy particle constrained to 
move on a circular helix, which is a geodesic line of the circular cylinder on which lays 
the curve; but that problem is different from that mentioned above, which may be 
solved also by means of the equation (7.1.59'). If the initial velocity vanishes or is 
directed towards the local vertical, then the trajectory is just this vertical, which is a 
geodesic line of the circular cylinder too (in this case, 0gF � ), and the equation 
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(7.1.59') leads to Torricelli’s formula (7.1.28''). Analogously, the trajectory of a heavy 
particle constrained to move on a cone of rotation of vertical axis is obtained 
enveloping on this cone the plane trajectory of a particle acted upon by a central force, 
the magnitude of which is constant. 

In the plane 1 2Ox x , let be a particle P  of mass m , acted upon by a given force 
which depends only on the position ( ( )�F F r ); the equations of motion are of the 
form 

1 2( , )mx F x x� ���� ,   1,2� � . (7.2.25) 

The space homographic transformation 

a x b
x

a x c
��� �

�
� �

�
� �

�
,   , , , consta b a c� ��� � ,   , , 1,2� � � � , (7.2.26) 

and the time transformation for which 

2
d

d
( )

t
k t

a x c� �
� �

�
 (7.2.26') 

Figure 7.21.  Transformation of a spherical motion. 

lead to the motion of a particle P �  acted upon by a force which depends only on the 
position ( ( )� � ��F F r ) too; P. Appell showed that the trajectory of the particle P �  is 
the homographic transformation of the trajectory of the particle P , the direction of the 
force �F  being also the homographic transformation of the direction of the force F . In 
particular, if F  is a central force, then the force �F  is a central one too or has a fixed 
direction. One may also prove that the most general transformation of the form 

( )x x� �� �� r , 1,2� � , d ( )dt t�� � r , so that for any ( )�F F r  to have ( )� � ��F F r , 
is a homographic transformation. 
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One may imagine also other transformations of interest, e.g., the transformation of a 
spherical motion (on a sphere) in a plane motion. Let thus be a sphere �  of radius 
equal to unity (for the sake of simplicity) and of centre O , and a plane �  tangent to 
the sphere at the point O �  (Fig.7.21). By a central transformation, used in the 
geographic map technique, to a point P  of longitude �  and colatitude �  on the sphere 
we make to correspond a point P � , of polar co-ordinates ,� � , at which the radius OP  
pierces the plane � ; thus, to the straight lines of the plane correspond great circles of 
the sphere and inversely. We notice that tan� �� , � �� . If the particle P  is of 
mass equal to unity, then the corresponding equations of motion on the sphere read 

� �2d dsin ( , )
d dt t

�� � � �� ,   � �22

2
d dsin cos ( , )

dd tt
� �� � � � �� � ; (7.2.27) 

as well, the equations of motion of a particle P �  of mass equal to unity in the plane �  
are written in the form 

� �2 2

2
d d ( , )

dd
R

tt
� �� � �� �

��
,   � �2d d ( , )

d dt t
�� � � ��

� �
. (7.2.27') 

P. Appell showed that, in the case of a central transformation for which 
2d cos dt t� �� , the equations (7.2.27) become (7.2.27'), where 2cosR � �� , 

2cos� � �� . Obviously, the plane motion may be studied easier than the spherical 
one. 

2.2.4 Motion on synchronous curves and surfaces 

Let be – in a fixed plane – a family of curves , -C , which depend on a parameter 
and pass through the fixed point O . Let us launch from O , at the initial moment 

0t t� , with initial velocities of equal modulus 0v , identical particles P , acted upon by 
forces which derive from a given potential; the locus of the positions of the particles P  
at the same moment t  is the curve 	 . The curves , -	  form a family of curves which 
depend on the parameter t  and are called synchronous curves of the curves , -C . If 
the family of curves , -C  belongs to the three-dimensional space, then the locus of the 
positions of the particles P  at the same moment t  is a surface � ; the family of 
surfaces , -�  depends on the parameter t  and forms the synchronous surfaces of the 
curves , -C . 

Euler showed that, if 0 0v � , the given force corresponding to a gravitational field, 
the lines , -C  being straight lines in a vertical plane and passing through O , then the 
synchronous curves , -	  are circles. 

Let be the family of lines , -C , called trajectories, which pass through the point O , 
and the family of lines , -C � , called synodal lines, which pass through the same point. 
One may prove that there exists an infinity of given conservative forces F  so that a 
particle departing from O  with a given initial velocity, along one of the lines , -C , 
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reaches a point P  in the same interval of time in which it would reach it along that 
curve , -C �  which would pass through the same point. Obviously, the families of 
curves , -C  and , -C �  may invert their rôles. We mention that, if the synchronous lines 
are orthogonal to the trajectories, in a plane motion, then the latter ones coincide with 
the synodal lines, being brachistochrones for the considered forces. These problems 
have been studied by Fouret, Saint-Germain and Vâlcovici. 

2.3 Stability of equilibrium of a particle 

In what follows, we make some considerations concerning the stability of 
equilibrium of a free or constraint particle, completing thus the results in Chap. 4, 
Subsec. 1.1.5; the results thus obtained will be then used for representations in the 
phase plane. 

2.3.1 Stability of equilibrium of a free particle 

In Chap. 4, Subsec. 1.1.7, we have presented the Lagrange-Dirichlet theorem, which 
states that a position 0P  of a free particle P , acted upon by a field of conservative 
forces is a position of stable equilibrium if the simple potential U  has an isolated 
maximum at that point. The demonstration which has been given has rather an intuitive 
character; we will use the conservation theorem of mechanical energy for a rigorous 
demonstration. 

We notice that the potential ( )U r  is determined making abstraction of an additive 
constant; choosing the point 0P  as origin O , we may take (0) 0U � . Let be a closed 
convex surface S  which contains the point O  (e.g., a sphere of centre O ), of arbitrary 
small dimensions, so that in the interior and on the surface the function ( )U r  be 
negative, vanishing only at O . We may assume that there exists 0p �  sufficiently 
small so that to have U p� � , hence 0U P� �  on the surface S . Let 0P  be an 
initial position of the particle P  in the interior of the surface S , the corresponding 
velocity being 0v ; taking into account the conservation theorem of mechanical energy, 
we may write � �2 2

0 0/2 /2mv U mv U� � � , 0 0U � . We may determine the 
position and the magnitude of the velocity at the initial moment by the condition 

2
0 0/2mv U p� � ; to do this, it is sufficient – for instance – to take 2 /2 /2mv p� , 

0 /2U p� � . The first relation shows that 0 /v p m� �� � . As well, the function U  
being continuous and vanishing at the origin, it results that there exists 0� �  so that 

0OP �� , corresponding 0 /2U p� � . Thus, if – in the interior of the surface S  – we 
give to the particle an initial position at a distance of O  less than � , with an initial 
velocity less than � � , then the conservation theorem of mechanical energy leads to the 
inequality 2 /2mv U p� � , which proves that the particle cannot come out from the 
interior of the surface S ; indeed, if the particle P  would reach the surface S , then the 
sum U p�  would become negative, situation impossible if we take into account the 
previous relation. One may thus state that it corresponds an 0� � , so that OP �� , 
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( )P P t� . As well, 2 /2mv p� , because 0U � ; it results ( ) 2 /v t p m�  
0��� � . The conditions that the point 0P O�  be a stable position of equilibrium are 

thus fulfilled and the Lagrange-Dirichlet theorem is proved for a free particle. For 
instance, for a free particle in rectilinear motion, acted upon by a force ( )F x kx� � , 

0k � , which derives from the simple potential 2( ) /2U x kx� � , the origin of the co-
ordinate axis represents a stable position of equilibrium. 

This demonstration remains valid in the case of a generalized potential U , where the 
rôle of the function which has an isolated maximum is played by the scalar potential 

0U . 
In what concerns the reciprocal of this theorem, the problem is not sufficiently 

clarified. One may show that, in certain particular cases, a point may represent a stable 
position of equilibrium, the potential U  having not an isolated maximum at that point. 
Analogously, it is proved that a position of equilibrium 0P  is a position of labile 
equilibrium if the potential U  has an isolated minimum at that point. The conditions 
imposed by the Lagrange-Dirichlet theorem are – obviously – sufficient conditions. A 
more profound study of this problem will be made latter, after Lyapunov, in connection 
with the study of the stability of motion in the frame of Lagrangian or Hamiltonian 
mechanics. We mention the affirmation of T. Levi-Civita who said that “the instability 
is the rule, while the stability is rather an exception”. 

In the case of a non-conservative field of forces, the positions of equilibrium are 
recognized – in general – using the property of definition, that is perturbing arbitrarily 
such a position and studying the returning modality of the particle. 

2.3.2 Stability of equilibrium of a particle subjected to constraints 

In the case of a particle constrained to stay on a fixed smooth surface S , one may 
introduce the generalized forces ( , )Q u v� , 1,2� � , given by (4.1.47), as we have 
seen in Chap. 4, Subsec. 1.1.7; if 1 2d d d ( , )Q u Q v U u v� � , that is a total 
differential, then we are led to the study of the extrema of the function ( , )U U u v� , 
where u  and v  are generalized co-ordinates, the holonomic, scleronomic constraints 
being eliminated. We may always make so as to have a maximum equal to zero for 
U  at the point 0P  coinciding with the origin ( (0, 0) 0U � ). We draw a closed curve 
C  around the point 0P , on the surface S , so that to have 0U �  on that curve; 
hence, there exists 0p �  so that 0U p� �  on C . Displacing the particle from 0P  
at a neighbouring point, in the interior of the curve C , we may follow the 
demonstration given in the previous subsection, so that the Lagrange-Dirichlet 
theorem is applicable in this case too. 

Analogously, if the particle is constrained to stay on a fixed smooth curve C , we 
have seen in Chap. 4, Subsec. 1.1.7 too that the generalized force ( )Q q , given by 

(4.1.48) may be introduced, hence the function ( ) ( )dU q Q q q� � , being thus led to the 

study of the isolated maxima of that function. We assume that (0) 0U �  at the point 
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0P ; then we follow the previous demonstration, displacing the particle in the interior of 
an arbitrary interval " #,� �� , which contains the point 0P . 

Using the potential energy V  given by (6.1.14), (6.1.14') and starting from the 
Theorem 4.1.3, we may, finally, state 
Theorem 7.2.2 (Lagrange-Dirichlet). The position of equilibrium 0P  of a particle P  
subjected to holonomic, scleronomic constraints, in the presence of a field of 
conservative forces, the potential energy having an isolated minimum at that point, is a 
stable position of equilibrium. 

This statement contains the case of the free particle as well the case of a constraint 
one (in this case the potential energy must be expressed by means of generalized co-
ordinates, eliminating the constraint relations), where the conservative field may derive 
from a simple or a generalized potential. If the potential energy has an isolated 
maximum at the point 0P , then that point represents a position of labile equilibrium. 

In particular, in the case of a gravitational field 3( )V mgx�r , one obtains the 
Theorem 4.1.2 of Torricelli for a particle constrained to stay on a fixed smooth curve or 
on a surface having the same properties. 

2.3.3 Small oscillations of a heavy particle around the lowest point of a surface 

Let be a surface S  which passes through the origin O , so that the tangent plane at 
this point is horizontal, and the surface is over that plane in the vicinity of the respective 
point. Corresponding to Torricelli’s theorem, the point O  is a stable position of 
equilibrium for a heavy particle P . Taking the 3Ox -axis along the local ascendent 
vertical, the surface S  may be represented in the neighbourhood of the point O  by a 
Maclaurin series of the form 

2 2
1 2

3 1 2
1 2

1 ( , )
2
x x

x x x
R R

�� �� � �	 

� �

, (7.2.28) 

where 1R  and 2R  are the principal radii of curvature (the extreme values of the radii 
n� ) of the surface at O , while 1 2( , )x x�  corresponds to terms of at least the third 

degree with respect to the co-ordinates 1 2,x x . Let us consider the small motions of the 
particle P  around the point O . The simple potential which corresponds to the 
gravitational field is 3 3( )U x mgx� � ; eliminating the constraint relation (7.2.28) and 
neglecting terms of higher order, we obtain 

2 2
1 2

1 2
1 2

( , )
2
x xmg

U x x
R R

� �
� � �	 


� �
 

 

and the force which acts upon the particle is given by 

1 2
1 2

1 2
grad

x x
U mg

R R
� �� � � �	 

� �

F i i . 
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We obtain thus the equations of motion 

2
1 1 1x x�� ��� ,   2

2 2 2x x�� ��� ,   2
1

1

g
R

� � ,   2
2

2

g
R

� � . (7.2.29) 

Integrating, it results 

1 1 1 1cos( )x a t� �� � ,   2 2 2 2cos( )x a t� �� � , (7.2.29') 

where the amplitudes 1 2,a a  and the phase shifts 1 2,� �  are determined by the initial 
conditions. In particular, if 1 2R R R� � , then one obtains the small motions 
corresponding to the spherical pendulum (see Subsec. 1.3.7); the general case will be 
studied in Chap. 8, Subsec. 2.2.5. 

2.3.4 Representations in the phase plane. Topological methods 

In Chap. 6, Subsec. 2.2.4 we have seen how one may study the motion of a particle 
with a single degree of freedom in the conservative case of equation ( )q f q���  in the 
phase space of co-ordinates ,q p ; the results thus obtained may be applied for linear 
systems as well as for non-linear ones. As an example, we consider the simple 
pendulum (see Subsec. 1.3.1) for which (q �� ) 

 
Figure 7.22.  Simple pendulum; representation of the motion in the phase plane. 

2 22 cosp h� �� � ,   p �� � ,   2( ) cosV � � �� � ,   2 g
l

� � ,    
22h h�� ,   cosh �� � , 
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h  being a non-dimensional constant, while �  is the amplitude. Representing 2 ( )V �  
as a function of �  (Fig.7.22), we see that the motion takes place only for " #1,1h � � ; 
we may have also 1h � , but it does not correspond to a real angle � , the motion 
being – in this case – circular. The condition 2 ( )V h� �  allows to draw the curves 

( )p p �� , symmetric with respect to the O� -axis, function of various values of h , in 
the phase space. For ( 1,1)h � � , e.g., for 0h � , the motion is oscillatory (we have a 
simple pendulum). If 1h � , then the motion is asymptotic, obtaining the lines of 
separation (drawn with a thicker line) in the phase space; for � ��  it corresponds a 
labile position of equilibrium. For 1h � �  it results a stable position of equilibrium (a 
point in the phase space), corresponding 0� � . Noting that, for 0p � , q  increases at 
the same time as t , we have indicated by an arrow the direction of the motion in the 
phase space. 

 
Figure 7.23.  Topological structure of a phase trajectory depending on a parameter. 

We notice that the separation lines are phase trajectories of the representative point 
in the phase space; they do not allow to pass from a type of motion to another one. We 
have seen that a singular point is specified by the equations ( ) 0f q � , 0p � , all the 
other points being ordinary points; it results that an ordinary point is characterized by a 
well defined direction of the tangent to the phase trajectory passing through this point. 
We may thus state 
Theorem 7.2.3 (Cauchy). Through each ordinary point of the phase plane passes a 
phase trajectory and only one. 

We notice that the equation (6.2.39') defines a field of vectors of components ,q p , 
hence a field of velocities in the phase plane; hence, the singular point represents the 
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point at which the velocity in the phase plane vanishes. The topological methods allow 
to study the general topological properties of the phase trajectories defined by the 
equation (6.2.39'). Taking into account the form of the phase trajectories in the 
neighbourhood of the points of stable equilibrium ( 1h � � ), such a singular point is 
called centre; analogous considerations lead to the denomination of saddle point for a 
singular point of labile equilibrium ( 1h � ). 

 
Figure 7.24.  Topological structure of the phase trajectory of a simple  

pendulum in motion of rotation. 

The topological structure of the phase trajectories may vary for some particular 
values of the parameter which appears in a first integral. After H. Poincaré, we 
introduce the parameter in the differential equation in the form 

( , ) ( , )/f q V q q� �� �( ( , the positions of equilibrium being situated along the curve 
C  of equation ( , ) 0f q � �  (Fig.7.23). For various values of the parameter �  one 
obtains three positions of equilibrium (for � � ��  there correspond the points 

1 2 3, ,P P P� � �  of ordinates 1 2 3, ,q q q� � � ) or one position of equilibrium (for � � ���  there 
corresponds the point P ��  of ordinate q �� ); one passes from three positions to only one 
position by critical values of the parameter �  ( cr cr,� � �� ��� ), to which correspond the 
points cr cr,P P� �� , of ordinates cr cr,q q� �� , and the points ,P P� ��  of ordinates ,q q� �� , 
respectively. Noting that d /d ( , )/ ( , )qq f q f q�� � �� �� � , it follows that the critical 
points correspond to the solutions of the equation ( , ) 0qf q �� �  (for which the tangent 
to the curve ( , ) 0f q � �  is parallel to the axis Oq ), assuming that ( , ) 0f q� �� � . One 
may thus state that the points of equilibrium appear and disappear two by two. We 
suppose that the curve C  is a Jordan one, which divides the plane in two regions. We 
notice that a straight line � � ��  pierces the curve C, for instance at the point 3P � ; if 

( , ) 0f q � � � , hence if ( , ) 0qV q �� � � , below the curve C, then, for q  increasing, 

3( , ) 0qV q �� � � �  on C  and ( , ) 0qV q �� � � , over the curve C. It follows that 3( , )V q �� �  
represents an isolated minimum of the potential energy, and the Lagrange-Dirichlet 
theorem allows to state 
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Theorem 7.2.4 (Poincaré). The positions of equilibrium of a particle which moves after 
the law ( , )q f q ����  in a conservative field are stable if the domain ( , ) 0f q � �  is 
under the curve ( , ) 0f q � � , 0q � , 0� � , and labile if this domain is over that one 
(in Fig.7.23 the hatched domain corresponds to ( , ) 0f q � � ). 

Let us apply these results to the case of the simple pendulum in a motion of rotation 
(see Subsec. 2.2.2), governed by the equation (7.2.24') of the form 

( , ) (cos )sinf� � � � � �� � ��� . The curves C  are given by the straight lines 0� �  
and � �� 2  and by the curve arccos� �� . Applying the Theorem 7.2.4, we find 
stable branches of the curve C  (the points of equilibrium of centre type are denoted by 
whole little circles, i.e., arccos� ��  and 0� � , 1� � , and � �� 2 , 1� � � ), as 
well as labile branches (the points of equilibrium of saddle type are denoted by empty 
little circles, i.e., 0� � , 1� �  and � �� 2 , 1� � �  (Fig.7.24). The points 0� � , 

1� �  and � �� 2 , 1� � �  are points of ramification of the equilibrium, while the 
values cr 1� � 2  are critical values (of bifurcation) of the parameter � , corresponding 
to those points. Taking into account (7.2.24'), it results that 0� � , the domains of the 
figure being thus restraint; as well, to have 1� �  the angular velocity �  must be 
sufficiently great. If a separation line passes through the singular point 0� �� , 0� � , 
then the first integral (7.2.24'') becomes 

Figure 7.25.  Phase space representation of the motion of a simple pendulum in rotation for 
various values of the parameter � : 1� � �  (a); 1 0�� � �  (b);  

0� �  (c); 0 1�� �  (d); 1� �  (e). 

2 2sin 2 (1 cos )� � � �� � �� ,   22 sin cos
2 2
� �� �� 2 �� ; (7.2.30) 
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if such a line passes through the singular points 0� �� , � �� 2 , then the respective 
first integral has the form 

2 2sin 2 (1 cos )� � � �� � �� ,   22 cos sin
2 2
� �� �� 2 �� . (7.2.30') 

For 1� � � , the singular points of saddle type 0� �� , � �� 2  become singular points 
of centre type (Fig.7.25,a), passing through cr 1� � � � ; for 1 0�� � �  appear two 
separation lines 

 1C  and 
 2C , the first of those ones surrounding two centres, while the 

point O  becomes a singular point of saddle type (Fig.7.25,b). If 0� � , hence if 
� � � , then the curves 

 1C  and 
 2C  coincide with the curve C  and form only one 

line of separation; in this case, the centres are of abscissae /2� �� 2  (Fig.7.25,c). For 
0 1�� �  one obtains two separation lines 

 1C  and 
 2C , corresponding the equations 

(7.2.30) and (7.2.30'), respectively, which pass through the singular points of saddle 
type 0� �� , 0� � , and 0� �� , � �� 2 , respectively; in the interior of the loops of 
the curve 

 1C  there exist two other singular points of centre type, having the abscissae 
2arccos� �� 2  (Fig.7.25,d). If cr 1� � ��� � , then the curve 

 1C  coincides with the 
singular point O , which becomes a point of centre type; for 1� �  remains only one 
separation line C  (Fig.7.25,e). We observe thus that the separation lines correspond to 
phase trajectories with different topological aspects. 

 
Figure 7.26.  Potential function versus generalized co-ordinate diagram. 

The above considerations allow to state, without demonstration, 
Theorem 7.2.5 (Poincaré). The closed phase trajectories of a particle which is moving 
after the law ( , )q f q ����  in a conservative field may surround only an odd number of 
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singular points, the number of centres being greater than the number of singular points 
of saddle type. 

Sometimes, it is difficult to build up phase trajectories by analytical methods, so that 
approximate methods, i.e., graphical or grapho-analytical methods are necessary. Thus, 
we may give a graphic representation of 2 ( )V q  as function of q  (Fig.7.26); drawing a 
parallel of applicate 1h  to Oq , we may measure the difference 2 ( )Q Q V q h� � � . By 
the formula (6.2.40), the radical of this difference allows to specify the representative 
point P  in the phase plane, setting up the phase trajectory C  by points. Starting from 

1h h� , we obtain the curve 
 1C  a.s.o.; to 0h h�  corresponds the singular point of 

centre type 0P . 

Figure 7.27.  Phase space representation of the motion of a simple  
pendulum in a resistent medium. 

In the case of a dissipative mechanical system with a single degree of freedom, of 
equation ( ) ( )q f q F p� ��� , ( ) 0pF p � , we start from the considerations made in 
Chap. 6, Subsec. 2.2.5. Multiplying this equation, which corresponds to linear or non-
linear damped free oscillations, by dq  and integrating along a closed phase trajectory, 
it results 

d ( )d ( )d 0p p f q q F p q� � �� � �� � � ;  

noting that ( )d 0f q q ���  too, we get 

( )d ( ) d 0
T

F p q F p p t� �� �� ,  

where we have integrated on a time interval equal to a period T . Because the product 
( )pF p  maintains a constant sign, it results that we cannot have such a relation, and the 

motion cannot be periodical. 
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We have seen in Subsec. 1.3.3 that, in the case of the motion of the simple pendulum 
in a resistent medium, the angular velocity is given by (7.1.53''); the condition 

0 0� ��� � �  for 0� �  leads to 

� �2
2 2

2 2 2 2
0 4 4

2 2e cos 2 sin
4 1 4 1

k k
k k

�� �� � � �� �� � �	 
� �� �
�� � � , (7.2.31) 

where the signs 2 correspond to 0 0�� � , respectively. The points 0� �� , n� �� , 
n � � , correspond to positions of equilibrium; the equilibrium is stable for n  even 
(the corresponding singular points are of focus type), while for n  odd the equilibrium 
is labile (there correspond singular points of saddle type (Fig. 7.27)). If 

� �2
2

2 2
0 4

2 1 e
4 1

k n
n k

��� � �
�

� ,   n  odd, (7.2.32) 

then we notice that for 0 01� ��� �  the particle oscillates, the motion being damped 
around the stable position of equilibrium 0� �� , 0� � ; if 0 01� ��� � , then one obtains 
the asymptotic motion of a particle. For 001 03� � �� �� � �  the particle effects a complete 
rotation and then its oscillatory motion is damped; in general, if 0 0 0, 2n n� � � �� �� � � , n  
odd, then the particle effects ( 1)/2n �  complete rotations, passing then in a regime of 
damped oscillations around a stable position of equilibrium. 

 
Figure 7.28.  Application of Liénard’s method in a phase space representation. 

As in the case of conservative systems, in the case of non-conservative (dissipative) 
systems we may use approximate methods of phase trajectories in the phase plane. For 
example, in the case in which ( )f q q�  one may use Liénard’s method. Thus, one 
draws first the curve 	  of equation ( )q F p� �  (Fig.7.28); starting from the 
representative point ( , )P q p , one draws PP � , P 	� � , parallel to Oq , and then 
P P� �� , parallel to Op , P Oq�� � . A perpendicular D  at P  to P P��  is inclined with 
respect to Oq  by the angle �  given by " #tan ( ) /q F p p� � � ; taking into account 
(6.2.43), it results that the straight line D  defines the slope of the phase trajectory at 
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P . Step by step, starting from an initial position, we obtain a polygonal line which 
approximates the searched phase trajectory. We mention also other approximate 
methods of computation, e.g., Drobov’s method, Pell’s method, the “delta” method etc. 

In the above conditions, we have supposed that ( ) 0pF p � , hence that this product 
has a constant sign. But if this product is positive for small values of p , then the state 
of equilibrium is not yet known, a motion being developed starting from this state; if the 
product becomes then negative, the damping force being opposite to the velocity for 
great values of p , then the amplitude begins to be damped. The respective motion is 
automaintained and will be considered in Chap. 8, Subsecs 2.1.4 and 2.2.7. 
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Chapter 8 

DYNAMICS OF THE PARTICLE IN A FIELD OF 
ELASTIC FORCES 

In the problems studied till now, we considered – especially – the action of a 
gravitational field (a field of parallel forces, the supports of which pass through a fixed 
point situated in a plane at infinity) on the motion of a particle. We consider now the 
case in which the particle is acted upon by central forces (the supports of which pass 
through a fixed point at a finite distance). First of all, the general case of arbitrary 
central forces is presented, then the cases in which – after Bertrand’s theorem – the 
orbit is a closed curve (the case of elastic forces and the case of forces of Newtonian 
attraction are considered). In this chapter we study, in detail, the motion of a particle in 
a field of elastic forces. 

1. The motion of a particle acted upon by a central force 
In what follows, we firstly give some general results concerning the equations of 

motion of the particle subjected to the action of a central force; we make also a 
qualitative study of the trajectory. Then it is shown that the problem of two particles 
leads to such a case of motion. 

1.1 General results 
The study of the motion of a particle subjected to the action of a central force leads 

to Binet’s equation and formula, for which one obtains interesting qualitative results; 
Bertrand’s theorem puts in evidence the two cases in which the trajectory is a closed 
curve. 

1.1.1 Central forces. Binet’s equation 
Let us consider a particle P  acted upon by a central force F ; the equation of motion 

is of the form 

m F
r

��� rr . (8.1.1) 

As it was shown in Chap. 6, Subsec. 1.2.6, in this case the trajectory is a plane curve C; 
taking the plane of the curve as 1 2Ox x -plane and using the results in Chap. 5, Subsec. 
1.2.4, we may write the equations of motion in polar co-ordinates in the form 

469 
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� �2m r r F�� ���� ,   � �2 0m r r� �� �� ��� . (8.1.1') 

The second equation leads to the first integral (corresponding to the formula 
(6.1.59)) 

22 r rv C��� � ��I ,   2 0
0 0 0 0 0 0sin constC r r v r v�� �� � � �� , (8.1.2) 

Figure 8.1.  Particle acted upon by a central force. 

where I  is the areal velocity of the particle P , the constant C  being specified by the 
initial conditions (Fig.8.1) 

0 0( )r r t� ,   0 0( )t� �� ,   0 0( )v v t� ,   0 0( )t� ��� � ,   0 0 0( , )� � � r v . (8.1.1'') 

Taking into account (8.1.2), the first equation (8.1.1') may be written in the form 

mr F��� ,   

� � � � � �
22

3, , , ; , , , ; , , , ;
mvmCF r r t F r r t F r r t
rr
�� � � � � �� � � �� � �� � �  

(8.1.3) 

too, where we have introduced the apparent force F  (we notice that the supplementary 
force 2 /mv r�  is of the nature of a centrifugal force); the system of differential 
equations (8.1.2), (8.1.3) determines the functions ( )r r t� , ( )t� �� , the three 
integration constants which appear being specified by initial conditions. If 

( , ; )F F r r t� � , then the motion along the radius vector is given by the unidimensional 
equation of Newton, where the apparent force F  is used, the angle �  being then 
obtained from the integral of areas. 

Successively, we have 

� �2
d d d 1
d d d
r C r

r C
rr

�
� � �

� � � ��� ,   � � � �2 2 2

2 2 2
d 1 d 1
d d

Cr C
r rr

�
� �

� � � ����  
 

and, replacing in the equation (8.1.3), we obtain Binet’s equation (we suppose that 
/ 0F F t� ( ( �� ) 
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� �2 2

2 2
d 1 1
d

Fr
r r mC�

� � � ,   � �, , ,F F r r� �� �� ; (8.1.4) 

analogously, by eliminating r�  and ��  from the expression of the force F , we get a 
differential equation of second order, which determines the trajectory of the motion in 
the form 

1 2
1 ( ; , )f C C
r

�� . (8.1.4') 

The initial conditions 

0 1 2
0

1( ; , )f C C
r

� � ,   0 0
0 1 2

0

cot
( ; , )

r
f C C

C r
��� � � � �

�
, (8.1.4'') 

where we have put 0 0 0cosr v ���  and /f f �� � ( ( , allow to determine the integration 
constants 1C  and 2C . The integral of areas specifies the motion on the trajectory in the 
form 

0
0 2

1 2

1 d
( ; , )

t t
C f C C

�

�

�
�

� � � . (8.1.5) 

Noting that d ( / ) d[ ( / )] dF r r r F r� � � �F r r r , the theorem of kinetic energy 
leads to 

0

22
0 ( , , , ; )d

2 2
r

r

mvmv
F t� � � � �� � � �� . 

 

If ( , )F F r �� � , hence if ( )F F r� , then we may write a first integral of energy, 
hence a first integral of Binet’s equation in the form 

� �
0

2
2
02 2

d 1 1 1 2 ( )d
d

r

r
v F

r mr C
� �

�
$ % $ %� � �* + * +& '& ' � , (8.1.6) 

noting that 2 2 2 2 2 2 2/v r r r C r�� � � ��� � ; we may obtain this result multiplying both 
members of Binet’s equation by d(1/ )/dr �  and integrating. The given force is, in 
this case, conservative and we may introduce the simple potential ( )U U r� , so that 

( ) ( ) d /dF r U r U r�� � . The first integral (8.1.6) becomes 

� � � �2 22 2 2

2
d 1 d ( )

2 2 d d2
mr mC mC r U r h

r r� �
$ %� � � �* +& '

� ,   

2

2( ) ( )
2
mCU r U r
r

� � ,   
2
0

0( )
2
mv

h U r� � , 
(8.1.6') 
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where we have introduced the apparent potential ( )U r  and the constant of energy h ; 
hence 

0 0
0 0 2

d(1/ ) d
( ) ( )

r r

r r
C C

� �� � �
� � � � �

� 2 �� �� ,   " #2( ) ( )r U r h
m

� � � , (8.1.6'') 

the trajectory in polar co-ordinates being thus specified. The two first integrals used 
above allow also to put in evidence the motion of the particle along the trajectory, 
establishing its parametric equations in the form 

0

2
0

1 ( )dt t r
C

�

�
� �� � � ,   

0
0

d
( )

r

r
t t

�
� �

� 2 � . (8.1.6''') 

If the potential is of the form ( ) / sU r k r� , constk � , s � � , then the above 
integrals may be expressed by elementary functions only if 2s � �  (harmonic 
oscillator), 1s � � , 1s �  (Keplerian motion) and 2s � ; if 6, 4, 3, 4,6s � � � , then 
these integrals may be expressed by means of elliptic functions. 

The sign before the radical is determined by the sign of the initial velocity 
0 0( )r r t�� � , as long as ( ) 0r� � . If ( ) 0r� � , it results that 0

0 0rv r� �� , so that the 
velocity is normal to the radius vector at the initial moment; the motion along the radius 
vector takes place as this radius would be fixed, the force which acts upon the particle 
being F . If this apparent force is positive (repulsive force), then r  is increasing and 
takes the sign +; otherwise, one takes the sign –. In particular, let us suppose that 

0F �  at the initial moment; in this case, the particle remains immovable for an 
observer on the radius vector, because the particle moves along this radius as if it would 
be fixed, the particle being launched without initial velocity at a point in which the 
apparent force vanishes. Hence, the trajectory is a circle of radius 0r , the motion being 
uniform (because the areal velocity is constant). 

To have a circular trajectory, it is necessary that 0 /2� �� 2  (the velocity be 
normal to the radius vector at the initial moment, so that 0 0C r v� 2 ) and 

2 3
0 0( ) / 0F r mC r� � . If 0r r�  (circular motion) and 0� ��� �  (uniform motion), 

then – during the motion – the equation (8.1.4) is identically verified; the initial 
conditions being fulfilled, the theorem of uniqueness ensures the searched solution. The 
velocity at the initial moment has thus the modulus 

0 0
0

( )F r r
v

m
�

� ; (8.1.7) 

hence, at the initial moment, the force F  must be of attraction ( 0( ) 0F r � ). 
The relation (8.1.4) may be written also in the form 

� �2 2

2 2
d 1 1
d

mC
F

r rr �
$ %� � �* +& '

; (8.1.8) 
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we obtain thus Binet’s formula, which allows to solve the inverse problem: to determine 
the central force which, applied upon a given particle, imparts a plane trajectory to it, 
after the law of areas with respect to a fixed pole. Taking into account the equation 
(8.1.4') of the trajectory, we can write 

" #
2

2 ( ) ( )mCF f f
r

� ���� � �  (8.1.8') 

too, where 2 2/f f ��� � ( ( . If beforehand a form of F  is not imposed, that one has a 
certain non-determination, taking into account the equation of the trajectory (the 
equation which links r  to � ); eliminating � , one obtains ( )F F r� , form used the 
most times. 

For instance, in case of trajectories to which corresponds the equation 

coskr a k b�� � ,   , , consta b k � , (8.1.9) 

choosing the fixed point as origin, we get 

� �2 22

3

( 1)
( ) ( 2)k k

k a bC
F r k b

r r�

� �$ %
� � � �* +

& '
; (8.1.9') 

in particular, these trajectories may be conics with the pole at the focus ( 1k � � ) or at 
the centre ( 1k � ), Pascal limaçons ( 2k � , 0b � ), lemniscates etc. 

1.1.2 Qualitative study of orbits. Bertrand’s theorem 
Usually, the trajectory of a particle in a central field of forces is called orbit (even if 

it is not a closed curve). The relations (8.1.6')-(8.1.6''') determine the orbit and the 
motion on it only if r� , �  and t  are real quantities, hence if ( ) 0r� � ; the apparent 
potential must verify the condition ( ) 0U r h� � , which determines the domain of 
variation of r , corresponding to the motion of the particle; the solutions of the equation 

( ) 0U r h� �  (8.1.10) 

specify the frontier of the domain. From (8.1.6') one may see that the radial velocity 
vanishes on the frontier ( 0r �� ), the angular velocity being non-zero ( 0� �� ); if  
we would have 0� ��  at a point other than the origin, then the first integral of areas 
would lead to 0C � , that is to a rectilinear trajectory; hence, at the respective points 
the velocity is normal to the radius vector. On the frontier, ( )r t  changes of sign, the 
respective point corresponding to a relative extremum for ( )r t . The relation (8.1.2) 
shows that ( )t��  has a constant sign, so that ( )t�  is a monotone function; the integrals 
(8.1.6''), (8.1.6''') must be calculated on intervals of monotony, the sign being  
chosen correspondingly. Let minr  and maxr  be the extreme values which may be taken 
by r ; the corresponding points on the orbit are called apsides. In this case, 
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maxmin0 r r r� � � . The roots of the equation (8.1.10) may be graphically 
determined, taking into consideration the intersection of the apparent potential 

( )U U r�  with the straight line U h� � ; the domain of variation of r  corresponds to 
( )U r h� �  (Fig.8.2). 

Figure 8.2.  Diagram ( )U r  vs r . 

Let us consider first of all the case of a motion to which corresponds the constant 3h  
of energy. The radius maxr  is finite, the orbit is bounded, while the trajectory is 
contained in the annulus determined by the circles minr r�  and maxr r�  (we assume 
that min 0r � ); the radii minr  and maxr  are called apsidal distances. The points for 
which minr r�  are called pericentres, while those for which maxr r�  are called 
apocentres. Noting that at an apsis the velocity is normal to the radius vector, which is 
the radius of a circle, it results that the trajectory is tangent to the concentric circles at 
the corresponding apsides. Choosing the origin of the angles after an apsis radius 
( 0 0� � ), called apsidal line, we may use the relation (8.1.6'') for two points of the 
same radius vector r  of the trajectory, on both sides of that line, 0r  being minr  or 

maxr ; it results that the trajectory of the particle is symmetric with respect to an apsidal 
line. The angle at the centre �  between two consecutive apsidal lines is constant; it is 
called apsidal angle and is given by 

max

min 2
d

( )
r

r

r
C

r r
�

�
� � . (8.1.11) 

It results that the angle at the centre between two consecutive pericentres (apocentres) is 
equal to 2� . From the above mentioned properties, it results that if one knows the arc 
of trajectory between two consecutive apsides, then one may set up geometrically the 
whole trajectory (Fig.8.3). From (8.1.2) it results that ��  has a constant sign, so that the 
particle is rotating always in the same direction around the point O . A bounded orbit is 
closed if, after a finite number of such rotations, the particle returns to a previous 
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position; thus, the condition 2 2 q� �� , q � �  must be satisfied. Otherwise, the orbit 
is open and covers the annulus " #maxmin ,r r r� . We also notice that the apparent 
potential ( )U r  has a maximum at a point in the interior of the annulus, corresponding 
to ( ) d ( )/d 0F r U r r� � . We mention that the equation ( ) 0r� �  can have more 
than two roots (the case of the constant 2h  of energy, Fig.8.2). In this case, one obtains 
two possible annular domains (contained between the circles of radii 1r  and 1r  or 2r  
and 2r , respectively); the motion takes place  in  that  domain  in  

 
Figure 8.3.  Orbit of a particle acted upon by a central force. 

which is the initial position given by 0 0( )r r t� . If min 0r � , then the particle passes 
through the pole O  or stops at that point. Assuming that 0C �  (otherwise, the 
trajectory is rectilinear), the term 2 2/2mC r�  allows to have 

0
lim ( )
r
U r

�
� �� , the 

“falling” towards O  being thus hindered. The condition of “falling” towards O  is 
given by the condition U h� � , written in the form 2 2 2( ) /2r U r mC hr� � � . To 
have min 0r �  it is necessary that 

2
2

0 0
lim ( )

2r

mCr U r
� �

�$ %& ' , 
 

hence that ( )U r  tends to zero at least as 2/A r , 2 /2A mC� , or as / nA r , 0A � , 
2n � . 

If max 0minr r r� � , then the trajectory is a circle of radius 0r , corresponding 
( ) 0F r �  and the constant of energy max4h U� �  (Fig.8.2); the considerations made 

at the previous subsection remain valid. 
One may prove 
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Theorem 8.1.1 (J. Bertrand). The only closed orbits corresponding to central forces 
are those for which 2s � � , 0k � , in any initial conditions, or 1s � , 0k � , in 
certain initial conditions, assuming a potential of the form ( ) / sU r k r� , constk � , 
s � � . 

1.1.3 Case of a force the modulus of which is in inverse proportion to the square of 
the distance to a fixed point 

Jacobi has considered the case in which the central force is of the form 
2( )/F r� �� , hence it is in inverse proportion to the square of the distance to the pole 

O . Binet’s equation (8.1.4) takes the form 

� �2

2 2
( )d 1 1

d r r mC
� �

�
� � � ; (8.1.12) 

by integration, one obtains 

1 2
1 cos sin ( )C C
r

� � � �� � � , (8.1.12') 

where ( )� �  is a particular integral, which may always be calculated by quadratures. 
The integration constants are easily obtained by initial conditions of Cauchy type. 

Analogously, we may consider central forces of the form 3/k r , constk � , which 
lead to the equation 

� � � �2

2 2
d 1 11 0
d

k
r rmC�

� � � , (8.1.13) 

wherefrom it results the general integral 

1 2
1 cos sinC C
r

�� ��� � ,   21 /k mC� � � . (8.1.13') 

1.2 Other problems 

We consider now two other problems, i.e.: the problem of two particles, which leads 
to the classical case of action of central forces and the problem of motion of a particle 
subjected to the action of a central force in a resistent medium. We study the 
phenomena of capture and diffraction too. 

1.2.1 The problem of two particles. Capture. Diffraction 
Let be two bodies which may be modelled by two particles 1P  and 2P  of position 

vectors 1r  and 2r  and of masses 1m  and 2m , respectively (Fig.8.4). We suppose that 
this system of particles is acted upon only by the internal forces 

21 12 12 21vers versF F� � � � �F F r r , 12 2 1 21� � � �r r r r , where 0F �  in case 
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of repulsive forces and 0F �  in case of forces of attraction. From the equations of 
motion 1 1 21m � ���r F , 2 2 21m ���r F , amplifying by 2m  and 1m , respectively, and 
subtracting, one obtains 

12 21m ���r F ,   21 12m ���r F ,   
1 2

1 1 1
m m m

� � , (8.1.14) 

where m  is the reduced mass. These equations describe the motion of the particle 2P  
with respect to the particle 1P  (as if the latter one would be fixed), as well as the motion 
of the particle 1P  with respect to the particle 2P ; in such conditions, the force 21F  and 
the force 12F  are central forces, respectively, and one may use the results previously 
obtained. 

Figure 8.4.  Problem of the two particles. 

These considerations allow to study also the case in which maxr  is not finite, the 
orbit being unbounded. We must have lim ( ) lim ( )

r r
h U r U r U�

�� ��
� � � � . To fix the 

ideas, we assume that 0U� � ; because the integral ( )d
r

U F r r
�

� � �  must have a 

sense, we suppose that F  tends to zero for r � �  at least as 11/r �� , 0� � . The 
condition of “escape” at infinity becomes 0h � . Indeed, if we assume that the particle 

1P  is situated at the centre O , while the particle 2P  tends to infinity, the interaction 
ceases and one has 0U� � ; the particle 2P  is endowed, in this case, only with kinetic 
energy T , so that 0T h� � . The symmetry of the trajectory with respect to the line 
of the pericentre remains valid (the same as in the case of bounded orbits); we notice 
that the unbounded orbits have only one pericentre and pass only once through it. 

If the particle 2P  comes from infinity and enters in interaction with the particle 1P , 
then may appear the phenomenon of capture ( 12r r�  remains finite or vanishes for 
t � � ) or the phenomenon of diffraction (r � �  for t � � ). We notice that 

C bv� ,   
2

2
mvh � , (8.1.15) 

where 0 0
2 1� �v v v  is the relative velocity at the initial moment, while b  is the 

distance from 1P  to the support of the velocity. The formula (8.1.6''') where we take 
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0 0t �  gives the time in which the particle coming from infinity reaches a position at 
finite distance in the form 

d
( )

r
t

�
� ���

� �� ; (8.1.16) 

we noticed that the radial velocity is directed towards the particle 1P . One has a real 
motion only if ( ) 0r� � ; we observe that 2( ) 2 / 0h m v� �� � � � . Thus, if the 
time t  increases, then the radius vector r  decreases. 

Figure 8.5.  Capture: at a pole (a); on a circle (b). 

For t � �  we may have 0r � , obtaining the phenomenon of capture; the 
trajectory of the particle 2P  is thus a spiral which tends to the pole O  (Fig.8.5,a). But if 
there exists a radius r  for which ( ) 0r� � , then we may write 

( ) ( ) ( )r r r r�� �� � , ( ) 0r� � . The integral (8.1.16) is divergent if 2� � , while 
r r�  for t � � ; we obtain a phenomenon of capture too in which the trajectory of 
the particle 2P  is also a spiral wrapped up a circle of radius r r�  (Fig.8.5,b). The 
phenomenon of capture may take place only in case of forces of attraction between the 
two particles. 

Figure 8.6.  Diffraction: force of attraction (a); repulsive force (b). 

If 2� � , then the integral (8.1.16) is convergent so that there exists a finite moment 
t  for which r r� , ( ) 0r� �  ( minr r�  is the minimal value of r  corresponding 
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to a constant of energy 1h , Fig.8.2); the respective point P  is a pericentre, while the 
apsidal line OP  is a symmetry axis of the trajectory, which has the form in Fig.8.6,a, in 
case of forces of attraction, or the form in Fig.8.6,b, in case of repulsive forces. One 
obtains thus the phenomenon of diffraction. The apsidal angle is expressed in the form 
� � �� � , in case of a force of attraction, and by � �� , in case of a repulsive force, 
where the angle �  is given by the formula (8.1.6'') 

2
d

( )
r rC
r r

�
���

� � ,   
2 2

21 ( ) 0
2
mv b U r

r
� �� � �	 

� �

. (8.1.17) 

The angle �  formed by the asymptotic direction of the trajectory with the support of 
the velocity v  (in fact, the angle of the two asymptotes to the trajectory) is called 
diffraction angle and is given by ( 2 )� �� ��� , where one takes the sign – or the 
sign + as the diffraction is of attraction or is repulsive, respectively. If we denote by 
“prime” the quantities which intervene after the interaction (for t � � ), the relations 
(8.1.15) show that b b� � , v v� � ; hence, the magnitude of the relative velocity is 
conserved, the velocity vector changing only with the diffraction angle. 

1.2.2 Motion of a particle acted upon by a central force in a resistent medium 

This case of motion generalizes the case previously considered; obviously, it leads to 
a plane trajectory C  too, the resistance R  of the medium being tangent to the 
trajectory and opposed to the motion (Fig.8.7). Hence, the equation of motion is of the 
form 

 
Figure 8.7.  Particle acted upon by a central force in a resistent medium. 

m F R
r v

� �
��� r rr ,   ( , , , ; )F F r r t� �� �� ,   ( , , , ; )R R r r t� �� �� ; (8.1.18) 

in polar co-ordinates, we have 

� �2 rm r r F R
v

�� � �
���� ,   � �2d

d
m rr R
r t v

�� � �
�� . (8.1.18') 

Eliminating the resistance R  between these equations, it results 

� �2 2
2

d
d

r
F m r r r

tr
� �

�
$ %� � �* +& '

�� ��� � . 
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We return to the calculus in Subsec. 1.1.1 and assume that 0F �� ; hence, we get 

� � � � � �
22 2 2

2
2 2 2

d 1 1 d 1 1
d d

m r
F mv

r r r rr �
�

� �
$ % $ %� � � � � �* + * +& ' & '

�
, (8.1.19) 

generalizing thus Binet’s formula (8.1.8). 
In this case, the areal velocity is no more constant (we can no more write a first 

integral of areas). Noting that 2 /2r� �� � , the second equation (8.1.18') leads to 

d (ln )
d

R
t mv

� �
�

� � �
�

. (8.1.20) 

We observe that /2v� 
� , where 
  is the distance from the pole O  to the support 
of the velocity v  (Fig.8.7); we may write 

2mR �



� � �  (8.1.20') 

too, so that the resistance of the medium is in direct proportion to the areal acceleration; 
as well, we obtain the relation 

� �2

2 2

d4 d 2
d d

m m
R

s s
�� �


 

� � � � . (8.1.20'') 

In particular, in case of a resistance of the form 2R kmv� , constk � , 0k � , we 
obtain d(ln ) d dkv t k s� � � � � , where s  is the curvilinear co-ordinate along the 
trajectory; it results 

0
kse� � �� , (8.1.21) 

so that the areal velocity decreases exponentially. 

2. Motion of a particle subjected to the action of an elastic 
force 

In case of a conservative central force for which 2( ) /2U r kr� �  or 
2( ) /2U x kx� � , 0k �  (one of the two cases considered in Bertrand’s theorem), one 

obtains an elliptic oscillator (with two degrees of freedom) or a linear oscillator (with 
only one degree of freedom), respectively; the force which derives from this potential is 
an elastic force. We consider also the corresponding damped and sustained (including 
self-sustained) oscillations. A particular attention is given to repulsive elastic forces 
( 0k � ), as well as to a study of non-linear oscillations. 
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2.1 Mechanical systems with two degrees of freedom 
In what follows, we study the non-damped and damped elliptic oscillator, in case of 

elastic forces of attraction as well as in case of repulsive elastic forces; the case of self-
sustained oscillations is also taken into consideration. 

2.1.1 Elliptic oscillator 

In case of central forces of the form ( )versF r�F r , we may assume for ( )F r  a 
development into a Maclaurin series 

2(0) (0)
( ) (0) ...

1! 2!
F F

F r F r r
� ��

� � � � . (8.2.1) 

We take (0) 0F � , assuming that the pole O  is a position of equilibrium. In case of 
small motions (for which 1r � , the unit having the dimension of a length) we neglect 
the powers of higher order. We denote (0)F k� � � , 0k � ; the force is thus directed 
towards the centre O , considering that one as a stable position of equilibrium. A force 
of the form 

verskr k� � � �F r r  (8.2.2) 

is called elastic force (in fact, in the following, by elastic force we mean an elastic force 
of attraction). 

 
Figure 8.8.  Model of an elastic force. 

In the case in which the force F  has a fixed support (along the Ox -axis) we may 
write ( )F x kx� � , modelling thus the force by an elastic spring of elastic constant 
(coefficient of elasticity) k , fixed at one end and acted upon by a force F  due to a mass 
m  at the other end; the particle is modelled by a rigid body the motion of which is 
guided (Fig.8.8). The denomination given to this force is thus justified. 

The corresponding apparent potential is 

� �
2 2

2 2 2 2 2 2
2 2( )

2 2 22
k mC m C mU r r r r

r r
� � �� �� � � � � � � � �	 


� �
� ,   k

m
� � , 

 (8.2.3) 

where we have taken into consideration the constant of areas (8.1.2); the graphic of this 
function is given in Fig.8.9, where the graphics of the two component terms are put into 
evidence. In case of a constant of energy h  for which ( )U r h� �  we obtain a bounded 
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orbit for which maxminr r r� � . To maxminr r r� �  corresponds maxU ; noting that 
2 2 2/2 /2mC r kr� , because � � � �2 2 2/2 /2mC r kr 2 / 4mC k�  const� , it results 

C hr
k�

� � ,   2h m C C km kr�� � � , (8.2.3') 

where we took into account (8.2.3) and we assumed that the motion takes place in the 
positive sense of the angle � , so that 0C � . The extreme values of r  are the roots of 
the equation " #( ) 2 ( ) / 0r U r h m� � � �  and are given by 

2 2 2 2 2
2
max 2 2 2 2
min

1 1 1 1 1 1h C m h mkC h hr
k km h h h

�
�

� � � � � �
� 2 � � 2 � � 2 �	 
 	 
 	 


� � � � � �
, 

 

so that ( 2
max minr r r� ) 

2

max
min

1 1 1 1
2

h h h h hr
k h k h h

� �� �� 2 � � � 2 �	 
	 

� � � �

 

1 1
2
r h h

h h
� �� � 2 �	 

� �

, (8.2.3'') 

the annulus which contains the orbit being thus specified. 

 
Figure 8.9.  Diagram ( )U r  vs r , in case of an elastic force of attraction. 

The trajectory is given by the relation (8.1.6''); choosing as 1Ox -axis the line of one 
of the apocentres ( 0 0� � ), we have 
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� �2

2
max

2 21/

2 21/ 2
2

2 2 2

d 1/
2 arccos

1

r

r

C h
hrC

h hh C h
hmC hm C

��
� �

��
�

�
� � � �

� � � ��� � � 	 
	 
 � �� �

� , 

 

where we took into account (8.2.3'), (8.2.3''). Hence, it results 

2 2
21 cos(2 ) 1 1 sinh h h h

h hh h
� � � �

� $ %�� � � �� � � � �* + 	 
 	 

� � � �* +�! & '

 

2
2

21 1 cos 1
h C h
h hr

� �
$ % N�� �� � � � � �* + O	 


� �* + �& ' P
, 

 

so that the orbit is an ellipse (Bertrand’s theorem is verified for this case) of equation 

2 2

2 2 2
1 cos sin
r a b

� �
� �  (8.2.3''') 

Figure 8.10.  Elliptic oscillator. 

in polar co-ordinates; the semiaxes are maxa r�  and minb r�  (Fig.8.10). The 
mechanical system formed by a particle acted upon by an elastic force is called elliptic 
oscillator. 

The motion on the trajectory is specified by the first formula (8.1.6'''), wherefrom 
( 0 0t � ) 

� �2 20

2 2

1 d 1 arctan tan
cos sin

at
C b

a b

� � �
�� �

� �
�

� ,  

where we noticed that / ( / )/( / )C ab h m h k� �� � . Taking into account (8.2.3'''), 
we get the parametric equations of the elliptic orbit in the form 
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� �arctan tanb t
a

� �� ,   2 2 2 2cos sinr a t b t� �� � . (8.2.4) 

Using the first integral of areas and of mechanical energy, the components of the 
velocity are given by 

� �22
C r
rr

� ��� ,   
2rv
r�
�

� ,   

" # � �2 2 2 2 2
0 0

2 ( )rv r U r h v r r v
m ��� � � � � � �� , 

(8.2.4') 

where we took into account (8.1.6') and (8.2.3). We observe that the areal velocity is 
expressed in the form /2v� 
� , where 
  is the distance from the pole O  to the 
tangent to the trajectory at the considered point. Because const� � , it results that 

maxv v�  for minr b
 � �  (at the extremities of the minor diameter), while minv v�  
for maxr a
 � �  (at the extremities of the major diameter). 

In case of the circular oscillator we have maxminr r r r� � � , � ��� , 0rv � , 

0v v r� �� � ; it results that �  is the angular velocity and the motion is uniform. 
Starting from the expression (8.1.2) of the elastic force, we may write the equation of 

motion (8.1.1) in the form 

2�� ���r r 0 , (8.2.5) 

where the pulsation 0� �  is given by (8.2.3). The initial conditions ( 0 0t � ) 

0(0) �r r , 0(0) �v v  (8.2.5') 

lead to the solution of the problem in the form 

0
0( ) cos sint t t� �

�
� �

vr r , (8.2.5'') 

0 0( ) cos sint t t� � �� �v v r ; (8.2.5''') 

we notice that 0 03 � 3r v r v , corresponding to the first integral of areas. The vector 
r  is a linear combination of the vectors 0r  and 0v ; hence, the trajectory is a plane 
curve, excepting the case in which the cross product mentioned above vanishes (the 
vectors 0r  and 0v  are collinear). The trajectory does not pass through the origin 
because �r 0 , t� . We notice that 0 0 /�� �r r v , t� , so that all the points of 
the trajectory are at a finite distance. Hence, the trajectory is a closed curve, which 
surrounds the centre O , that one being a stable position of equilibrium (the orbit can be 
contained in the interior of a circle arbitrarily small, the velocity being arbitrarily small 
too); the motion is periodic because the particle returns to the same position 
( ( ) ( )t T t� �r r ) with the same velocity ( ( ) ( )t T t� �v v ), after the same period of 
time 
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2 2 mT
k

� �
�

� � . (8.2.6) 

The pole O  is a centre of symmetry of the trajectory and of the motion, because 
( /2) ( )t T t� � �r r , ( /2) ( )t T t� � �v v . The velocity vector is also finite; it is a 

continuous function, which is non-zero for all values of t , so that the motion takes 
place always in the same direction. With respect to a system of oblique co-ordinates 

1 2Ox x� � , specified by the conjugate diameters corresponding to the vector 0r  of the 
initial position and to the initial velocity 0v  (Fig.8.10), one obtains the equation of the 
ellipse in the form 

� �

2 2
1 2
2 2
0 0

1
/

x x
r v �
� �

� � . (8.2.7) 

We notice that 

� �2 2 2
0 0 0 0

1cos2 sin2
2

t v r t� � �
�

� � � � �r v r v .  

Hence, to obtain a circular oscillator ( 0� �r v , t� ) it is necessary and sufficient that 
the initial conditions verify the relations 0 0 0� �r v  and 0 0v r �� . 

The number which shows how many times the particle travels through the whole 
trajectory in a unit time is called the frequency of the motion and is given by 

1 1
2 2

k
T m

��
� �

� � � ; (8.2.6') 

we notice that the pulsation 2� ���  represents the number of periods in 2�  units of 
time, the denomination of circular frequency used too being thus justified. 

These results may be easily correlate with those previously obtained starting from the 
general theory of motion of a particle subjected to the action of a central force. We 
observe that one obtains the same results as in the case of small motions of a spherical 
pendulum around a stable position of equilibrium. 

2.1.2 Case of a repulsive elastic force 
In case of the motion around a labile position of equilibrium O , we consider a 

repulsive elastic force of the form 

verskr k� �F r r ,   0k � . (8.2.8) 

The corresponding apparent potential is 

� �
2 2

2 2 2 2 2 2
2 2( )

2 2 22
k mC m C mU r r r r

r r
� � �� �� � � � � �	 


� �
� ,   k

m
� � ; (8.2.9) 
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the graphic of this function is represented in Fig.8.11, the radius r  and the 
corresponding constant h , given by the relations (8.2.3'), being put into evidence. In 
case of a constant of energy h  for which ( )U r h� �  we obtain a unbounded orbit, 
which has a pericentre given by (the positive root of the equation ( ) 0r� � ) 

2
2
min 1 1h hr

k h
$ %� �� � �* +	 


� �* +& '
. (8.2.9') 

We are in the case of Fig.8.6,b, the integrals (8.1.6''), (8.1.6''') being convergent (we 
have min( ) ( ) ( )r r r r� �� � ). Choosing as 1Ox -axis the line of the pericentre 
( 0 0� � ), the formula (8.1.6'') leads to 

Figure 8.11.  Diagram ( )U r  vs r , in case of a repulsive elastic force. 
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where we used the relations (8.2.3'), (8.2.9'). Hence, it results 
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so that the orbit is an arc of hyperbola (Fig.8.12) of equation 

2 2

2 2 2
1 cos sin
r a b

� �
� �  (8.2.10) 

in polar co-ordinates; the semiaxes are given by 

2 2
mina r� ,   

2
2 1 1
h h

b
k h
$ %� �� � �* +	 


� �* +& '
,   2ab r� . (8.2.10') 

 
Figure 8.12.  Trajectory of a particle acted upon by a repulsive elastic force. 

The formulae (8.1.6''') allow then to study the motion of the particle along the 
trajectory. We notice that we have to do with a phenomenon of diffraction, where the 
angle of diffraction is given by 

� �
2
min

2
0

21/ 2
2

2 2 2

d 1/
2

r
C

h C h
mCm C

�
� � �

�
�
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�� , 
 

so that 

2 2 2 2
arccos arccos arctanh h h

hh h h h
� �

� � � �
� �

� . (8.2.10'') 

One observes that for 0h �  (hence 0h� � , we are above the Or -axis) we have 
b a�  and /2��� , while for 0h �  (hence 0h� � , we are under the Or -axis) we 

have b a�  and /2��� . For 0h �  one obtains /a b h k r� � �  and 
/2��� , the hyperbola being equilateral (rectangular). 

In case of the force (8.2.8), the equation of motion (8.1.1) has the form 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

 

488 

2�� ���r r 0 . (8.2.11) 

If we put the initial conditions (8.2.5'), the solution of the boundary value problem is 
given by 

0
0( ) cosh sinht t t� �

�
� �

vr r , (8.2.11') 

0 0( ) cosh sinht t t� � �� �v v r . (8.2.11'') 

With respect to the system of oblique co-ordinates 1 2Ox x� � , determined by the conjugate 
diameters which correspond to the vector 0r  of the initial position and to the initial 
velocity 0v  (Fig.8.12), it results that the trajectory is an arc of hyperbola of equation 

2 2
1 2
2 2
0 0

1
( / )

x x
r v �
� �

� � , (8.2.12) 

the centre O  being a labile position of equilibrium (the orbit cannot be contained in the 
interior of a circle arbitrarily small and the velocity of the particle may increase without 
any limit). The particle travels through the trajectory only once without returning to the 
initial position. We may write 

� �0
0( ) tanh cosht t t� �

�
� �

vr r ,   � �0
0( ) tanh cosht t t� � �

�
� �

vv r ;  

noting that lim tanh 1
t

t�
��

� , it results that the asymptote to which tends the trajectory 

of the particle is specified by the vector 

0
0 �

� �
vr r . (8.2.12') 

As in the case of an elastic force of attraction, these results may be easily correlate to 
those previously obtained in the frame of the general theory of motion of a particle 
subjected to a repulsive central force. 

2.1.3 Motion of a particle subjected to the action of an elastic and of a damping 
force 

Let us suppose that in the motion of a particle subjected to the action of an elastic 
force of attraction (8.2.2) intervenes a damping force vers�� � vG , tangent to the 
trajectory and having a direction opposite to that of the motion. If the magnitude of the 
damping force is proportional to the velocity, hence if k �� � �rG , 0k � �  being a 
damping coefficient, then the equation of motion becomes 

22� �� � ��� �r r r 0 , (8.2.13) 
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with the constant /2 0k m� �� � . The damping coefficient corresponding to the 
relation � ��  is a critical damping coefficient ck � ; we notice that, in this case ( ck �  
does not depend on k � ), 

2 2ck m km�� � � . (8.2.14) 

We introduce also the non-dimensional damping factor (the damping ratio, the critical 
damping fraction) 

c

k
k

��
�

�
� �

�
. (8.2.14') 

With the initial conditions (8.1.5'), we get 

0 0 0
1( ) e cos ( )sintt t t� � � �
�

� $ %� �� � �* +�& '
r r v r , (8.2.15) 

2
0 0 0

1( ) e cos ( )sintt t t� � � � �
�

� $ %� �� � �* +�& '
v v r v , (8.2.15') 

where we have introduced the pseudopulsation 

2 2 21� � � � �� � � � � , (8.2.15'') 

 
Figure 8.13.  Damped pseudoelliptic oscillator (a); aperiodic damped motion (b). 

assuming that 1� � , hence � ��  (subcritical damping). The damping factor te ��  
transforms the trajectory which, in the absence of this factor, would be an ellipse in a 
spiral (the radius vector diminishes continuously); the particle tends, in an infinite time, 
to the origin O , with a velocity which tends to zero too (Fig.8.13,a). This mechanical 
system is called also damped pseudoelliptic oscillator, the respective motion of the 
particle being a pseudoperiodic damped motion. After equal intervals of time of 
pseudoperiod 
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1 ...

2 81
T

� � � � �
� �� �

� � � � � �
� �
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the particle reaches the points P � , P �� ,…, which are situated on the common support 
of the position vectors �r , ��r ,…; the corresponding velocities �v , ��v ,… have the 
same direction. We observe that / / ... e Tr r r r ��� �� �� � � , / /v v v v� �� �� ...�  

e T��� , obtaining a decrease in geometric progression of ratio e T��  of the radius 
vector and of the velocity; the number 

� �3 5
2

22 1 3
2 ...

2 81
T

����
 � � � � �
� �

� � � � � � � � � � �
� �

 
 

is called logarithmic decrement (for 1� �  we may take 2T� ��� 1 � ), being equal 
to ln( / ) ln( / ) ...r r v v� �� � . 

If 1� � , hence if � ��  (critical damping), then we may write 

" #0 0 0( ) e ( )Tt t� ��� � �r r v r ,   " #0 0 0( ) e ( )Tt t� � ��� � �v v v r . (8.2.16) 

The corresponding motion is damped; the trajectory starts from the point 0P  and tends, 
in an infinite interval of time, with a velocity which tends to zero, towards the centre 
O , which is an asymptotic point (Fig.8.13,b). Noting that we may write 

0
0 0( ) e Tt t

t
� �� $ %� � �& '

rr v r ,   0
0 0( ) e ( )Tt t

t
� � �� $ %� � �& '

vv v r   

and that we have lim e 0t
t
t ��

��
� , it results that the tangent at O  to the trajectory is 

specified by the vector 

0
0 �

� �
vr r . (8.2.16') 

If 1� � , hence if � ��  (supercritical damping), then we use the notation 

2 2 2 1� � � � ��� � � � �  (8.2.17) 

and obtain 

0 0 0
1( ) e cosh ( )sinhtt t t� � � �
�

� $ %�� ��� � �* +��& '
r r v r , (8.2.17') 

2
0 0 0

1( ) e cosh ( )sinhtt t t� � � � �
�

� $ %�� ��� � �* +��& '
v v r v . (8.2.17'') 

Noting that we can write 

0 0 0
1( ) e cosh ( )tanhtt t t� � � �
�

� $ %�� ��� � �* +��& '
r r v r ,    
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2
0 0 0

1( ) e cosh ( )tanhtt t t� � � � �
�

� $ %�� ��� � �* +��& '
v v r v  

and that 

� � � �21lim e cosh lim e 1 e 0
2

t t t
t t

t� � � �� �� ��� � � �
�� ��

�� � � � ,   lim tanh 1
t

t�
��

�� � ,  

it results that the trajectory of the particle has the same form as in the previous case 
(Fig.8.13,b); the tangent at the asymptotic point O  will be specified by the vector 

0 0 0
1 ( )�
�

� � �
��

r r v r . (8.2.17''') 

Hence, the corresponding motion is strongly damped. We can say that both last 
considered cases are aperiodic damped motions. 

Figure 8.14.  Aperiodic damped motion of a particle acted upon by a repulsive elastic force. 

If the elastic force is repulsive, of the form (8.2.8), then the apparition of a damping 
force the modulus of which is proportional to the velocity leads to the equation of 
motion 

22� �� � ��� �r r r 0 ; (8.2.18) 

the initial conditions (8.2.5') lead to 

0 0 0
1( ) e cosh ( )sinhtt t t� � � �
�

� $ %� � �* +& '
r r v r , (8.2.18') 

2
0 0 0

1( ) e cosh ( )sinhtt t t� � � � �
�

� $ %� � �* +& '
v v r v , (8.2.18'') 

with the notation 

2 2 21� � � � �� � � � . (8.2.18''') 

We observe that 
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� � � �21lim e cosh lim e 1 e
2

t t t
t t

t� � � ��� � � �
�� ��

� � � � ;  

hence, the trajectory is similar to that in Fig.8.12 (the arc of hyperbola is deformed, the 
radii being smaller), but it is travelled through with a smaller velocity. The asymptote to 
which tends the trajectory is specified by the vector (Fig.8.14) 

0 0 0
1 ( )�
�

� � �r r v r . (8.2.18iv) 

2.1.4 Self-sustained motions of a particle 
Various types of motion considered in Subsecs 2.1.1 and 2.1.2 may be due to a given 

perturbing force, the respective motion being a forced (sustained) motion. If the force 
which maintains the motion is due to the motion itself, being of the form k �� �rG , 

0k � � , then the motion is called a self-sustained motion; in fact, the force G  is of the 
form � ���G G , where k� �� � �rG , 0k � � , is a damped force, while k�� ��� �rG , 

0k �� � , is a perturbing force, with 0k k k� �� �� � �  (if k k�� �� , then the motion is 
damped, while if k k�� �� , then the motion is non-damped). If the motion ceases, then 
the corresponding force disappears. We observe that in a forced motion that force exists 
independent of the motion and persists after its suppression. 

Figure 8.15.  Non-damped pseudoelliptic oscillator. 

In case of an elastic force of attraction, the equation of motion is of the form 

22� �� � ��� �r r r 0 , (8.2.19) 

where we use the notations of the preceding subsection. With the initial conditions 
(8.2.5'), we obtain 

0 0 0
1( ) e cos ( )sintt t t� � � �
�

$ %� �� � �* +�& '
r r v r , (8.2.19') 

2
0 0 0

1( ) e cos ( )sintt t t� � � � �
�

$ %� �� � �* +�& '
v v r v , (8.2.19'') 

where we have introduced the pseudopulsation (8.2.15''), assuming that � �� . The 
trajectory is a spiral and the particle is rotating around the centre O  in the same 
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direction till infinity (Fig.8.15). After a pseudoperiod 2 /T � � �� , the particle returns 
on the same half-straight line with a velocity which has always the same direction for 
that line; the radii and the velocities are increasing in geometric progression of ratio e t�  
for the same half-straight line, the number 2 /T
 � �� � �� �  being a logarithmic 
increment. The corresponding mechanical system may be called non-damped 
pseudoelliptic oscillator; the respective motion of the particle is a pseudoperiodic non-
damped motion. 

If � �� , we may write 

" #0 0 0( ) e ( )tt t� �� � �r r v r ,   " #0 0 0( ) e ( )tt t� � �� � �v v v r , (8.2.20) 

while if � ��  we get 

0 0 0
1( ) e cosh ( )sinhtt t t� � � �
�

$ %�� ��� � �* +��& '
r r v r , (8.2.21) 

2
0 0 0

1( ) e cosh ( )sinhtt t t� � � � �
�

$ %�� ��� � �* +��& '
v v r v , (8.2.21') 

where we used the notation (8.2.17). In both cases, one obtains an aperiodic non-
damped motion (Fig.8.14), the asymptote to which tends the trajectory being specified 
by the vector 

0
0 �

� �
vr r , (8.2.20') 

in the first case, and by the vector 

0 0 0
1 ( )�
�

� � �
��

r r v r , (8.2.21'') 

in the second case, respectively. 
In case of a repulsive elastic force, it results the equation of motion 

22� �� � ��� �r r r 0 , (8.2.22) 

where we used the same notations as above. We obtain 

0 0 0
1( ) e cosh ( )sinhtt t t� � � �
�

$ %� � �* +& '
r r v r , (8.2.22') 

2
0 0 0

1( ) e cosh ( )sinhtt t t� � � � �
�

$ %� � �* +& '
v v r v , (8.2.22'') 

where we have put the initial conditions (8.2.5') and have introduced the notation 
(8.2.18'''). The motion of the particle is an aperiodic non-damped motion too (Fig.8.14); 
the trajectory tends to an asymptote specified by the vector 
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0 0 0
1 ( )�
�

� � �r r v r . (8.2.22''') 

2.2 Mechanical systems with a single degree of freedom 

Projecting the motion of an elliptic oscillator on an axis in the plane of the 
corresponding trajectory, we obtain a linear oscillator, the most simple mechanical 
system with a single degree of freedom. We pass then to the case of a damped oscillator 
and to that of a sustained one. The phenomena of interference and of beats will be taken 
into consideration too, as well as the superposition of effects, which leads to small 
oscillations of a particle around a stable position of equilibrium. 

2.2.1 Linear oscillator 
We consider a particle acted upon by an elastic force with a fixed support, chosen as 

Ox -axis (of the form ( )F x kx� � , 0k � ), modelled as in Fig.8.8. With the notations 
in Subsec. 2.1.1, the equation of motion has the form 

2 0x x�� ��� ; (8.2.23) 

with the initial conditions 

0(0)x x� ,   0(0)v v� , (8.2.23') 

 
Figure 8.16.  Linear oscillator: trajectory (a); diagram ( )x t  vs ( )t b . 

we may write 

0
0 cos sin cos( )

v
x x t t a t� � � �

�
� � � � , (8.2.24) 

0 0cos sin sin( )v v t x t a t� � � � � �� � � � � , (8.2.24') 

where 

2
02

0 2
v

a x
�

� � ,   0

0
arctan

v
x

�
�

�  (8.2.24'') 
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are the amplitude of the oscillation (maximal elongation, the elongation x  being the 
distance from the centre of oscillation O  to the position of the particle at a given 
moment) and the phase shift (the argument t� ��  represents the phase at the moment 
t , the phase shift being calculated with respect to the phase t� ), respectively. The 
trajectory is the segment of line AA , which is travelled through back and forth in the 
period of time (8.2.6), beginning with the initial position 0P  (Fig.8.16,a). We have thus 
to do with oscillations around the oscillation centre O , which is a stable position of 
equilibrium. Because the period T  (and the frequency 1/T� � ) is independent on 
the amplitude, it results that the free linear oscillations with a single degree of freedom 
are isochronic; on the other hand, the interval of time /4T  in which the segment of 
line AO  is travelled through does not depend on the initial position A  (does not 
depend on a ), the velocity at that point vanishing, so that the motion is tautochronous 
too. 

Figure 8.17.  Linear oscillator as projection of a circular oscillator. 

The mechanical system formed by a particle which describes a segment of a line, 
subjected to the action of an elastic force is called linear oscillator; that one may be 
also considered as a limit case of an elliptic oscillator, namely that in which one of the 
semiaxes of the ellipse tends to zero. We notice that a linear oscillator may be obtained 
too by projecting the motion of a circular oscillator (hence, of a particle P �  with a 
velocity v  of constant modulus a��v , which is in uniform motion on a circle) on a 
diameter AA  of it (Fig.8.17); if the position of the diameter AA  is specified by the 
angle �  with respect to the 1Ox -axis and if the angle t� �� , where �  is the angular 
velocity, gives the position of the radius OP � , then we obtain the equation (8.2.24) of 
the linear oscillator. Any mechanical system with only one degree of freedom subjected 
to small oscillations around a stable position of equilibrium, e.g., the simple pendulum 
subjected to small oscillations, may be modelled by a linear oscillator. 

Multiplying the equation (8.2.23) by mx� , we obtain 

� �2 2d
d 2 2
m kmxx kxx x x

t
� � ���� � � ,  

so that, taking into account (8.2.6'), (8.2.24) and (8.2.24'), 
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2 2 2 22
2
kE T U T V a ma� �� � � � � � ; (8.2.23'') 

it results that, during the non-damped free linear oscillations with a single degree of 
freedom, a process of conservation of the mechanical energy takes place. 

In general, a motion with a single degree of freedom of a mechanical system 
represents a harmonic vibration (harmonic oscillation, the term of oscillation being 
usually used if the particle returns always on the same trajectory) if it is of the form 
(8.2.24); we mention also that the term of oscillation may be used also for non-
mechanical oscillations, but the term of vibration is used only for mechanical ones. The 
diagram of the considered motion is represented in Fig.8.16,b by a unbroken line 
(comparing with the dash line which corresponds to the vibration cosx a t�� , the 
influence of the phase shift being thus put into evidence). 

Figure 8.18.  Model of a system of linear oscillators: parallel linkage (a); linkage in series (b). 

Some vibrating mechanical systems may be physically modelled by a system formed 
of several elastic elements, of negligible masses, linked between them; such a system 
can be replaced, in general, by a single equivalent elastic element. In case of two 
springs of elastic constants 1k  and 2k , respectively, linked in parallel (Fig.8.18,a), the 
condition that the total elastic force for a displacement x  be equal to the sum of the 
forces corresponding to each spring ( 1 2kx k x k x� � ) is put, wherefrom 1 2k k k� � . 
In case of n  springs linked in parallel, we may write ( /k n  is an arithmetic mean) 

1

n

i
i

k k
�

�  . (8.2.25) 

If the two springs are linked in series (Fig.8.18,b), then the condition that the total 
elongation x  of the spring be equal to the sum of the elongations 1x  and 2x , of the 
component springs, respectively, is put ( 1 2x x x� � ), the force in the spring being the 
same along it ( 1 1 2 2kx k x k x� � ); it results 1 21/ 1/ 1/k k k� � . In case of n  springs 
linked in series, we obtain (nk  is a harmonic mean) 

1

1
1n

ii

k

k�

�


. (8.2.25') 
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2.2.2 Modulated vibrations 
In case of the motion of a mechanical system with a single degree of freedom, of the 

form 

( ) ( )cos( )x t a t t� �� � , (8.2.26) 

we say that we have to do with a vibration modulated in amplitude; in general, we 
assume that ( )a t  varies little in the quasi-period 2 /T � �� . The diagram of motion 
(the trajectory of which is also a segment of a line, as in the preceding case) has the 
aspect of a cosinusoid which is contained between the curves ( )x a t� 2  (Fig.8.19,a). 
We notice that the function (8.2.26) and its derivative ( ) ( )cos( )x t a t t� �� �� �  

( )sin( )a t t� � �� �  have values equal to those of the functions ( ) ( )x t a t� 2  and of 
the respective derivatives ( ) ( )x t a t� 2� �  at the points of abscissae /t � �� , 

/t T� �� � ,… and / /2t T� �� � , / 3 /2t T� �� � ,…, respectively; hence, 
the diagram of motion is tangent to the curves ( )x a t� 2 . The intervals between two 
successive points of tangency are equal to T , as well as the intervals between two 
points in which the Ot -axis is pierced in the same direction. The respective motion is a 
quasi-periodic motion. Eventually, even the function ( )x a t�  may be periodic. 

Figure 8.19.  Modulated vibration: in amplitude (a); in frequency (b). 

If the motion is definite in the form 

" #( ) cos ( )x t a t t� �� � , (8.2.26') 

then we say that it is a vibration modulated in frequency (or modulated in phase); in 
general, one assumes that ( )t�  varies little in a pseudoperiod 2 / ( )T t� �� . We may 
have, for instance, 0( ) sint t� � � �� � , 0/ 1� � � . The diagram of motion has the 
aspect in Fig.8.19,b. 

2.2.3 Representations of harmonic vibrations 

We have seen in Subsec. 2.2.1 that a harmonic vibration may be obtained by 
projecting a circular oscillator on one of its diameters; this observation has led Fresnel 
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to elaborate a vector method of representation of harmonic vibrations; this method is 
particularly useful for the composition of these vibrations. 

Thus, the harmonic vibration (8.2.24) may be represented by the vector OQ
����

 of 

modulus OQ a�
����

, the direction of which is given by the angle t� � �� � , taken 

counterclockwise from the 1Ox -axis, which represents the phase of motion; this vector 
of constant modulus has a uniform rotation around the pole O , in positive or negative 
sense, as the angular velocity 0� � . If the point Q  is projected at P  on the 1Ox -
axis, then OP x� (Fig.8.20). Observing that 

sin( )x a t� � �� � �� ,   2 cos( )x a t� � �� � ��� ,  

it results the velocity OP x� � �  and the acceleration OP x�� � �� , which correspond to a 
vector OQ �

�����
 of modulus a� , the direction of which is obtained by rotating of /2�  the 

vector OQ
����

 counterclockwise or clockwise as 0� �  or to a vector OQ ��
�����

 of modulus 
2a� , opposite to the vector OQ

����
, respectively. 

Figure 8.20.  Vector representation of harmonic vibrations. 

If we assume that the above vector representation is made in the complex variables 
plane, then to the point Q , hence to the vector OQ

����
, there corresponds the variable 

1 2iz x x� � ; we may thus write (Fig.8.20) 

" # i( )cos( ) i sin( ) e tz a t t a � �� � � � �� � � � � , (8.2.27) 

where iea ��  is the complex amplitude of the oscillation. Differentiating successively, 
we obtain 

" # i( ) i( /2)sin( ) i cos( ) ie et tz a t t a a� � � � �� � � � � � �� � �� � � � � � �� , (8.2.27') 

" #2 2 i( )cos( ) i sin( ) e tz a t t a � �� � � � � � �� � � � � � ���  
2 i( )e ta � � �� � �� , (8.2.27'') 
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finding again the points Q �  and Q �� , respectively. 

2.2.4 Composition of harmonic vibrations of the same direction. Interference. 
Beats. Harmonic analysis 

We consider first of all two harmonic vibrations 

1 1 1cos( )x a t� �� � ,   2 2 2cos( )x a t� �� � ,  

which have the same direction and the same pulsation; their amplitudes and their phase 
shifts may be different. By the composition of these vibrations (in case of acoustic or 
light waves, the phenomenon is called interference too) we obtain also a harmonic 
vibration 1 2 cos( )x x x a t� �� � � � , where 

2 2
1 2 1 2 2 12 cos( )a a a a a � �� � � � ,   1 1 2 2

1 1 2 2

sin sin
arctan

cos cos
a a
a a

� ��
� �

�
�

�
. (8.2.28) 

The term 1 2 2 12 cos( )a a � ��  is called the term of interference and leads to an effect of 
interference stripes. If 2 1 2n� � �� � , n � � , then we obtain 1 2a a a� � , while if 

2 1 (2 1)n� � �� � � , n � � , then we have 1 2a a a� � ; in the first case the 
interference is constructive, while in the second one it is destructive. Finally, if 

1 2a a� , then the destructive interference leads to extinction (zones in which the sound 
disappears, in case of acoustic waves, or zones of darkness, in case of light waves). If 

2 1 /2n� � �� � ,n � � , then 2 2
1 2a a a� � , � �1 2arctan /a a� � . By composition 

of a certain number of harmonic vibrations one may effect an analogous computation. 
If the two harmonic vibrations have not the same pulsation, being of the form 

1 1 1 1cos( )x a t� �� � ,   2 2 2 2cos( )x a t� �� � ,  

then their composition (by extension, the phenomenon bears the denomination of 
interference too) leads to an expression of the same form, modulated both in amplitude 

� � � �" #2 2
1 2 1 2 1 2 1 2( ) 2 cosa t a a a a t� � � �� � � � � �  (8.2.29) 

and in phase 

� � � �
� � � �

1 2 1 2
1 1 2 2

1 2 1 2
1 1 2 2

sin sin
2 2( ) arctan

cos cos
2 2

a t a t
t

a t a t

� � � �� �
� � � � �� �

� �
� � � �

� � �
� � �

, (8.2.29') 

where � �1 2 /2� � �� � . The motion thus obtained is no more harmonic, its form 
depending on the amplitudes, on the frequencies ratio, and on the phase shifts; it is a 
periodic motion only if the periods of the two component motions have a common 
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multiple, hence only if 1 1 2 22 / 2 /n n� � � �� , 1 2,n n � �  or 1 2/ n� � � , n � �  
(Figs.8.21, 8.22). The amplitude ( )a t   has  a  variation  between  min 1 2a a a� �  and  

Figure 8.21-8.22.  Composition of two harmonic vibrations for which 1 2/ n� � � , n � � . 

max 1 2a a a� � , having maximal values (called beats in case of acoustic waves) at 
intervals of time given by the period 1 22 /bT � � �� �  (Fig.8.23,a); the 
corresponding frequency is 

1 2 1 2
1

2b� � � � �
�

� � � � , (8.2.29'') 

Figure 8.23.  Beats: general case (a); simple beats (b). 

hence it is equal to the absolute value of the difference of the frequencies of the 
component motions. One may thus syntonize two musical instruments (the period of the 
beats tends to infinity if the frequencies of the two instruments tend to be equal). The 
phenomenon is as much perceptible as the two amplitudes are closer. If 1 2a a a� � , 
then the formulae (8.2.29), (8.2.29') lead to 

� � � �1 2 1 2 1 2 1 22 cos cos
2 2 2 2

x a t t
� � � � � � � �� � � �

� � � , (8.2.30) 

hence to a product of two harmonic functions. In this case, max 2a a� , while 
min 0a �  (one obtains the node of the beat), the diagram of the motion being given in 

Fig.8.23,b; the beats are simple beats. 
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Using Fresnel’s method of representation, we can compose the vectors 1OQ
�����

 and 

2OQ
�����

, obtaining the vector OQ
����

, to which corresponds the motion 1 2x OP x x� � � , 

1 1x OP� , 2 2x OP�  (Fig.8.24). Analogously, one may compose an arbitrary number 
of harmonic vibrations cos( )i i i ix a t� �� � , 1,2,...,i n� . The resultant motion is 
not – in general – harmonic, neither periodic; the motion is periodic if and only if the 
ratio between any two pulsations is a rational number ( /i j ijn� � � , ijn � � , 

, 1,2,...,i j n� � ). 

Figure 8.24.  Fresnel’s representation method. 

The inverse problem, which consists in the determination of the harmonic 
components of a given periodic motion ( ) ( )x t T x t� �  forms the object of harmonic 
analysis; this problem is of particular importance in physics, in engineering technology 
etc. Assuming that Lejeune-Dirichlet’s sufficient conditions (the function ( )x t  is 
piecewise continuous, having a finite number of points of discontinuity of the first kind 
and a finite number of maxima and minima on the time interval T ) are fulfilled, we 
may decompose the motion in the form 

0 1 1 2 2( ) cos( ) cos(2 ) ...x t a a t a t� � � �� � � � � �  
... cos( ) ...n na n t� �� � �  (8.2.31) 

where 2 /T� �� . We obtain thus a finite Fourier representation (an example of 
decomposition of a periodic motion in a sum of two harmonic vibrations is given in 
Fig.8.21) or a development into a Fourier series; the amplitudes na  

� � � �2 2
n na a� ��� �  and the phase shifts � �arctan /n n na a� �� ��  are expressed by 

means of the Fourier coefficients 

 0
1 ( )d
T

a x t t
T

� � ,    

2 ( )cos dn
T

a x t n t t
T

�� � � ,    

2 ( )sin dn
T

a x t n t t
T

��� � � , 

 (8.2.31') 

where the integration is effected along a period, beginning from an arbitrarily chosen 
point; the coefficient 0a  represents the mean value of the displacement ( )x t . The 
oscillation 1 1cos( )a t� ��  is of minimal frequency min /2� � ��  (of maximal period 
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2 /T � �� , multiple of the periods of all the other oscillations, hence the period of the 
motion ( )x t ), being called fundamental (or harmonic) oscillation. The oscillation 
expressed by the term cos( )n na n t� ��  has the frequency minn n� ��  and is called 
harmonic of nth order. The set of amplitudes and the set of phases of the harmonic 
oscillations which compose a periodic motion form the amplitudes spectrum and the 
phases spectrum, respectively. 

2.2.5 Composition of orthogonal harmonic vibrations. Small oscillations around a 
stable position of equilibrium 

Let be the harmonic vibrations 

1 1 1 1cos( )x a t� �� � ,   2 2 2 2cos( )x a t� �� �   

along two orthogonal directions (corresponding to the 1Ox -axis and to the 2Ox -axis, 
respectively); by their composition, one obtains a motion the trajectory of which is 
contained in the rectangle 1 1 1a x a� � � , 2 2 2a x a� � � . 

 
Figure 8.25.  Composition of orthogonal harmonic vibrations: 1 2� �� , 1 2� ��  (a); 

1 2� �� , 1 2� ��  (b); Lissajous’ curves (c); 1 2/ n� � � , n � �  (d). 

If 1 2� ��  and 1 2� �� , then, eliminating the time t , it results 2 2 1 1/x a x a� , 
hence the trajectory of the linear oscillator thus obtained is the diagonal of the 
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mentioned rectangle (Fig.8.25,a). If 1 2� ��  and 1 2� �� , then it results an elliptic 
oscillator (Fig.8.25,b) of equation 

2 2 2 2 2 2 2
2 1 1 2 1 2 1 2 1 2 1 2 1 22 cos( ) sin ( )a x a a x x a x a a� � � �� � � � � ,  

obtained by elimination of the time t . 
If 1 2� ��  and 1 2/ n� � � , n � �  (the pulsations 1�  and 2�  are 

commensurable), then it exists a period T , the smallest common multiple of the 
periods of the two component motions, so that the motion is periodic, while the 
trajectory of the particle P  is a closed curve, called Lissajous curve; the trajectory 
corresponding to the case 1 22� �� , 1 / 4� �� , 2 0� �  is given in Fig.8.25,c. If the 
pulsations are not commensurable, then the motion can no more be periodic and the 
trajectory is an open curve which covers the whole rectangle mentioned above 
(Fig.8.25,d). 

Analogously, one may compose three orthogonal harmonic vibrations 

cos( )i i i ix a t� �� � ,   1,2, 3i � , (8.2.32) 

corresponding to the axes 1Ox , 2Ox  and 3Ox , respectively; one obtains thus a 
trajectory contained in the parallelepipedon i i ia x a� � � , 1,2, 3i � . However, one 
may thus study the small oscillations of a particle around the pole O , considered as a 
stable position of equilibrium. We assume that the force which acts upon the particle is 
conservative ( gradU�F ), the potential U  being developable into series 
( 0 1 2 ...U U U U� � � � , iU , 0,1,2,...,i �  homogeneous polynomial of ith degree in 
the co-ordinates 1 2 3, ,x x x ). Because the components of the force F  are obtained as 
derivatives of the potential U , we may take 0 0U � ; as well, we must have 1 0U � , 
because the origin is a position of equilibrium. Assuming that we have to do with small 
motions, we take 2U U� , neglecting the polynomials of higher order; we notice also 
that one must have 2 0U � , the pole O  being a stable position of equilibrium (the 
trajectory must be entirely at a finite distance). One may take 

� �2 2 2 2 2 2
1 2 3 1 1 2 2 3 3( , , )

2
mU x x x x x x� � �� � � �  (8.2.32') 

in this case; we are thus led to the equations of motion 

2
1 1 1 0x x�� ��� ,   2

2 2 2 0x x�� ��� ,   2
3 3 3 0x x�� ��� , (8.2.32'') 

the solutions of which are the harmonic vibrations (8.2.32). The trajectory of the 
particle P  is a closed curve (a Lissajous curve), the motion being periodic if and only 
if the pulsations (hence the periods and the frequencies too) are commensurable (are 
proportional to integer numbers 1 1 2 2 3 3/ / /n n n� � �� � , 1 2 3, ,n n n � � ). 
Otherwise, the trajectory is an open curve which covers entirely the above mentioned 
parallelepipedon; the particle does not pass twice through the same position, but may 
pass as close as possible to it in a sufficiently long time. 
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2.2.6 Damped linear oscillator 
If, besides a linear elastic spring (Fig.8.8), we introduce, in parallel, a viscous 

damper with a damping coefficient 0k � � , then we obtain the physical model of a 
damped linear oscillator (Fig.8.26). Using the notations in Subsec. 2.1.3, it results the 
equation of motion (along the Ox -axis) 

  
  Figure 8.26.  Model of a viscous          Figure 8.27.  Damped linear oscillator: trajectory (a);  
       damped linear oscillator.                                        diagram ( )x t  vs t  (b). 

22 0x x x� �� � ��� � ; (8.2.33) 

with the initial conditions (8.2.23'), we obtain the solution 

0 0 0
1( ) e cos ( )sin e cos( )t tx t x t v x t a t� �� � � � �
�

� �$ %� � �� � � � �* +�& '
, (8.2.33') 

corresponding to a subcritical damping ( 1� � ). The motion is a pseudoperiodic 
damped motion, of pseudoperiod 2 /T � � �� , the trajectory of which starts from the 
point 0P , being contained in the segment of a line AA  and tending to the asymptotic 
point O  after an infinity of oscillations around this pole (Fig.8.27,a). This motion 
constitutes a vibration modulated in amplitude, being strongly damped; the diagram of 
the motion has the aspect of a cosinusoid contained between the curves e tx a ��� 2  
and tangent to these ones at the points /t � � �� , /t T� � �� � ,… and /t � � ��  

/2T� , /t � � �� 3 /2T� ,…, respectively (Fig.8.27,b). 
In case of a critical damping ( 1� � ), we obtain an aperiodic damped motion given 

by 

" #0 0 0( ) e ( )tx t x v x t� ��� � � . (8.2.33'') 

If 0 0v � , then the particle starts from the point 0P , reaches A  at the moment 

0 0 0/ ( )t v v x� �� � � , and then changes of direction tending asymptotically to the 
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centre O  (Fig.8.28,a); the diagram of motion has a point of maximum for t t �� , 
tending asymptotically to zero (Fig.8.28,b). If 0 0 0x v�� � � , then the particle starts 
from 0P , tending asymptotically to zero (Fig.8.29,a). The corresponding diagram has 
neither zeros, nor points of extremum (Fig.8.29,b); in the case in which 

0 0/2 0x v�� � �  appears a point of inflection. If 0 0v x�� � , then the  particle  starts 

   
     Figure 8.28.  Linear critical damping; case            Figure 8.29.  Linear critical damping; case 
             0 0v � : trajectory (a); diagram                                0 0 0x v�� � �  (a); diagram 
                          ( )x t  vs t  (b).                                                        ( )x t  vs t  (b). 

from 0P , passes through the centre O  at the moment 0 0 0/( )t x v x��� � � �  and 
reaches A  at the moment t �  and returns asymptotically towards the centre O  
(Fig.8.30,a); the diagram of motion pierces the Ot -axis at the point t t ��� , has a 
minimum for t t �� , tending then asymptotically to zero with negative values 
(Fig.8.30,b). If the point 0P  is at the left of the pole O , hence if 0 0x � , then one 
obtains, by symmetry, analogous results. 

 
Figure 8.30.  Linear critical damping; case 0 0v x�� �  (a); diagram ( )x t  vs t  (b). 

A supercritical damping ( 1� � ) leads to an aperiodic damped motion of the form 

0 0 0
1( ) e cosh ( )sinhtx t x t v x t� � � �
�

� $ %�� ��� � �* +��& '
. (8.2.33''') 

In what concerns the trajectory and the diagram of motion, one obtains the same 
qualitative results as above as 0 0v � , 0 0( ) 0x v� � ��� � � �  or 0 0( )v x� � ��� � �  
(Figs.8.28-8.30); we observe that 
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0
2

0 0

1
arg tanh

v
t

x v
�

� � �
��

� �
�� �

,   0

0 0

1 arg tanh
x

t
v x

�
� �

����� �
�� �

. 
 

Multiplying the equation (8.2.33) by mx� , we obtain 

2d d( ) ( )
d d
T V T U k v
t t

�� � � � � , (8.2.34) 

so that the sum between the kinetic energy and the potential energy decreases (is 
dissipated) in time. In case of a subcritical damping, we observe that (abstraction of an 
additive constant) 

" #
2

2 2 2( ) ( ) ( ) e cos2( ) sin 2( )
2

tmaE t T t U t t t� � � � � �� � �� � � �� � � � � � � , 
 

so that 

2( ) e ( )TE t T E t��� � , (8.2.34') 

where T
 �� �  is the logarithmic decrement of motion; hence, the mechanical energy 
of the pseudoperiodic damped linear oscillator decreases in geometric progression. 
The relative energy dissipated in an interval of time equal to a pseudoperiod is given by 

2( ) ( )
1 e

( )
E t E t T

E t

� �

� � �� , (8.2.34'') 

being constant in time. 

Figure 8.31.  Model of a Coulombian damped linear oscillator. 

The case considered above corresponds to a viscous damping force (the magnitude of 
which is proportional to the velocity). In the case of a Coulombian dry damped force 
(of constant magnitude during the motion), modelled physically as in Fig.8.31, the 
equation of motion is of the form 

2 sign 0x x x
m
��� � ��� �  (8.2.35) 

and leads to 

0
0( ) ( )cos sina a

v
x t x t t
 � � 


�
� 2 � � ; (8.2.35') 
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we take sign 1x � 2� , denote by /a k
 ��  the displacement along the spring of elastic 
constant k  due to the force of dry friction G  and put the initial conditions (8.2.23'). 

We must study the motion piecewise after the direction of the velocity x�  (in fact, on 
semi-pseudoperiods). Without any loss of generality, we may assume that the particle 
P  starts from the point 0P  of abscissa 0 0x �  without initial velocity ( 0 0v � ); in 
these conditions, the motion can take place if and only if the damping force is less than 
the elastic force at the initial moment, hence if 0kx� �  or 0a x
 � . The particle 
begins to move with a negative velocity, so that its position is specified by 

0( ) ( )cosa ax t x t
 � 
� � � , 0 /2t T� � , till it reaches the point 1P  of abscissa 

01 ( 2 )ax x 
� � � , after a semi-pseudoperiod /2 /T � ��  (when the velocity 

0( ) ( )sinav t x t� 
 �� � �  vanishes). If 1 0x � , then 0 2 a ax 
 
� � � , the particle 
remaining further in permanent rest; hence, if the stop point is at the same part as the 
point of start (in particular, the initial position) with respect to the centre O , then the 
stopping is final. But if the point of stopping is situated on the other part of the centre 
O , then the particle moves further as the condition 0 2 a ax 
 
� � , hence the condition 

0 3 ax 
�  is verified or not (Fig.8.32). If this condition is fulfilled, then the particle 
continues to move with a positive velocity, in an interval of time equal to a new semi-
pseudoperiod, hence after the law 0( ) ( 3 )cosa ax t x t
 � 
� � � , /2T t T� � , 
which verifies the new conditions at the point 1P , at the moment /2t T� , till the 
point 2P  of abscissa 02 4 ax x 
� � . An analogous reasoning is then made.  Supposing  

Figure 8.32.  Coulombian damped linear oscillator. Trajectory. 

that the conditions of motion are fulfilled, the particle reaches the point nP  of abscissa 
0( 1) ( 2 )n

n ax x n
� � �  after n  semi-periods; the abscissae of this oscillatory motion 
decrease in an arithmetic progression of ratio 2 a
� . The motion ceases always after a 
finite number of semi-pseudoperiods, let be n  semi-pseudoperiods. The particle passes 
over the point 1nP �  and stops at the point nP  if 0(2 1) (2 1)a an x n
 
� � � � . If 

0(2 1) 2a an x n
 
� � � , hence if 0 /2 1/2 1/2an x n
� � � � , then the point nP  
is at the same part of the centre O  as the point 1nP � , if 02 an x
 � (2 1) an 
� � , 
hence if 0 /2 1/2an x n
� � � , then the point nP  is at the other part of the centre 
O  as the point 1nP � , while if 0 2 ax n
� , hence if 0 /2 an x 
� , then the point nP  at 
which the particle ceases to move coincides with the centre O . We denote 

" #01 E /2 an x 
�  and " #02 E /2 1/2an x 
� � , where " #E q  represents the greatest 
natural number contained in the number q ; if 1 2n n n� � , then the particle stops at nP , 
after n  semi-pseudoperiods, the centre O  being contained in the interior of the segment of 
a line 1 nnP P� , if 2 1 1n n� � , then 2n n� , and the particle stops after n  semi-
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which decrease in arithmetic progression and of axes which differ by a
�  with respect 
to the Ot -axis, the motion ceasing when the amplitude is less than a
  (in Fig.8.33,b is 
taken 5n � ); the points 0 2 4, ,Q Q Q  and 51 3, ,Q Q Q  of matching the arcs of cosinusoid 
are collinear, respectively, but the straight lines 0( 4 / )ax x t T
� 2 �  are not tangent 
to those arcs at the respective points. We notice that the motion during each semi-
pseudoperiod may be obtained as a projection of a uniform circular motion on a 
semicircle with the centre at Q  of abscissa a
  or at Q , of abscissa a
� , and of radii 

51 3, ,r r r  or 2 4,r r , respectively (Fig.8.33,a). 

 
Figure 8.33.  Coulombian damped linear oscillator. Trajectory as projection of circular  

uniform motions on semicircles (a); diagram ( )x t  vs t  (b). 

The damping by dry friction forces is, in fact, a particular case of non-linear 
damping. Another important such case is that of a hydraulic damping force, in direct 
proportion to the square of the velocity, which leads to an equation of the form 

2 22 sign 0x x x x� �� � ��� � � ; (8.2.36) 

proceeding as in Chap. 7, Subsec. 1.3.3, we may write the equivalent equation 

� �2
2 2d1

2 sign 0
2 d
x

x x x
x

� �� � �
�

� � , 
 

wherefrom we obtain the equation with separate variables 

2
2 4 sign

2e (1 4 sign )
8

xx C x x� � �
�

�� � ��� � , (8.2.36') 

pseudoperiods at the point nP , on the same part as the point 1nP �  with respect to the 
centre O , while if 01 /2 an x n
� � , then the particle stops at the centre O , after an 
interval of time equal to the respective number of semi-pseudoperiods. The diagram of 
motion may be represented by a succession of arcs of cosinusoid, with amplitudes 



www.manaraa.com

Dynamics of the particle in a field of elastic forces 

 

509 

the constant C  being determined by the condition of vanishing the velocity at the 
points where that one changes of direction. We notice that, replacing x  by x�  and x�  
by x� � , one obtains the same result; hence, the representation of the motion in the 
phase space is symmetric with respect to the pole O , the representation in the upper 
semiplane being thus sufficient. Denoting 2 2/ 8a � �� , C aC� , we may write for 
the upper semiplane 

� � " #2 4 4 41 4 e e (4 1)ex x xv a x C a C x� � �� �� �� � � � � � . (8.2.36'') 

 
Figure 8.34.  Hydraulic damped linear motion. Phase trajectory. 

The points at which the phase trajectory pierces the Ox -axis are given by the 
equation 4(4 1)e xx C�� � �  (for 1C � �  there is not one point, for 1C � �  there 
exists the crunode 0x � , for 1 0C� � �  there exist the points 1 0x �  and 2 0x � , 
for 0C �  there correspond 1x � �  and 2 1/ 4x �� , while for 0C �  there exists 
only one point 2 1/ 4x �� ). It results that for 1 0C� � �  one obtains closed phase 
trajectories, those ones having branches at infinity for 0C � . The separation curve is 
the parabola 2 (1 4 )v a x�� � , corresponding to 0C �  (Fig.8.34). 

2.2.7 Repulsive elastic forces. Self-sustained motions 

In case of a repulsive elastic force of the form ( )F x kx� , 0k � , the equation of 
motion is given by (we use the notations in Subsec. 2.1.2) 

2 0x x�� ��� ; (8.2.37) 

with the initial conditions (8.2.23'), we obtain 
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0
0 cosh sinh

v
x x t t� �

�
� � ,   0 0cosh sinhv v t x t� � �� � . (8.2.37') 

To fix the ideas, we assume that 0 0x � . If 0 0v � , then the particle travels through a 
half straight line, starting from 0P , in the positive direction of the Ox -axis 
(Fig.8.35,a); the respective diagram of motion is given in Fig.8.35,b, the curve being 
asymptotic to a hyperbolic cosine. If 0 0 0x v�� � � , then the particle starts from 0P , 
reaches  A   and 

Figure 8.35.  Particle acted upon by a repulsive elastic force; case 0 0v � :  
linear trajectory (a); diagram ( )x t  vs t  (b). 

then changes the direction of motion and tends to infinity in the positive sense of the 
Ox -axis (Fig.8.36,a); the diagram of motion has a minimum 2 2

0 0min ( / )x x v �� �  
for 0 0arg tanh( / )t v x�� � � , tending asymptotically to a hyperbolic cosine 
(Fig.8.36,b). If 0 0v x�� � , then the particle starts from 0P , reaches O  at the moment  

   
    Figure 8.36.  Particle acted upon by a repulsive        Figure 8.37.  Particle acted upon by a  
             elastic force; case 0 0 0x v�� � � :               repulsive elastic force; case 0 0v x�� � : 
            trajectory (a); diagram ( )x t  vs t  (b).              trajectory (a); diagram ( )x t  vs t  (b). 

0 0arg tanh( / )t x v��� � � , tending then to infinity in the negative sense of the  
Ox -axis (Fig.8.37,a); the diagram of motion has a point of inflection at t ��  on the  
Ot -axis and tends asymptotically to a hyperbolic cosine (Fig.8.37,b). All these  
motions are aperiodic and non-damped. If 0 0v x�� � , then we obtain 

0 0(cosh sinh ) e tx x t t x �� � �� � � , so that the particle starts from 0P  and tends 
asymptotically towards the centre O , the motion being damped (it is an interesting case 
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of damping due to the initial conditions) and aperiodic (Fig.8.29,a); the diagram of 
motion is of the same form as that in Fig.8.29,b. 

If a viscous damping force intervenes too, then the equation of motion takes the form 

22 0x x x� �� � ��� � , (8.2.38) 

with the notations in Subsec. 2.1.3; with the same initial conditions, it results 

0 0 0
1( ) e cosh ( )sinhtx t x t v x t� � � �
�

� $ %� � �* +& '
,   2 2� � �� � , (8.2.38') 

2
0 0 0

1( ) e cosh ( )sinhtv t v t x v t� � � � �
�

� $ %� � �* +& '
. (8.2.38'') 

One obtains the same qualitative results for the trajectory and for the diagram of 
motion, as 0 0v � , as 0 0( ) 0x v� �� � � � , as 0 0( )v x� �� � �  or as 0v  

0( )x� �� � � , respectively (Figs 8.35-8.37, 8.29); we observe that 

0
2

0 0

1
arg tanh

v
t

v x
�

� � �
� �

�
,   0

0 0

1 arg tanh
x

t
v x

�
� �

��� �
�

. 
 

In what concerns the diagram in Fig.8.37,b, the point of inflection is no more on the 
Ot -axis, but corresponds to 

� �
� �

2
0 0

2 2 2
0 0

21
arg tanh

v x
t t

v x

� � �
� � � ��

�
��� ��� �

� �
. 

 

In case of self-sustained motions of the particle, we use the considerations in Subsec. 
2.1.4. For an elastic force of attraction, the equation of motion is of the form 

22 0x x x� �� � ��� � . (8.2.39) 

We obtain 

0 0 0
1( ) e cos ( )sin e cos( )t tx t x t v x t a t� �� � � � �
�

$ %� � �� � � � �* +�& '
, (8.2.39') 

hence a subcritical damping (we assume that � �� , hence 1� � ) for which the 
pseudopulsation � �  is given by (8.2.15''), the pseudoperiod being 2 /T � � �� . The 
trajectory, which starts from the point 0P , has amplitudes more and more greater 
(Fig.8.38,a), being thus modulated in amplitude; the diagram of motion has the aspect 
of a cosinusoid contained between the curves e tx a �� 2  and tangent to them 
(Fig.8.38,b). If � ��  (critical damping, 1� � ), we may write 

" #0 0 0( ) e ( )tx t x v x t� �� � � . (8.2.39'') 
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If 0 00 v x�� � , then the particle starts from 0P , reaches A  at the moment 

0 0 0/ ( )t v x v� �� � �  and then changes of direction and tends to infinity in the 
negative direction of the Ox -axis (Fig.8.39,a); the diagram of motion has a maximum 
for t t ��  and pierces the Ot -axis at  0 0 0/( )t x x v��� � �  (Fig.8.39,b).  If  0 0v x�� , 

  
  Figure 8.38.  Self-sustained motion of a particle;       Figure 8.39.  Self-sustained motion of a  
            subcritical damping. Trajectory (a);                          particle; critical damping, case  
                     diagram ( )x t  vs t  (b).                                  0 00 v x�� � : trajectory (a); 
                                                                                                   diagram ( )x t  vs t  (b). 

then the particle starts from 0P  and tends to infinity in the positive direction of the Ox -
axis (Fig.8.35,a), the diagram of motion being that of Fig.8.35,b. If 0 0v � , then the 
particle tends to infinity in the negative direction of the Ox -axis (Fig.8.40,a), while the 
diagram of motion pierces the Ot -axis at t t ���  (Fig.8.40,b). Analogously, for � ��  
(supercritical damping, 1� � ) we obtain 

0 0 0
1( ) e cosh ( )sinhtx t x t v x t� � � �
�

$ %�� ��� � �* +��& '
, (8.2.39''') 

the pseudopulsation � ��  being given by (8.2.17). In what concerns the trajectory and 
the diagram of motion, we obtain the same qualitative results as 0 00 ( )v x� � ��� � � , 
as  0 0( )v x� � ��� �  or as 0 0v � , respectively (Figs 8.39, 8.35, 8.40); in this case 

0
2

0 0

1
arg tanh

v
t

x v
�

� � �
��

� �
�� �

,   0

0 0

1 arg tanh
x

t
x v
�

� �
��

�� �
�� �

. 
 

If the elastic force is repulsive, then the equation of motion has the form 

22 0x x x� �� � ��� � , (8.2.40) 
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and we are led to 

0 0 0
1( ) e cosh ( )sinhtx t x t v x t� � � �
�

$ %� � �* +& '
, (8.2.40') 

 
Figure 8.40.  Self-sustained motion of a particle; critical damping, case 0 0v � :  

trajectory (a); diagram ( )x t  vs t  (b). 

with the same initial conditions and the notation (8.2.18'''). The trajectory and the 
diagram of motion are qualitatively given for 0 0v �  and for 0 0( )v x� �� � �  in 
Fig.8.35, for 0 0( ) 0x v� �� � � �  in Fig.8.36 and for 0 0( )v x� �� � �  in Fig.8.40; 
we notice that 

0
2

0 0

1 arg tanh
v

t
v x

�
� � �

�� �
�

,   0

0 0

1 arg tanh
x

t
x v
�

� �
�� �

�
. 

 

2.2.8 Influence of perturbing forces. Resonance 

The intervention of a perturbing force F  leads to a forced motion (a constraint or 
forced oscillation) of a particle P , unlike the free motion (free oscillation) considered 
till now. The most simple physical model of a mechanical system with a simple degree 
of freedom acted upon by such a force is that of a non-damped forced linear oscillator, 
represented in Fig.8.41. 

Figure 8.41.  Model of a non-damped forced linear oscillator. 

Let us consider firstly the case of a periodic force ( )F F t� , which fulfils the 
Lejeune-Dirichlet sufficient conditions, that is which is developable into a Fourier 
series 

0 1 1( ) cos sin ... cos sin ...n nF t pt pt npt npt� � � � �� �� � ��� � � � � � � , (8.2.41) 
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where 

 0
1 ( )d
T
F t t

T
� � � ,    

2 ( )cos dn
T
F t npt t

T
�� � � ,    

2 ( )sin dn
T
F t npt t

T
��� � � , 

 (8.2.41') 

the period 2 /T p��  on which is effected the integration may begin from a point 
arbitrarily chosen. In case of a non-damped linear oscillator subjected to a perturbing 
force, the equation of motion is of the form 

2 ( )x x f t�� ��� , (8.2.42) 

where we use the previous notation and where 

1( ) ( )f t F t
m

� . (8.2.43) 

We notice that the term 0�  in the expansion into a series leads only to a change of 
origin for ( )x t , so that it may be neglected. For each term of the Fourier series one 
obtains a particular integral of the same type, leading to the corresponding motion; it is 
thus sufficient to consider the influence of only one term of the form 

cos( )pt� �� ,   2 2
1 1 1

1
m

� � � �� ��� � � ,   arctan ��
�
��

�
�

. (8.2.44) 

For ( ) cos( )f t pt� �� � , we find 

0
0 2 2( ) cos sin cos cos sin sin cos( )

v px t x t t t t pt
p

�� � � � � � �
� ��

$ %� � � � � �
& '�

, 

 (8.2.42') 

with the initial conditions (8.2.23'); we may also write 

2 2( ) cos( ) cos( )x t a t pt
p

�� � �
�

� � � �
�

, (8.2.42'') 

where 

2 2

0 02 2 2 2 2
cos sin1 p

a x v
p p

� � � �
� � �

� � � �� � � �	 
 	 
� �� � � �
,    

0 2 2

0 2 2

sin

arctan
cos

pv
p

x
p

� �
��
� ��
�

�
�

�
� ��	 
�� �

. 

 (8.2.42''') 

One observes thus that the motion of the particle may be obtained as an interference of 
two harmonic vibrations: the proper vibration (the proper oscillation) of pulsation �  
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and the forced vibration (the forced oscillation) of pulsation p , as it was shown in 
Subsec. 2.2.4. If, in particular, we assume homogeneous initial conditions 
( 0 0 0x v� � ) and if the phase shift of the perturbing force vanishes ( 0� � ), then it 
results 

2 2( ) (cos cos )x t pt t
p

� �
�

� �
�

. (8.2.45) 

If the pulsation p  differs much from the pulsation �  ( p ��  or p �� ), then the 
diagram of motion is that in Fig.8.22 (the case p �� , hence a proper vibration of 
great pulsation “carried” by a forced vibration of small pulsation); we notice that the 
maximal elongation of the resultant motion is practically equal to the double of the 
amplitude of one of the motions ( � �2 2

max 2 /x p� �1 � ). If the two pulsations are 
close in magnitude, then one obtains the phenomenon of “beats” (Fig.8.23). 

If p �� , then it results a non-determination in (8.2.45), as well as in (8.2.42'). If 
p �� , then one obtains at the limit (we use L’Hospital’s theorem) 

( ) sin
2

x t t t� �
�

� , (8.2.46) 

Figure 8.42.  Phenomenon of resonance. Diagram ( )x t  vs t . 

for the law of motion (8.2.45). In case of the equation of motion (8.2.42') we get an 
analogous result (supplementary harmonic vibrations are added). The diagram of 
motion (8.2.46) is a sinusoid of amplitude modulated along the straight lines 

/2x t� �� 2  and of pseudoperiod 2 /T � ��  (Fig.8.42). The amplitude increases 
very much, in arithmetic progression, and the phenomenon is called resonance, being 
extremely dangerous for civil and industrial constructions or for engine building; the 
increasing velocity of the amplitude is given by the slope 

1 1 1/
2 22 / c

F m F F
kkmk m

�
�

� � �
�

, (8.2.47) 

hence it is in direct proportion to the amplitude 1 1F m m� �� �  of the perturbing 
force and in inverse proportion to the critical coefficient of damping (8.2.14). If 
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2
st 1 1/ /x F k F m�� �  is the static displacement produced by the force 1F  

(corresponding to the relation of proportionality between the elastic force and the 
displacement), then we may express the amplitude A  of the forced vibration in the 
form stA x� A , A  being an amplification factor of the forced vibration, given by 

2 2 2
1 1

1 / 1p � �
� �

� �
A , (8.2.48) 

where we have introduced the relative pulsation 

p�
�

� , (8.2.48') 

 
Figure 8.43.  Phenomenon of resonance. Diagram A  vs � . 

which is a non-dimensional ratio. The diagram of the absolute value A  is given in 
Fig.8.43. 

Figure 8.44.  Model of a viscous damped forced linear motion. 

If a viscous damping intervenes, then we use the physical model in Fig.8.44, being 
led to the equation of motion 

22 cosx x x pt� � �� � ��� � , (8.2.49) 

with the previously introduced notations (for the sake of simplicity, we assumed 
0� � ). To fix the ideas, we assume to be in the case of a subcritical damping ( 1� � ); 

the motion of the particle is given by 
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1 2( ) e cos( ) cos sintx t a t C pt C pt� � ��� �� � � � , (8.2.49') 

where 

� �
� �

2 2

1 22 2 2 24

p
C

p p

� �

� �

�
�

� �
,   

� �
2 22 2 2 2

2

4

p
C

p p

� �
� �

�
� �

, (8.2.49'') 

the last two terms corresponding to the forced motion. Taking into account the 
exponential term, the proper motion is rapidly damped, so that we may consider the 
forced motion in the form 

( ) cos( )x t A pt �� � , (8.2.50) 

 
Figure 8.45.  Viscous damped forced linear motion. Diagram A  vs � . 

with 

� �22 2 2 24
A

p p

�

� �
�

� �
,   2 2

2arctan p
p

��
�

�
�

. (8.2.50') 

Using the notations introduced above and the damping factor (8.2.14'), we may also 
write 
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� �22 2 2

1

1 4� � �
�

� �
A ,   2

2
arctan

1
���
�

�
�

. (8.2.50'') 

The diagram of the amplification factor ( )��A A  is given in Fig.8.45 for various 
values of the damping factor � . We define a resonance in amplitude for the values 

2
res 1 2 1� � �� � � � ,   1/ 2� � , (8.2.51) 

for which the amplification factor has a maximum 

 max
2

1 1
22 1 �� �

� �
�

A . (8.2.51') 

One observes that, in case of the phenomenon of resonance, the amplitude is as smaller 
as the damping is greater, the diagram of the function being planished for a great 
damping; the effect of damping appears especially in the vicinity of the resonance zone 
( 1� 1 ). If the damping is very small ( 1� � ), then the resonance in amplitude 
appears for 1� 1 , the amplification factor being given by  max 1/2�1A . 

Eliminating �  between (8.2.51) and (8.2.51'), we get  
4

max res1/ 1 �� �A , that one 
being the locus of the points of maximum of the diagrams for various values of �  
(represented by a dot-dash line). These points are at the left of the line 1� � ; on this 
line one has 1/2��A . 

 
Figure 8.46.  Viscous damped forced linear motion. Diagram �  vs �. 

The diagram of the phase function ( )� � ��  is given in Fig.8.46 for various values 
of the coefficient � . We notice that, in case of a non-damped system, the phase is 

0� � , under the resonance ( 1� � ), the vibration being in phase with the perturbing 
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force, or � �� , over the resonance ( 1� � ), the vibration being in phase opposition 
with respect to the perturbing force; in case of a damped system there exists always a 
phase shift between the perturbing force and the vibration. For 1� � , as �  (hence, the 
damping) increases, so the phase shift between the motion and the perturbing force 
increases too, the motion remaining behind that force. For 1� � , as �  (hence, the 
damping) increases, so the phase shift decreases, the motion remaining behind the 
perturbing force too. For a very great � , the phase shift increases no matter the 
damping and the motion tends to be in opposition with the perturbing force. But the 
opposition is obtained rigorously only in the absence of the damping ( 0� � ). For 

1� �  one obtains /2� ��  for all the damping coefficients � ; one may define thus a 
phase resonance for which the vibration is in quadrature with the perturbing force. 

Starting from the equation of motion 

1 cosmx k x kx F pt�� � ��� �  (8.2.52) 

and multiplying by x� , we get 

2
1

d ( ) cos
d
T V k x F x pt
t

�� � � �� � ; (8.2.53) 

it is thus seen that the mechanical energy does not remain constant, because the second 
member of this relation is – in general – non-zero. If we equate this member to zero, 
assuming that   0x� N , we find 

1
0 sin
F

x x pt
k p

� �
�

; (8.2.53') 

hence, the amplitude of the motion is 1 /F k p� , corresponding to the amplitude 
resonance ( 1/2��A  for 1� � ). 

2.2.9 Mechanical impedance. Transmissibility 

Using the complex representation in Subsec. 2.2.3, we can write the equation of 
motion (8.2.52) in complex form 

mz k z kz F�� � ��� � , (8.2.54) 

where we denoted i
0e ptz z�  and i

1e ptF F� ; replacing iz pz�� , 2z p z� ��� , we may 
write 

F Zz� , (8.2.55) 

where we have introduced the mechanical impedance 

2 iZ k mp k p�� � � , (8.2.55') 
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which is a constant of proportionality, extending thus the notion of elastic constant. For 
an elastic spring, the impedance is Z k� , for a mass m  we may write 2Z mp� � , 
while for a linear (viscous) damping it results iZ k p�� . We notice that the equation 
(8.2.54) may be obtained as a sum of vectors in the complex plane (Fig.8.47). 
Projecting on the direction of the force F  and on a normal to it, one finds again the 
amplitude A  and the phase shift �  given by (8.2.50'). Using the analogy with the 
constants corresponding to elastic springs (see Subsec. 2.2.1) and the formulae (8.2.25), 
(8.2.25'), we can express the impedance equivalent to n  impedances iZ , 1,2,...,i n� , 
linked in parallel, in the form 

1

n

i
i

Z Z
�

�  , (8.2.56) 

while for the impedance equivalent to the same impedances linked in series we may 
write 

1

1
1n

ii

Z

Z�

�


. (8.2.56') 

 
Figure 8.47.  Viscous damped forced linear motion. Complex representation. 

An examination of the physical model of a mechanical system constituted of an 
elastic spring and a linear damper which act in parallel on a mass (Fig.8.44) leads to the 
notion of transmissibility as the ratio TC  between the amplitude of the force 

( )F t kx k x�� � �  transmitted to the fixed element and the amplitude of the perturbing 
force ( )F t  which acts upon the mass m . Introducing the impedance iZ k k p�� � , 

2 iZ k mp k p�� � � , it results 

� �

2 2 2

22 2 2T
Z k k p

C
Z k mp k p

��
� �

�� �
; 

 

with the aid of the previous notations, we may also write 

� �

2 2

22 2 2

1 4

1 4
TC

� �
� � �
�

�
� �

. (8.2.57) 
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The transmissibility curves are given in Fig.8.48 for various values of the damping 
coefficient � . The maximal force transmitted to the fixed element is greater than the 
amplitude of the perturbing force if 1TC � , hence for 0 2�� � , is less than this 
amplitude if 1TC � , hence for 2� � , or is equal to the respective amplitude if 

1TC � , hence if 0� �  or 2� � . We notice also that for 2� �  the damping 
diminishes the transmissibility, while for 2� �  that one becomes smaller together 
with the damping. 

 
Figure 8.48.  Transmissibility curves. Diagram TC  vs � . 

2.2.10 Electro-mechanical analogy 

Let be an R.L.C. circuit, constituted of an ohmic resistance R , a loading inductance 
L  and a condenser of capacity C , connected in series with a generator having an 
electromotive force ( )E t  (Fig.8.49). This force begins to act at the moment 0t � , 
when we close the circuit; for 0t �  a current of intensity ( ) ( )i t q t� � , where ( )q t  is 
the charge, is established. 

Choosing as unknown function of the problem the charge ( )q t , we may write the 
differential equation of second order with constant coefficients 
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 1( ) ( ) ( ) ( )Lq t Rq t q t E t
C

� � ��� � ,   0t � , (8.2.58) 

corresponding to Kirchhoff’s second law. Cauchy’s problem for this circuit consists in 
the determination of the function ( )q t  which satisfies the equation (8.2.58) for 0t �  
and the initial conditions 

Figure 8.49.  Electro-mechanical analogy. 

0(0)q q� ,   0(0)q i�� , (8.2.58') 

where 0q  and 0i  are the charge and the intensity of the current at the moment 0t � , 
respectively. The correspondence L m� , R k �� , 1/C k� , ( ) ( )E t F t� , 
( ) ( )q t x t� , ( ) ( )i t x t� �  leads to an interesting electro-mechanical analogy, which 

allows an experimental determination of the corresponding mechanical quantities. 

2.2.11 Case of an arbitrary perturbing force 

We consider first of all the non-damped motion with arbitrary perturbing forces, 
governed by an equation of the form (8.2.42), in case of elastic forces of attraction, or 
of the form 

2 ( )x x f t�� ���  (8.2.59) 

in case of repulsive elastic forces. The fundamental solution of the operator 
2 2 2

1D d /dt �� �  is 

1
sin( ) ( ) tE t t ��
�

� ,   0� � , (8.2.60) 

where ( )t�  is Heaviside’s distribution. As well, the distribution of function type 

2
1( ) e

2
tE t �

�
�� � ,   0� � , (8.2.61) 

is the fundamental solution of the operator 2 2 2
2D d /dt �� � ; this distribution is 

generated by a continuous and everywhere differentiable function, excepting the origin. 
Using the considerations in App., Subsec. 3.3.1, we may write D ( ) ( )i iE t t
� , 
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1,2i � , where ( )t
  is Dirac’s distribution. If to the particular fundamental solution 

2 ( )E t , the support of which is the real axis, we add the solution e /2t� � , 0� � , 
corresponding to the homogeneous equation, then we find the fundamental solution 

2
sinh( ) ( ) tE t t ��

�
� ,   0� � , (8.2.61') 

the support of which belongs to the interval [0, )� ; hence 2 2D ( ) ( )E t t
� . Denoting 
generically by ( )E t�  the fundamental solution corresponding to one of the two cases, 
we may write – for an arbitrary load ( )f t  – the solution 

( ) ( ) ( )x t E t f t�� D , (8.2.62) 

in distributions, where we have introduced the convolution product. If ( )f t  is an 
integrable function, it results 

( ) ( ) ( )d ( ) ( , )dx t f t E t f t G t� � � �
�� ��

�
�� ��

� � �� � ,   0t � , (8.2.62') 

where ( , )G t �  is Green’s function corresponding to one of the equations (8.2.42), 
(8.2.59). 

Let us put initial conditions of the form 

00 0
lim ( )
t

x t x
� �

� ,   00 0
lim ( )
t

x t v
� �

�� , (8.2.63) 

in case of a problem of Cauchy type. By a prolongation with zero for 0t � , we 
introduce the functions 

( ) ( ) ( )x t t x t�� ,   ( ) ( ) ( )f t t f t�� ; (8.2.64) 

in this case, the equation (8.2.42), which is written for 0t � , is of the form 

2
2

2
d

( ) ( ) ( )
d
x t x t f t

t
�� �

�
, 

 

where the sign “tilde” corresponds to the differentiation in the usual sense. Using the 
formula (1.1.50), we notice that 

0
d d( ) ( ) ( )
d d
x t x t x t
t t


� �
�

,   
22

0 02 2
d d

( ) ( ) ( ) ( )
d d
x t x t v t x t

t t

 
� � �

�
� , 

 

so that one obtains 

2
0 0( ) ( ) ( ) ( ) ( ) ( )x t x t f t v t x t q t� 
 
� � � � ���� , (8.2.65) 
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in distributions, where the differentiation takes place in the sense of the theory of 
distributions. The formula (8.2.62) allows to write 

0 0
1( ) ( )sin ( ) ( ) ( )x t t t f t v t x t� � 
 

�

� D � �$ %& '� ,  

where we took into account (8.2.60). Effecting the convolution products, it results 

0
0

1( ) ( )sin ( ) ( )cos ( )sin
v

x t t t f t x t t t t� � � � � �
� �

� D � � , (8.2.65') 

while, if ( )f t  is a locally integrable function, then we get 

0
0 0

1( ) cos sin ( )sin ( )d
tv

x t x t t f t� � � � � �
� �

� � � �� ,   0t � ; (8.2.65'') 

the integral which intervenes is known as the Duhamel integral. If the perturbing force 
is a shock at the initial moment, then we have 

0( ) ( )f t f t
� , (8.2.66) 

where 0f  is a quantity the dimension of which is that of a velocity (dimensionally 
" # 1( ) Tt
 �� ); we obtain 

0 0
0( ) ( )cos ( )sin

f v
x t x t t t t� � � �

�
�

� � . (8.2.66') 

We thus notice that the apparition of a shock at the initial moment is equivalent to the 
introduction of a supplementary initial velocity. 

Considering the same problem for the equation (8.2.59), written in the form 

2( ) ( ) ( )x t x t q t�� ��� , (8.2.67) 

it results, analogously, 

0
0

1( ) ( )sinh ( ) ( )cosh ( )sinh
v

x t t t f t x t t t t� � � � � �
� �

� D � � ; (8.2.67') 

if ( )f t  is a locally integrable function, then we get 

0
0 0

1( ) cosh sinh ( )sinh ( )d
tv

x t x t t f t� � � � � �
� �

� � � �� ,   0t � . (8.2.67'') 

As well, in case of a perturbing force of the form (8.2.66), we have 

0 0
0( ) ( )cosh ( )sinh

f v
x t x t t t t� � � �

�
�

� � , (8.2.66'') 
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and we obtain a result analogous to that above. 
In case of a bilocal problem, we put conditions of the form 

1 1( )x t x� ,   2 2( )x t x� , (8.2.68) 

assuming that " #1 2,t t t� . In case of Cauchy type conditions for 1t t� , we may write 

1

1
1 1 1

1( ) cos ( ) sin ( ) ( )sin ( )d
t

t

v
x t x t t t t f t� � � � � �

� �
� � � � � �� ,  

considering an elastic force of attraction and assuming that ( )f t  is a locally integrable 
function. The second bilocal condition (8.2.68) leads to 

2

1

1
2 1 2 1 2 1 2

1cos ( ) sin ( ) ( )sin ( )d
t

t

v
x x t t t t f t� � � � � �

� �
� � � � � �� ,  

so that we can determine the velocity 1v  at the initial moment; eliminating this velocity 
between the last two relations, one obtains the solution of the bilocal problem in the 
form 

,
1

2 1
2 1

1( ) sin ( ) ( )sin ( )d
sin ( )

t

t
x t t t f t

t t
� � � � �

� �
� � �

� �  

"2

1
1 2 1 2sin ( ) ( )sin ( )d sin ( )

t

t
t t f t x t t� � � � � � �� � � � ��  

# -2 1sin ( )x t t�� � ,   2 1t t k �
�

� � ,   k � � . (8.2.69) 

In case of a repulsive elastic force, it results 

,
1

2 1
2 1

1( ) sinh ( ) ( )sinh ( )d
sinh ( )

t

t
x t t t f t

t t
� � � � �

� �
� � �

� �  

"2

1
1 2 1 2sinh ( ) ( )sinh ( )d sinh ( )

t

t
t t f t x t t� � � � � � �� � � � ��  

# -2 1sinh ( )x t t�� �  (8.2.69') 

for the same bilocal problem. 
In the general case of a law of motion of the form 

( )mx k x kx F t�� � ��� � , (8.2.70) 

where k�� � , k � � � , which corresponds to all possibilities of motion previously 
considered, we put Cauchy’s problem in the form (8.2.63). By a prolongation with zero 
for 0t � , of the form (8.2.64), 

( ) ( ) ( )F t t F t��  (8.2.64') 
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and taking into account the connection between the derivatives in the usual sense and in 
the sense of the theory of distributions for the regular distributions thus obtained, we 
may write, as above, the corresponding equation in distributions 

0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )mx t k x t kx t F t mv k x t mx t Q t
 
� �� � � � � � ���� � , (8.2.70') 

which includes the initial conditions. The solution of this problem is given by 

( ) ( ) ( )x t E t Q t� D , (8.2.71) 

where ( )E t  is the fundamental solution in the sense of the theory of distributions, 
which verifies the equation 

( ) ( ) ( ) ( )mE t k E t kE t t
�� � ��� � . (8.2.71') 

Applying the Laplace transform in distributions, we obtain 

� � " #2 ( ) 1mp k p k L E t�� � � ,  

where p  is the new variable in the space of transforms; it results 

" # 2
1 2

1 1L ( )
( )( )

E t
m p p p pmp k p k

� �
� ��� �

, 

1p � �� � � ,   2p � �� � � ,   
2
k
m

�
�

� ,   
2

2
k k
m m

�
�� �� �	 


� �
. 

 

Three cases of integration are thus put in evidence. If 

2 4k km� � , (8.2.72) 

then we may write ( 2 0� � , � � 
 ) 

" #
1 2

1 1 1L ( )
2

E t
m p p p p�

� �� �	 
� �� �
, 

 

wherefrom 

� �1 2
( ) 1( ) e e ( )e sinh

2
p t p t tt

E t t t
m m

��
� �

� �
�� � � . (8.2.72') 

After effecting the convolution products, the solution (8.2.71) takes the form 

0 0 0
1 1( ) ( )e sinh ( ) ( )e cosh ( )sinht tx t t t F t t x t v x t
m

� �� � � � � �
� �

� � $ %� D � � �* +& '
; 

 (8.2.73) 
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if ( )F t  is a locally integrable function, then we can write 

0 0 0
1( ) e cosh ( )sinhtx t x t v x t� � � �
�

� $ %� � �* +& '
 

0

1 ( )e sinh d
t
F t

m
��� �� �

�
�� �� ,   0t � . (8.2.73') 

If 0k � � , then we denote 0� �� �  (viscous damping), while if 0k � � , then we 
denote 0� �� � �  (self-sustained oscillations). If 0k �  (elastic forces of attraction), 
then we denote 2/k m �� , � � ���  ( 2 2� �� ), while if 0k �  (repulsive elastic 
forces), then we denote 2/k m �� � , � �� . We pass thus to the notation previously 
used. 

If 

2 4k km� �  (8.2.74) 

and 

2 0� � ,   � � � ,   i� � �� ,   
2

2 2
2

k k
m m

� � �
�� �� � � � �	 


� �
, 

 

then we may write (one can have only 0k � , hence elastic forces of attraction) 

1( ) ( )e sintE t t t
m

�� �
�

� ��
�

; (8.2.74') 

the solution of Cauchy’s problem is 

0 0 0
1 1( ) ( )e sin ( ) ( )e cos ( )sint tx t t t F t t x t v x t
m

� �� � � � � �
� �

� � $ %� � �� D � � �* +� �& '
 

 (8.2.75) 

and, in the case in which ( )F t  is a locally integrable function, we obtain 

0 0 0
1( ) e cos ( )sintx t x t v x t� � � ��

� $ %� �� � �* +�& '
 

0

1 ( )e sin d
t
F t

m
��� � � �

�
� �� �

� � ,   0t � . (8.2.75') 

If 
2 4k km� � , (8.2.76) 

then we have 0� � , so that " # 2L ( ) 1/ ( )E t m p �� � ; the fundamental solution is 

1( ) ( ) e tE t t t
m

�� �� . (8.2.76') 
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The solution of the boundary value problem reads 

" #0 0 0
1( ) ( ) e ( ) ( )e ( )t tx t t t F t t x v x t
m

� �� � �� �� D � � � , (8.2.77) 

while if ( )F t  is a locally integrable function, then we get 

" #0 0 0 0

1( ) e ( ) ( )e d
ttx t x v x t F t

m
� ��� � � �� �� � � � �� ,   0t � . (8.2.77') 

According to the above relations, for the last two cases we obtain a viscous damping or 
self-sustained oscillations for � �� 2 , respectively. 

In the particular case of homogeneous initial conditions ( 0 0 0x v� � ) we remain 
only with the first terms of the formulae (8.2.73), (8.2.75) and (8.2.77). 

The vibratory phenomena considered above, for which the parameters , ,m k k �  are 
constant, are – in general – in permanent régime. Such phenomena may be due, for 
instance, to a perturbing force, which is applied at the initial moment and remains 
constant in time, of the form 

0( ) ( )F t F t�� ; (8.2.78) 

we obtain thus 

" #

" #

" #

0 2

0 2

0 2

      

e ( sinh cosh )    for 4 ,

( ) 1 (1 )e                   for 4 ,

e ( sin cos )       for 4 ,

t

t

t

F
t t k km

k
F

x t t k km
m
F

t t k km
k

�

�

�

� � � � �
�

��

� � � � �
�

�

�

�

� �� � � ��
�� �� � � � 
�
� �� � � ��!

 (8.2.78') 

for 0t � . Passing from a permanent régime to another one, a transitory phenomenon 
takes place; for instance, the transitory phenomena appear by the introduction or by the 
elimination of a perturbing force, as well as – in general – by any variation of the 
parameters of the considered phenomena. E.g., in case of a shock at the initial moment, 
given by 

0( ) ( )F t F t
� , (8.2.79) 

we obtain 

0 2

0 2

0 2

   

e sinh     for 4 ,

( ) e            for 4 ,

e sin     for 4 ,

t

t

t

F
t k km

m
F

x t t k km
m
F

t k km
m

�

�

�

�
�

�
�

�

�

�

� � ��
�� �� � 
�
� � � �� �!

 (8.2.79') 
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for 0t � ; this result corresponds to the fundamental solutions (8.2.72'), (8.2.76') and 
(8.2.74'), as well as to the velocity which appears in the previously considered case (it is 
obtained by differentiating the formula (8.2.78') with respect to time). 

2.2.12 Oscillations with variable characteristics 
The oscillations with variable characteristics (parametric oscillations) are the 

oscillations of a mechanical system the parameters of which (mass, frequency, 
dimensions, elastic coefficient, damping coefficient etc.) are functions of time. In the 
absence of a perturbing force, the mathematical model of such a mechanical 
phenomenon leads to a differential equation of the form 

( ) ( ) 0x t x t x� �� � ��� � , (8.2.80) 

where ( )t�  and ( )t�  are periodic functions. By the substitution  

(1/2) ( )d( ) ( )e t tx t u t �� �� ,  

we obtain the equation 

( ) 0u t u�� ��� ,   21 1( ) ( ) ( ) ( )
2 4

t t t t� � � �� � �� . (8.2.81) 

To deduce the aspect of the solution or to find an approximate solution of this 
equation may be a different task from case to case. The general solution can be written 
in the form 

( ) e ( ) e ( )t tu t t t� �� �� � , (8.2.81') 

where the coefficients �  and �  are characteristic coefficients of the equation, while 
( )t�  and ( )t�  are periodic functions of period T  (as well as the function ( )t� ), 

which have to be determined. One may put the condition 

( ) ( )u t T ku t� � , (8.2.81'') 

where ( , )k k � �� . Thus, if we know the motion during a period, then the motion in 
the following period is obtained by multiplying the elongation of the first period by the 
factor k  a.s.o. If 1k � , then the elongations tend to zero and the oscillations are 
damped; if 1k � , then the elongations increase in time and the motion becomes 
instable. 

For instance, in case of a mathematical pendulum of variable length ( )l l t� , the 
equation of motion which specifies the generalized co-ordinate ( )t� ��  is 

� �2d sin 0
d
l gl

t
� �� �� ; (8.2.82) 
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in case of small oscillations, we obtain the equation 

( )
2 0

( ) ( )
l t g
l t l t

� � �� � �
�

�� � . (8.2.82') 

2.2.13 Non-linear oscillations 
We say that a mechanical system represents a non-linear oscillatory system if, in the 

differential equation of motion, one or several characteristic parameters (mass, elastic 
coefficient, frequency etc.) depend on the displacement x . In general, the differential 
equation of these oscillations is of the form 

( , ; ) 0x f x x t� ��� � , (8.2.83) 

resulting from Newton’s equation (which puts in evidence the linkage between the 
elastic force and the displacement) or, in particular, of the form 

( , ) 0x f x x� ��� � , (8.2.83') 

Figure 8.50.  Non-linear vibrations determined by the equation ( ) 0x f x� ��� ; diagrams  

( )f x  vs x  for 0x � : case ( ) 0f x�� �  (a); case ( ) 0f x�� �  (b). 

as the non-linear vibration is non-autonomous or autonomous, respectively. If the non-
linear term depends only on x , then the function ( )f x  which intervenes is called arc 
characteristic; the most times, in practice, the graphic of the function ( )f x  is 
symmetric with respect to the origin ( ( )f x  is an odd function, that is ( )f x�  

( )f x� � ). If the graphic of the function ( )f x  has the concavity towards down in the 
vicinity of the origin for 0x � , hence if ( ) 0f x�� �  (Fig.8.50,a), then the arc 
characteristic is weak, while if, in the same vicinity, the graphic of the function ( )f x  
has the concavity towards up for 0x � , hence if ( ) 0f x�� �  (Fig.8.50,b), then the arc 
characteristic is strong. 

In case of great oscillations of the simple pendulum, the non-linear character of the 
phenomenon is put into evidence in the equation (7.1.38'). Developing sin �  into a 
power series, we obtain, in a first approximation, the linear differential equation 
(7.1.45). In a second approximation (non-linear approximation, in which we take two 
terms in the series development), we may write 
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3
2 0

6
�� � �� �� � �	 


� �
�� ; (8.2.84) 

in this case, � �2 3( ) /6f � � � �� �  and 2( ) 0f � � ��� � � �  for 0� � , the arc 
characteristic being thus weak. 

Figure 8.51.  Motion of a particle situated at the middle of an elastic thread. 

Let us consider also the case of a particle P  of mass m , situated at the middle of an 
elastic thread fixed at the points A  and A� , 2AA l� �  (e.g., the case of a training ball 
for boxing); in the position O  of stable equilibrium, the tension in the thread is 0T  (we 
suppose that the thread is tensioned). Perturbing the position of equilibrium by a 
displacement normal to AA� , the particle reaches the position P  (Fig.8.51), being 
acted by the tensions T  and �T , � �2 2

0T T T k l x l�� � � � � , and by the 

perturbing force F , 2 22 cos 2 /F T Tx l x�� � � . Observing that 

1/22 2

2 22 2

1 1 11 1
2

x x
l ll ll x

�
� � � �� � 1 �	 
 	 

� � � ��

, 
 

we obtain 

� �30
0 02 2

2( )
2 2 ( )

T kl x x xF kx T kl T
l ll x

�
� � 1 � �

�
; 

 

if x l� , then we remain only with the first term (the case of a linear elastic force). In 
the non-linear case considered (the second approximation), the equation of motion is 

32 0x x x� �� � ��� ,   02
0

T
l

� � � ,   0
3 0

2
kl T
l

� �
� � , (8.2.85) 
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where we take into account that the point O  is a stable position of equilibrium, the 
force which acts upon the particle being directed towards this point (hence, it is equal to 
F� ); we notice that the tension 0T  is of the form 0( )k l l� , 0l l� , assuming that the 

thread is tensioned beginning with a length 02l , for which the initial tension is zero, so 
that 0kl T� . Because 3( ) 2f x x x� �� � , we have ( ) 12 0f x x��� � �  for 0x � ; 
hence, the arc characteristic is strong. 

In the considered case, the force F  is conservative ( 2 42 ( )V x x x� �� � ), so that 
we may use the results in Chap. 6, Subsec. 2.2.4 and Chap. 7, Subsec. 2.3.4; we obtain 
thus the first integral 

2 2 4v x x h� �� � � ,   2 4h a a� �� � , (8.2.85') 

where a  is the maximal elongation, for which 0v � . The period is given by 

� � � �
/2

2 4 2 20 0

d d4 4
1 sin

a xT
h x x a

� �
� � � � �

� �
� � � �� � ,  

 
Figure 8.52.  Motion of a particle situated at the middle of an elastic thread. Phase trajectories. 

Diagrams 2 ( )V x  vs x  and v  vs x : case 0� �  (a); case 0� �  (b). 

where we have made the substitution sinx a �� . If 0� �  (strong spring, case 
considered above), then the frequency increases (the period decreases) together with the 
amplitude; the motion is periodic, the phase trajectories being closed for any initial 
conditions for which 0h �  (Fig.8.52,a). 
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If 2 0� �� � �  (soft spring, weak characteristic), then the period increases together 
with the amplitude; the potential energy has two maxima and a minimum (Fig.8.52,b). 
For 2 2/ 4h h � �� �  one obtains the separation curve C, formed by arcs of parabola 

2 2
1 ( , ) 2 2 0P x v v x� � �� � � � ,   2 2

2 ( , ) 2 2 0P x v v x� � �� � � � .  

For h h�  the phase trajectories cover the whole phase plane. For 0 h h� �  
( 2 2a� �� ) one obtains closed phase trajectories, interior to the curve C, and open 
curves, exterior to that one, while for 0h �  ( 2 2a� �� ) there are only open phase 
trajectories; the motion is periodic only for the closed curves, in initial conditions for 
which 0 01 ( , ) 0P x v � , 0 02 ( , ) 0P x v � . The point O  is a singular point of centre type 
(stable equilibrium), while the points � �/ 2, 0� �2  are singular points of saddle 

type (labile equilibrium). Making 2 2/2a � �� , one obtains 

 

/2

0

4 2 sec dT
�

� �
�

� �  
 

on the separation curve; we notice that 

� � sec d ln tan
4 2
� �� � � �� ,  

so that the particle P  reaches a labile position of equilibrium after an infinite time. 
The cases considered above have led to equations of the form (8.2.83') and, 

precisely, of the form 

( ) 0x f x� ��� , (8.2.83'') 

corresponding to the non-damped free vibrations of mechanical systems with non-linear 
elastic characteristics. Let us assume that ( )f x  is an odd function ( ( ) ( )f x f x� � � ), 
symmetric with respect to the origin, and let us suppose that at the initial moment 

0t �  the abscissa is 0x  and the velocity vanishes ( 0 0v � ). In this case, multiplying 
the equation (8.2.83'') by x�  and integrating, one obtains 

0
2

0 0
( )d ( )d

2
x xx f f x x� �� �� �

� , 
 

a relation which corresponds, in fact, to a conservation law of the mechanical energy. 
Taking into account that d /dx x t��  and integrating between the limits 0x �  and 

0x x� , we obtain the period (assuming that 0 0x � , we take the sign minus before the 
radical, because between the initial position and that of equilibrium the motion takes 
place in the negative direction of the Ox -axis) 
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0

00

d
4

2 ( )d

x

x

x

x
T

f � �
� �

�
. (8.2.86) 

In general, 

0

0

d

2 ( )d

x

xx

x

x
t

f � �
� �

�
. (8.2.86') 

In particular, in the case of harmonic oscillations we have 2( )f x x��  and are led to 

0

2 2 00

d 1
arccos

x

x

x x
t

xx x ��
� �

�� . 
 

As well, if 2( ) sinf � � ��  (great oscillations of the mathematical pendulum), then the 
formula (8.2.86) allows to find again the period (7.1.39'). In general, for the equation 
(8.2.84) (and analogously for the equation (8.2.85)) the formula (8.2.86') leads to 
elliptic integrals of the first kind, as it was to be expected. 

The damped free vibrations of mechanical systems with non-linear elastic 
characteristics lead to an equation of the form 

( ) ( , ) 0x f x g x x� � ��� � , (8.2.87) 

while the parametric vibrations of non-damped mechanical systems are modelled by an 
equation of the form 

2 ( ) 0x t x�� ��� . (8.2.87') 

Sometimes, in case of small non-linearities, we may introduce a small parameter � , 
obtaining quasi-linear equations of the form 

2
0 ( ) 0x x f x� �� � ��� , (8.2.88) 

" #2
0 ( ) ( ) 0x x f x g x� �� � � ��� � , (8.2.88') 

2
0 ( , ) 0x x f x x� �� � ��� � . (8.2.88'') 

We mention thus the Van der Pol equation (for self-excited vibrations) 

� �21 0x x x x�� � � ��� � ,   0� � , (8.2.89) 

Rayleigh’s equation (for small non-linear dampings) 

� �3 0x x mx nx�� � � ��� � � ,   , 0m n � , (8.2.90) 

Froude’s equation (for dampings in a turbulent motion of fluids) 
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2 0x x px qx�� � � ��� � � , (8.2.90') 

Duffing’s equation (for the response to a harmonic excitation of mechanical systems 
with non-linear elastic characteristics) 

3 cosx x x cx q t� � �� � � ��� � ,   0c � , (8.2.91) 

Mathieu’s equation (for a harmonic variation in time of the rigidity) 

� �2 2
0 0 cos 0x t x� � �� � ��� , (8.2.92) 

and Hill’s equation (for the periodic variation in time of the rigidity) 

2
0

1
cos 0n

n
x n t x� � �

�

�

� �� � �	 

� �

�� ; (8.2.92') 

the study of these equations has put in evidence the most important non-linear 
phenomena and the corresponding basic methods of solution.  

In general, for a free vibratory motion is searched a periodic solution (if there exists 
such a solution for the given initial conditions) and a study of its stability is made. In 
case of forced vibrations, the form of the response curves of the mechanical system (the 
relation between the amplitude and the frequency of the motion and the corresponding 
characteristics of the perturbing force) is searched too. The non-linear vibrations are 
non-isochronous, because the period T  depends on the amplitude. As well, besides the 
problem of static stability, the problem of dynamic stability must be also considered. 
We have seen that the response of a damped linear system on which acts a sinusoidal 
perturbing force of pulsation �  is a harmonic vibration, having the same pulsation; in 
case of a non-linear system appear pulsations n� , n � � , too, called also 
superharmonics (multiples of the excitation pulsation) or even pulsations /n� , 
n � � , called subharmonics (submultiples of the excitation pulsation). In case of the 
action of two independent perturbing forces upon a non-linear system, one can no more 
use the principle of superposition of effects; by the superposition of two distinct 
excitations, appears an interaction between the oscillations which arise, leading to the 
phenomenon of asynchronous suppression (if each of the independent vibrations is 
stable, then one of the motions destroys the stability conditions of the other one), to the 
phenomenon of asynchronous excitation (one of the independent vibrations is labile, 
the other one being stable and creating the conditions that the first one become stable 
too) or to the phenomenon of carrying the pulsations (if the independent vibrations 
have close pulsations which, in a certain zone of values, synchronize). 

2.2.14 Computation methods 

The problems which arise in the study of non-linear oscillations are difficult, so that 
their solution needs specific methods of computation, especially approximate ones. We 
have thus presented in Chap. 7, Subsec. 2.3.4 topological methods of computation in 
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the phase space, which have been used in the previous subsection. In what follows we 
pass in review some approximate methods of computation. 

Let be the quasi-linear equation (which intervenes in case of the mathematical 
pendulum) 

2 3
0 0x x x� �� � ��� , (8.2.93) 

a particular case of the equation (8.2.88). In S.P. Timoshenko’s method we assume that, 
in a first approximation, 

( ) cosx t a t��  (8.2.93') 

represents a harmonic motion of pulsation � , which differs not much from 0�  and for 
which the initial conditions 

(0)x a� ,   (0) 0x ��  (8.2.93'') 

are verified. We notice that 2 2 2
0� � �� � ) , 2 2 2

0� � �) � � , and put the condition 
that the solution (8.2.93') verifies the equation (8.2.93), obtaining thus 

� �2 2 3 3 2 3 33 1cos cos cos cos 3
4 4

x x a t a t a a t a t� � � � � � � � � �� � � ) � � � ) � ��� . 

The first term of the second member represents a perturbing element with the same 
pulsation as the proper one of the terms in the first member; but this term must be 
equated to zero ( 2 33 / 4 0a a� �) � � ) to can eliminate the phenomenon of resonance. 
With the same initial conditions, we obtain, in a second approximation, the solution (to 
the general solution of the homogeneous equation we add a particular solution of the 
complete equation) 

3 3

2 2( ) cos cos 3
32 32
a ax t a t t� �� �
� �

� �� � �	 

� �

, (8.2.93''') 

with 

2 2 2
0

3
4
a� � �� � . (8.2.94) 

Analogously, we may use the Ostrogradski�-Lyapunov method, based on successive 
approximations too. We choose thus the solution in the form of a polynomial in �  (we 
consider only the first three approximations) 

2
0 1 2x x x x� �� � � , (8.2.95) 

where 0 0 ( )x x t� , 1 1 ( )x x t� , 2 2 ( )x x t�  are functions of class 2C ; as well, we 
take (we retain only three terms) 
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2 2 2
0 1 2C C� � � �� � � , (8.2.95') 

where 2
1 2, ,C C�  are non-determinate constants. Replacing in (8.2.93) and equating to 

zero the coefficients of the powers of � , we obtain 

2
0 0x x�� ��� ,   2 3

0 01 1 1 0x x C x x�� � � ��� , 
2 2

0 02 2 1 1 2 13 0x x C x C x x x�� � � � ��� . 

 

The first of these equations leads (for 0x ) to the first approximation (8.2.93') with the 
same initial conditions (8.2.93''); replacing 0x  in the second equation and determining 

1C  so that the phenomenon of resonance be eliminate, we find again for 0 1x x x�� �  
the same approximation (8.2.93'''). Analogously, we may determine 2x , thus the third 
approximation a.s.o. We notice that the two methods of successive approximations are 
– as a matter of fact – equivalent, differing only by the modality of approaching the 
computation. The non-linearity of the considered phenomenon has introduced 
superharmonics in the equation (8.2.93) (harmonics of third order in the approximation 
of second order). 

In case of the equation (8.2.83'') we introduce the square deviation 
" # 22( )f x x�) � �  between the non-linear term and the linear approximation; using 

the solution in the linear case cosx a t�� , we obtain the mean square deviation on the 
duration of a period 

" # " #  
22 22 2 2

0 0

1 1( cos ) cos d ( cos ) cos d
2

T
f a t a t t f a a

T
�

� � � � � � �
�

� � � �� �A ,  

where a change of variable t� ��  has been made. Imposing the condition that 2A  be 
minimal (the least squares method), hence the condition 2 / 0�( ( �A , we are led to 

 

22
0

1 ( cos )cos df a
a

�
� � � �

�
� � , (8.2.96) 

wherefrom we deduce 2 /T � �� . In particular, in case of the equation (8.2.93), the 
formula (8.2.96) leads to the pulsation (8.2.94), so that 

2

2
02 2 0

0

2 2 31
83

4

aT
a

� � �
� �� �

� �� 1 �	 

� ��

, (8.2.94') 

in case of a small parameter � . We notice that for 0� �  (non-linear vibrations with 
strong characteristic) the period decreases with the amplitude, while for 0� �  (non-
linear vibrations with weak characteristic) the period increases with the amplitude; if 

0� � , then the vibrations are isochronous. We may thus easily determine, 
experimentally, the nature of these vibrations. 
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In the harmonic balance method, the condition that the term in cos t�  of the 
development into series of the function ( cos )f a t�  be identical to the corresponding 
term 2 cosa t� �  in the associated linear differential equation is put; thus, the formula 
(8.2.96) is found again. 

Other approximate methods of computation are based on the so-called variation of 
constants, differing after the constants which are varied. We mention, e.g., Van der 
Pol’s averaging method. In the Krylov-Bogolyubov method, the basis of which is the 
first approximation theory, the constants which vary are the amplitude and the phase of 
the motion of the non-linear system. However, the method has numerous variants, e.g. 
the Bogolyubov-Mitropol’ski� variant. 

We mention the equivalent linearization method (Krylov-Bogolyubov) too, as well as 
Galerkin’s method. 

Thus, in case of the quasi-linear equation (8.2.88'') we start from the harmonic 
solution 

0sin( )x a t� �� � ,   0 0cos( )x a t� � �� �� ,  

and take the amplitude ( )a a t�  and the phase shift ( )t� ��  as new unknowns, 
functions of time, which must be determined. Differentiating with respect to time, we 
obtain 

0 0 0 0sin( ) cos( ) cos( )x a t a t a t� � � � � � � �� � � � � �� � � ;  

taking into account the expression of the velocity which corresponds to the linear case, 
there results the condition 

0 0sin( ) cos( ) 0a t a t� � � � �� � � �� � .  

Starting from the same expression of the velocity, we may write 

2
0 0 0 0 0 0cos( ) sin( ) sin( )x a t a t a t� � � � � � � � � �� � � � � ��� � � ,  

and taking into account the equation (8.2.88''), we get 

0 0 0 0cos( ) sin( )a t a t� � � � � � �� � �� � � �0 0 0sin( ), cos( )f a t a t� � � � � �� � � � ; 

using also the condition previously obtained, we get the differential equations of first 
order (instead the differential equation of second order) 

� �0 0 0 0
0

sin( ), cos( ) cos( )a f a t a t t� � � � � � � �
�

� � � � �� , 

� �0 0 0 0
0

sin( ), cos( ) sin( )f a t a t t
a
�� � � � � � � �
�

� � � � �� . 
(8.2.97) 

We notice that the function f  has the period 02 /T � ��  and that a�  and ��  vary 
slowly in time; these derivatives may be taken equal to their mean values meana�  and 
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mean��  on a period (considered to be approximately equal to T ). In a period, the angle 

0t� � �� �  varies by 2� , so that 

2 2
mean

0 00

1 d ( sin , cos )cos d
2 2

a a f a a
� ��� � � � � �

� ��
� � �� �� � , 

2 2
mean

0 00

1 d ( sin , cos )sin d
2 2

f a a
a

� ��� � � � � � � �
� � �

� � �� �� � , 
(8.2.97') 

corresponding to the first terms in the respective development into Fourier series. For a 
better approximation, one may take terms of higher rank in these expansions. 

If ( )f f x� , ( ) ( )f x f x� � � , then we may write 

2 2

0 00 0
( sin )cos d ( )d 0

2 2
a f a f x x

a
� �� �� � �

�� � �
� � � � �� �� , 

0 consta a� � . 
(8.2.97'') 

We obtain thus the approximate solution 

" #0( ) sin ( )x t a a t� �� � , (8.2.97''') 

the pulsation depending on the amplitude, as an effect of the non-linearity. Squaring the 
second relation (8.2.97') and neglecting 2� , we find the remarkable relation 

22 2
0 0

( ) ( sin )sin da f a
a

��� � � � �
�

� � � . (8.2.97iv) 

For instance, in case of the equation (8.2.84), we obtain 

222 3 4
0

1 1
sin d 1

6 8
g g g
l l l

� �� � � �
��

� �� � � �	 

� �� , 

 

where max� ��  is the amplitude of the mathematical pendulum; it results the period 

2

22

2 1 12 2 2 1
16

11 168

l l lT
g g g

� �� � �
� ��

� �� � 1 1 �	 

� ���

, 
 

finding again the approximate formula (7.1.43''') (if we limit ourselves to the first two 
terms in the considered developments). 

Let be also the Van der Pol equation (8.2.89) with the initial conditions 0(0)x a� , 
(0) 0x �� . Observing that 0 1� � , � �� � , � �2( , ) 1f x x x x� �� �  (the unit having the 

necessary dimension), we start from the harmonic solution sin( )x a t �� � ; the initial 
conditions lead to 0(0) (0)sin (0)x a a�� � � , (0) (0)cos (0) 0x a �� �� , so that 

0(0)a a� � , (0) /2� �� . The formulae (8.2.97') give the mean values 
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� � � �2 2 2 2
mean

0

11 sin ( cos )cos d 4
2 8

a a a a a
�� � � � � �

�
� � � ��� , 

� �2 2 2
mean

0
1 sin ( cos )sin d 0

2
a a

a
��� � � � �

�
� � ��� , 

 

the system of differential equations of first order (8.2.97) becoming thus 

� �21 4
8

a a a�� �� ,   0� �� .  

Separating the variables in the first equation, integrating by decomposition in simple 
fractions and taking into account the initial conditions for the new variables, we may 
write 

" #
0

2 2
0 0

( ) cos
( /2) 1 ( /2) e t

a
x t t

a a ��
�

� �
; (8.2.98) 

this result corresponds to an aperiodic oscillatory motion, hence to a vibration 
modulated in amplitude, which tends asymptotically to 2 (in Fig.8.53 we assume that 

0 2a � ). 

 
Figure 8.53.  Van der Pol equation. Diagram ( )x t  vs t . 

The perturbations method, initiated by Poincaré, allows also an approximate study of 
the differential equations with a small parameter. Let thus be an autonomous 
mechanical system, the motion of which is modelled by a non-linear differential 
equation of the form (8.2.88'') for which (0, 0) 0f � , with the initial conditions 
(8.2.93''). By the change of variable t� �� , where �  is a unknown pulsation, one 
obtains an equation of the form 

� �2
2 2 2

02
d d, , 0

dd
x xx x� � �� �

��
� � � , (8.2.99) 

where �  is a given non-linear function; the initial conditions become 0x � , 
d /d 0x � �  for 0� � . In the perturbations method one considers both for the 
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solution ( )x �  and for the square of the unknown pulsation � , developments into 
power series after the small parameter � , i.e. 

2
0 1 2( ) ( ) ( ) ( ) ...x x x x� � � � � �� � � � , (8.2.100) 

2 2 2 2 2
0 1 2 ...� � �� � �� � � � . (8.2.100') 

The initial conditions are verified if 0x a� , 1 2 ... 0x x� � � , 0d /dx � 1d /dx ��  
2d /d ... 0x �� � � . Replacing in the equation (8.2.99), developing the function �  

(which we assume to be analytical) into a Taylor series, arranging the terms after the 
powers of the small parameter � , and equating to zero the coefficients of those powers 
(assuming successively, that one may neglect the higher powers of �  with respect to 
the lower ones), we get the equations 

2
02 2

0 0 02
d

0
d
x

x� �
�

� � , 

� �2 2
1 0 02 2 2 2

0 0 0 01 12 2
d d d

, ,
dd d

x x x
x x� � � � �

�� �
� � � � , 

2 2 2
2 1 02 2 2 2

0 0 2 1 22 2 2
d d d
d d d
x x x

x� � � �
� � �

� � � �  

� � � � � �1 2
1 1 2

0 0 0

d
d
x

x
x x
� � ��

� �
( ( (

� � �
( ( (�

, 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

(8.2.100'') 

In the first approximation, the small parameter �  is neglected; the first equation 
(8.2.100'') leads to the solution 

0 0cos cos cosx a a t a t� � �� � � , (8.2.101) 

which satisfies the initial conditions. In the second approximation, 2 3, ,...� �  are 
neglected with respect to � , hence one takes 0 1( ) ( ) ( )x x x� � � �� � , 

2� 2 2
0 1� ��� � . Replacing the solution (8.2.101) in the second equation (8.2.100''), it 

results 

� �
2

12 2
0 01 12

d
cos cos , sin ,

d
x

x a a a� � � � � � �
�

� �
� � � �	 


� �
, 

 

with the initial conditions 1 0x � , 1d /d 0x � �  for 0� � . In the second member of 
the differential equation appear terms in cos �  and sin �  (secular terms), which lead to 
non-periodic particular solutions of the form cos� �  and sin� � . Because we search 
periodic solutions, we equate to zero the coefficients of those terms, obtaining 
supplementary conditions; we get thus 1�  and may then integrate the differential 
equation. The procedure can be applied further, obtaining thus approximations of 
higher order (a solution ( )x �  in the form of an expansion into a Fourier series). 
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In the particular case of the equation (8.2.93), the approximation of second order is 
given by 

2 2 3
1 1 3

12 2 2
0 0

d
cos cos

d
x a

x a
� � �

� � �
� � �

2 2 2
1
2 2 2
0 0 0

3
cos cos 3

4 4
a a

a
� � �
� � �

$� � %
� � �	 
* +

&� � '
, 

 

wherefrom, taking into account the initial conditions, it results 

23 2
1

1 2 2 2
0 0 0

3
( ) (cos 3 cos ) sin

4 232
a a

x a
� �� � � �

� � �
� �

� � � �	 

� �

. 
 

Equating to zero the secular term, we obtain 2 2
1 3 /4a� � , so that, in the second 

approximation, we have 

2 2

2 2
0 0

( ) 1 cos cos 3
32 32
a ax t a t t� � � �
� �

$� � %� � �	 
* +&� � '
, (8.2.102) 

with the pulsation (8.2.94); we find again the period (8.2.94'). The dependence of the 
pulsation on the amplitude is thus put into evidence. 

The perturbations method may be applied also in case of non-autonomous systems, 
the motion of which is modelled by differential equations of the form 

2
0 ( , ; ) 0x x f x x t� �� � ��� � , (8.2.103) 

where the function f  is periodic with respect to t  and has a known pulsation. By a 
phase shifting of the periodic solution with respect to the perturbing force, we may 
introduce the phase shift 

2
0 1 2 ...
 
 �
 � 
� � � � , (8.2.104) 

the computation procedure being, further, similar to that above. 
Among the computation methods which may be applied, we mention also the 

graphic methods (the isoclinic lines method, the delta method, the graphic methods for 
non-autonomous systems etc.). 
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Chapter 9 

NEWTONIAN THEORY OF UNIVERSAL 
ATTRACTION 

In the preceding chapter, we have considered the action of an elastic force of 
attraction upon a particle, case in which, after Bertrand’s theorem, the orbit is a closed 
curve. We will now study the action of forces of Newtonian attraction which, on the 
basis of the same theorem, lead to analogous trajectories; we pay a particular attention 
to those forces, because they are the most important ones of mechanical nature which 
are exerted by a body upon another one. The mathematical modelling of the universal 
forces of attraction corresponds to the classical model of mechanics (as it has been 
conceived by Newton) and to its gorgeous verification by astronomical observations 
(Kepler’s laws). The results thus obtained will be applied to the study of planets’ 
motions, to the problems of the artificial Earth satellites and of the interplanetary 
vehicles, to the motion at the atomic level etc. 

1. Newtonian model of universal attraction 
After considerations concerning the classical model of universal attraction, a study of 

the Newtonian potential is made; the modelling as particles of celestial bodies is just 
justified. 

1.1 Principle of universal attraction 
Starting from Kepler’s laws, considered as laws of experimental nature (obtained by 

astronomical observations), we deduce – in what follows – the law of Newtonian 
attraction; we can make thus the connection with the gravitational fields. 

1.1.1 Law of Newtonian attraction 
Starting from the astronomical observations of his predecessors (especially those of 

the Dane Tycho Brahe at his observatory on the Ven isle, between Denmark and 
Sweden, and then as astronomer at the Imperial Court in Prague), Johann Kepler 
enounced three laws which are modelling the motion of planets in the solar system. 
Thus, the planets (modelled as particles) describe ellipses with respect to the Sun 
(considered to be situated at one of the foci), the motion being governed by the law of 
areas; the ratio of the cube of the semi-major axis to the square of the revolution time 
T  is the same for all planets. However, Kepler tried to obtain a synthesis of these laws, 
without obtaining a final result (in an Aristotelian conception, he thought that the force 

543 
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is directed along the tangent to the trajectory). But Newton, using Kepler’s laws, 
succeeded to set up the mathematical model of classical mechanics, deducing the 
expression of the force of universal attraction too; these results (taking into account the 
modality to obtain them, they may be considered as deriving from Kepler’s laws, the 
latter ones being a mathematical model of mechanics) represent, in fact, the most 
important contributions of Newton to the development of mechanics. In 
contradistinction to Kepler’s model, the Newtonian one has a general character and may 
be applied to all bodies of the real world. 

 
Figure 9.1.  Conics. 

To can express mathematically Kepler’s laws, it is useful to introduce the equation of 
an ellipse and – in general – the equation of a conic in polar co-ordinates. To do this, 
we remember that a conic represents the locus of the points P  of a plane �  for which 
the ratio of the distances to a fixed point P ��  (called focus) and to a fixed straight 
line D ��  (called directrix), respectively, is constant (the respective constant, 
denoted by e , is called eccentricity) (Fig.9.1); if 0 1e� � , then the conic is an ellipse 
( 0e �  corresponds to a circle), if 1e � , then it is a parabola, while if 1e � , then it is 
a hyperbola. The equation of the conic with respect to the focus F  is written in the 
form 

1 cos
pr
e �

�
�

, (9.1.1) 

where 0p �  is the conic parameter (the semilatus rectum). 
Observing that the Sun is at the focus F , while the planet of mass m  is at the point 
P , the forces which represent the action of one of the bodies upon the other one are 
internal forces in the system formed by the two bodies, modelled as particles. Assuming 
that the point F  is fixed (we consider the motion of the planet relative to this point), 
the force F  which acts upon the planet is a central force. Because the trajectory of the 
planet is an ellipse, it results that the point F  represents a position of stable 
equilibrium, the force F  being directed towards this point. The law of areas leads also 
to the conclusion that the force F  is a central one. Replacing r  given by (9.1.1) in 
Binet’s formula (8.1.8), we get 2 2/F mC pr� � ; hence, the magnitude F  of the force 
is inverse-square to the distance between the Sun and the planet. As we have seen in 
Chap. 5, Subsec. 1.1.4, A� � � , where the area A  is the measure of the surface 
described by the radius vector; if that radius describes the whole ellipse, then, by 
integrating on the interval " #0,T , where T  is the revolution time of the planet (the 
time in which the whole ellipse is described), we obtain 2 ab CT� � , where (6.1.57'') 
has been taken into account (the area of the ellipse of semiaxes a  and b  is ab� ). 
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From (9.1.1), one obtains (for 0� �  and � �� , respectively) 

min 1
pr
e

�
�

,   max 1
pr
e

�
�

, (9.1.1') 

corresponding to the apsidal points, called pericentres and apocentres, respectively. It 
results max min 2r r a2 � , as we have to do with an ellipse or a hyperbola, respectively, 

0a �  being the semi-major axis; in the first case, we have 0r � , so that minr FA� , 

maxr FA��  (Fig.9.2,a), while in the second case we have 0r �  as it corresponds to 
the branch of the hyperbola the focus of which is taken as origin or to the other branch, 
so that minr F A� ��  and maxr F A��  (Fig.9.2,b). We also notice that  

Figure 9.2.  Conics. Ellipse (a). Hyperbola (b). 

the ellipse is the locus of the points for which 2 constPF PF a�� � �  (so that 
BF BF a�� � ), while the hyperbola is the locus of the points for which 

2PF PF a�� � . If 0FO F O c�� � �  is the focal distance to the centre, it results 
/(1 )p e a c� � � , / 1p e a c� � � , wherefrom 2/ 1pe e c� � , 

2/ 1p e a� � ; for both conics we get thus the eccentricity 

ce
a

�  (9.1.2) 

and the parameter 2 2 21 /p a e a c a� � � � . Observing that 

2 2 2a c b� 2 , (9.1.2') 

where 0b �  is the semi-minor axis (the semi-major axis of the conjugate hyperbola, in 
case of a hyperbola), we may write 

2bp
a

� . (9.1.2'') 
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In this case, 2 2 2 2 2 2 3 2/ 4 / 4 /C p a b pT a T� �� � , so that 

3
2

2 24 maF
r T

�� � ; (9.1.3) 

taking into account the third law of Kepler (see Subsec. 2.1.4), there results 

2
mF
r

�� � , (9.1.3') 

where ( ) 0M� �� � , M  being the Sun mass (�  depends only on the Sun, because 
it is independent of the particular planet considered). Newton assumed that this 
independence is linear, so that ( )M fM� � , the force exerted by the Sun upon the 
planet of mass m , situated at the distance r , being thus given by 

2
mM

F f
r

� �  (9.1.3'') 

and corresponding to the formula (1.1.84'). Indeed, if the action of the Sun upon a 
planet jP  of mass jm  is a force of modulus 2/jm r� , ( )M� �� , and if the planet 

jP  acts upon the Sun with a force of modulus 2/jM r� , ( )j j jm� �� , then, 
corresponding to the principle of action and reaction, we may write 

2 2/ /j jm r M r� �� , 1,2,...,j �  wherefrom 1 1 2 2/ / / ...M m m� � �� � � ; the 
common ratio is just the constant 0f �  of universal attraction, which leads to the 
expression of the universal (Newtonian) law of attraction. This model of the force of 
attraction of the bodies in Universe has been extended by Newton for all the bodies, 
immaterial of the magnitudes of their masses, in the form (corresponding to the formula 
(1.1.84)) 

1 2
2

m m
F f

r
� � , (9.1.4) 

where 1m  and 2m  are the masses of two bodies situated at the distance r  one of the 
other (the distance between their centres of mass, the bodies being modelled as 
particles). As we have seen in Chap. 1, Subsec. 1.1.12, these forces are conservative. 
One obtains thus the universal (Newtonian) law of attraction. 

The coefficient f  may be obtained experimentally in a particular case and is given, 
in the CGS – system, by 86.6732 10f �� � 2 21/ 3871  cm/g s1 � . The first 
determination in a laboratory has been made a century later by Cavendish, in 1798, with the 
aid of a balance of torsion. The apparatus is formed by a thread AB  suspended at A  
and supporting at the end B  a horizontal bar at the ends of which are two small spheres 

1P  and 2P  ( 1 2BP BP� ) of masses 1m  and 2m , respectively. If we put in the vicinity 
of these spheres a fork with two spheres 1P �  and 2P �  of masses 1 1m m� �  and  
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2 2m m� � , respectively (usually, 1 2m m�  and 1 2m m� �� ), then, due to the forces of 
Newtonian attraction which arise, the sphere 1P  is attracted by the sphere 1P �  and the 
sphere 2P  is attracted by the sphere 2P � ; thus, a circular motion of angle �  takes place 
(Fig.9.3). The thread AB  is subjected to torsion, wherefrom the denomination of the 
apparatus. Because the angle �  is proportional to the couple formed by the Newtonian 
forces of attraction applied upon the particles 1P  and 2P , one can calculate the 
coefficient f . 

Figure 9.3.  Balance of torsion. 

Building up a mathematical model of universal attraction, in the frame of a classical 
model of mechanics, Newton opened a large outlook to the development of science; 
among others, this model is the basis of celestial mechanics, where the fundamental 
problem is that of n  particles (e.g., The Sun, the Earth and the Moon – the problem of 
the three bodies, modelled as particles). Starting from the Newtonian theory of 
universal attraction, one could show, only by computation, that the Earth is an oblate 
spheroid (it is oblate at the poles), one could discover, only by computation too, new 
planets (thus, Leverrier discovered, in 1846, the planet Neptune, and – recently – a 
tenth planet has been intuited), one could predict the trajectories of the interplanetary 
vehicles (stating thus the basis of the theory of cosmic motions) etc. 

In the following section we show that all celestial bodies, considered to be of quasi-
spherical form, may be modelled as particles situated at their centres of mass and 
having a mass equal to that of the respective body. 

1.1.2 Law of universal gravitation 
We have seen in Chap. 1, Subsec. 1.1.12 that the gravity forces, due to the presence 

of a gravitational field, may be considered as particular cases of forces of Newtonian 
attraction (which, by extension, are called forces of universal gravitation too); one 
obtains thus the law of universal gravitation. Hence, it results the remarkable relation 
(1.1.85), which links the constant f  to the mass M  of the Earth, considered as a 
sphere of radius R , and to the gravity acceleration g . 

The potential /fmM R  (m  is the mass of a body situated at the distance H  from 
the Earth surface, along the local vertical) must be replaced by 
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� � � �1
1 1mM mM H mM Hf f f

R H R R R R

�
� � 1 �

�  

2
mM mM mM
f f H f mgH
R RR

� � 1 � , 

 

where we took into account (1.1.85). This potential differs from that known (see 
formula (1.1.83)) by the additive constant term /fmM R . We notice that in case of the 
potential /( )fmM R H�  the zero level is at infinity, while in case of the potential 
mgH�  the zero level is at the Earth surface. 
The motion of a particle in a gravitational field leads to the equation gim m�a g , 

where, due to the equality between the inertial mass and the gravitational one (the 
relation (1.1.24)), these ones disappear from computation. In case of a motion in an 
electric field E , which acts upon the particle with the force eE , where e  is the electric 
charge, the equation of motion is of the form 

im e�a E ; (9.1.5) 

in this case, the inertial mass does no more disappear, being different from the electric 
charge e . 

Let us consider the motion of the Moon around the Earth; a force of attraction of the 
form (9.1.3), (9.1.3'), for which 2 3 24 /a T� �� , arises. A particle of mass equal to 
unity at the Earth surface is attracted to that one by a force equal to 21 1 /g R�� � � , 
being a constant which depends on the mass of the Earth of radius R . We obtain thus 
the relation 

3
2

2 24 ag
R T

�� , (9.1.6) 

which allows to calculate the gravity acceleration. The trajectory of the Moon is quasi-
circular, with 60 384 000 kma R1 1 ; it results 2 3 24 60 /g R T�1 . Because 

6370 kmR 1  and 2 40 000 kmR� 1 , the time of revolution of the Moon being 27 

days 7 hours 43 minutes 39 343 60 s� � , Newton has obtained 29.8  m/sg 1 , in a 
good concordance with the result previously obtained by Galileo. Taking into account 
what was shown above, it results that the ratio of the acceleration �  of a free fall of the 
Moon on the Earth to the gravity acceleration g  is equal to the ratio 2 2( / ) 1/60R a 1 ; 
taking 29.81 m/sg � , we get 3 22.72 10  m/s� �� � , result which corresponds to that 
obtained in the study of Moon’s trajectory. Thus, we get a brilliant confirmation for the 
coincidence of the two forces (the gravitational attraction and the weight at the Earth 
surface). 

The relation (1.1.85) allows to determine the mass of the Earth in the form 
2 /M gR f1 ; observing that 34 / 3M R��� , where �  is the mean unit mass, it 

results 
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3
4
g
fR

�
�

� . (9.1.6') 

We get thus 35.51 g/cm� � . This density is much greater than that of the superior 
spherical strata of the Earth; we may thus conclude that the density is much greater 
towards the centre of the Earth. 

As we have seen in Chap. 1, Subsec. 2.1.3, the mass can be taken as derived unit, 
which is expressed by means of units of length and of time as basic units, so that the 
universal constant f  becomes equal to unity. We introduce thus the natural hour 
(which is approx. equal to 3871 seconds of mean time); this is the unit of time which 
must be adopted so that, for an arbitrary unit of length and a unit of mass corresponding 
to a cube of di1stillated water at 4 C0 , equal to unity, to obtain 1f � . 

1.2 Theory of Newtonian potential 
To justify the modelling of celestial bodies as particles, we introduce – in what 

follows – the Newtonian potential and put into evidence some of its properties; we 
consider especially the surface and the volume potentials of the homogeneous sphere, 
as well as the potential of the spherical stratum. We give some results concerning the 
potential of the terrestrial spheroid too. 

1.2.1 Newtonian potential 
Corresponding to the universal gravitation law, a particle Q  of position vector Q  

and mass m  acts upon a particle P  of position vector r  and mass equal to unity with a 
force of attraction given by 

2 vers grad grad
fm fm

QP f U
RR

� � � �
����

F ,   R � �r Q , (9.1.7) 

where the potential (see the formula (1.1.84')) 

mU
R

�  (9.1.7') 

has been introduced (we have neglected an additive constant); thus, the projection of 
the force F  on a direction of unit vector n  is given by grad /f U f U n� � ( (n . 

In case of several centres of attraction jQ  of position vectors jQ  and masses jm , 
1,2,...,j n� , we obtain (in conformity with the principle of the parallelogram of 

forces) 

gradf U�F ,   
1

n j

jj

m
U

R�
�  ,   j jR � �r Q . (9.1.8) 

Let be, in general, a mechanical system S  of geometric support � , at a finite 
distance; the potential of the force of attraction F  exerted by S  on the particle P  is 
given by the Stieltjes integral 
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d( ) mU
R�

� �r ,   R � �r Q , (9.1.9) 

where ( )m m� QQ  is a distribution. Introducing the unit mass (1.1.71), (1.1.71''), we 
obtain the relation (9.1.8) for a discrete mechanical system of n  particles jQ  of 
position vectors jQ  and masses jm , 1,2,...,j n� , or 

( )
( ) d

V
U V

R
�

� ���r
Q

,   R � �r Q , (9.1.8') 

in case of a continuous mechanical system of unit mass 1( ) ( )C V S� � �Q  (S  is the 
frontier of the domain of volume V  and verifies conditions of Lyapunov type). 

If the continuum is homogeneous, then it results 

d( )
V

VU
R

�� ���r ,   R � �r Q . (9.1.8'') 

We obtain thus the general form of the Newtonian potential, that is the volume potential 
given by the formula (A.2.86). In case of a two-dimensional mechanical system S,  we 
replace the volume integral by a surface one (it results a simple stratum potential of the 
form (A.2.87)), using a superficial unit mass; if the mechanical system is plane, then the 
integral is a double one. As well, in case of a one-dimensional mechanical system S  we 
replace the volume integral by a curvilinear one, introducing a linear unit mass. 

One can put in evidence following properties: 
i)  ( )U r  is a continuous function in the whole space and vanishes at infinity. 

ii) The derivatives of first order of ( )U r  (hence, the vector field grad ( )U r  too) 
are continuous functions in the whole space and vanish at infinity; they are 
calculated by differentiation under the integral sign. 

iii) The derivatives of second order of ( )U r  have jumps by crossing the surface 
S ; in particular, (one can make the connection with the formula (A.2.85)) 

4 ( )  in the interior of ,
( )

   0       in the exterior of .

V
U

S

�����) �  
�!

r
Q

 (9.1.10) 

iv) The behaviour at infinity of the potential is given by 

� �2 3
1

( ) vers
m m

U
r r r

� � � �r r@ O . (9.1.11) 

For the first two properties we assume that ( )� Q  is a bounded and integrable on V  
function, while for the property iii) we consider that ( )� Q  is a function differentiable 
on V , their derivatives being bounded and differentiable functions. The first three 
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properties may easily be proved for particles P  in the exterior of the system S.  If the 
particle P  belongs to the interior of the system S,  then that one becomes a singular 
point ( �r Q ), and we isolate it by a sphere containing it; the volume integral must be 
calculated for the domain of volume V  from which one subtracts the interior of that 
sphere, while the surface integral (which appears by using a formula of Gauss-
Ostrogradski� type) must be calculated for the sphere too. The integrands have no 
singularities in this case, no matter how small is the radius of the sphere; then, this 
radius is equated to zero. 

Concerning the property iv), we denote OQ� � �
����

Q , ( , )� � � r Q . From the 

triangle OPQ , it results (assuming that r  is sufficiently great, �  being bounded, we 
may use a binomial expansion or a Maclaurin series) 

� �2 2

1 1 1 1 1
2 cos

f
R r rr rPQ

�
� � �

� � � �
� � �

���� r Q  

� � � �
1/22

( )

0 0

1 1 1 11 2 cos (0) (cos )
!

n
n

n
n n

f P
r r r r n r r

� � �� �
� � �

� �

$ %� � � � �* +& '
  , 

 

where (cos )nP �  are Legendre’s polynomials; we have 

( )1(cos ) (0)
!
n

nP f
n

� � ,   (0) 1f � ,   (0) cosf �� � ,   2(0) 3 cos 1f ��� � � ,...  

Replacing in (9.1.8'), we get 

� �2 3
1 1 1

( ) ( )d cos ( )d
V V

U V V
r r r

� � ��� � ���� ���r Q Q O , 
 

so that ( )U r  tends to zero as 1/r  at infinity; observing that 

( )d
V

m V�� ��� Q ,   1 ( )d
V

OC V
m

�� � ���
����

@ Q Q ,  

where C  is the centre of mass of the system S,  we obtain the formula (9.1.11). 
If, in particular, we choose the origin at the point C , then we may write 

� �3
1

( ) ( )
m

U U r
r r

� � �r O . (9.1.12) 

We may thus state that one obtains a sufficient good approximation by replacing the 
mechanical system S  of attraction by its centre of mass C , at which we assume to be 
concentrated the whole mass m  of the system (especially if the distance from the centre  
of attraction C  to the particle P  is sufficiently great). We show in the next subsection 
that this result is rigorous if the mechanical system S  is with spherical symmetry. 
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From the formula (9.1.12) too, it results that the force obtained by applying the 
operator gradient vanishes at infinity as 21/r . So, in the study of the solar system (the 
motion of the planets around the Sun) one can neglect the action of other celestial 
bodies, those ones being situated at distances practically infinite with respect to the 
distances of the planets to the Sun or between them. 

The properties i)-iv) characterize the Newtonian potential. Indeed, if there exists 
another potential ( )U � r  which has these properties, then ( ) ( )U U ��r r  is a harmonic 
function in the whole space, vanishing at infinity; from the theorem of maximum of 
harmonic functions it results that the two potentials differ by a constant, which – 
obviously – is equal to zero. 

1.2.2 Potential of simple stratum of a homogeneous sphere 
In case of a homogeneous sphere, the potential of simple stratum is given by the 

surface integral 

d( )
S

SU
R

�� ��r ,   R � �r Q , (9.1.13) 

where the equation of the sphere S  of radius 0�  reads 0� �� . Because of spherical 
symmetry, the potential depends only on the distance from the attracted particle to the 
centre of the sphere, so that ( )U U� r , r OP� �

����
r . Choosing the point P  on the 

3Ox -axis and using spherical co-ordinates (colatitude �  and longitude � ) for Q � S , 
we may write ( 2 2 2

0 02 cosR r r� � �� � � ) 

2 20
2 2 2 20 0

0 0 0 0

sin d d sin d( ) d
2 cos 2 cosS

U
r r r r

� �� � � � � �� � �
� � � � � �

� �
� � � ��� � �r  

� �
2 2

0 0 02
0 0 0

0 0

2 cos 2
2

r r
r r

r r

�
� � � ������ � �

�
� �

� � � � �  

 

2
0

0

0 0 0

2
0  0

4   for  ,

4     for ,

 4   for  ;

r
r

r

r
r

��� �

��� � �

��� �

�
� � ��

��� � � � 
�
� ��!

 

 

observing that the total superficial mass is 2
04m ���� , it results 

 

0

            for  exterior to the sphere ,
( ) ( )

const   otherwise.

 m P S
rU U r m
�

�
�� �  

��
!

r  (9.1.14) 
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We can thus state that a particle situated outside the homogeneous sphere S  is 
attracted towards its centre as if the whole superficial mass of attraction would be 
concentrated at this point (corresponding to the property iv) in the preceding 
subsection); if the particle is situated on the sphere or in its interior, no force of 
attraction is acting upon it. The potential ( )U r  is harmonic ( 0U) � ) in the whole 
space and vanishes at infinity. 

We notice also that /U n( (  has a jump by passing through the surface S  (the 
normal derivative is equal to 4���  if P  tends to S  from the exterior and is equal to 
zero for P  tending to S  from the interior), although ( )U r  is a continuous function in 
the whole space. 

1.2.3 Volume potential of a homogeneous sphere 

The volume potential of the homogeneous sphere 0(0, )S �  is given by (9.1.8''); with 
the same observations as at the preceding subsection, we may write (we use spherical 
co-ordinates , ,� � �  too; for P  at the interior of the sphere S  we make a separate 
integration, as 0 r�� �  or as 0r � �� � ) 

0
2 2 2

2 2 2 20 0 0

sin d d d sin d( ) d d
2 cos 2 cosV

U
r r r r

� � �� � � � � � �� � � � �
� � � � � �

� �
� � � ���� � � �r  

� �0

0

2
dr r

r
��� � � � �� � � ��  

2
2
0

3
0  

2   for  interior to the sphere ,
3

4
           otherwise.

3

r
P S

r

�� �

���

� � ��	 
�� � ��  
�
�!

 

 

Observing that the total mass is 3
04 / 3m ���� , it results 

2

0 0

  

3   for  interior to the sphere ,
2( ) ( )

                     otherwise.

 m r P S
U U r

m
r

� �
� $ %� �� 	 
� * +� � �& '� �  
�
�!

r  (9.1.15) 

As in case of the potential of simple stratum, a particle situated outside the 
homogeneous sphere S  is attracted by its centre as if the whole mass would be 
concentrated at this point (Newton’s modelling of the celestial bodies as particles is 
thus justified). The potential ( )U r  and its derivatives of first order are continuous 
functions in the whole space; the derivatives of second order of this potential have 
discontinuities by crossing the surface S  and U)  is given by (9.1.10). For numerical 
computations we may take 6

0 6.37827 10 m� � � . 
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In case of a homogeneous spherical stratum of mass m , contained between two 
spheres eS  and iS  of centre O  and radii e�  and ei� �� , respectively, we can use the 
parallelogram principle (independence of the action of forces), obtaining thus 

� �

� �

2 2

3 3  

2          for  interior to the sphere ,
( ) 4

 for  exterior to the sphere ,
3

e i i

e ei

P S
U r m P S

r r

�� � �
�� � �

��
��  

� ��!

 (9.1.16) 

where m  is the mass of the spherical stratum. We are led to the same mechanical 
conclusions as above. 

We notice that we can obtain the same results for the volume potential starting from 
the equation (9.1.10) written in spherical co-ordinates ( � � � �2 21/ (d/d ) d/dr r r r) �   
in case of spherical symmetry, corresponding to the formula (A.2.42')). For instance, in 
case of the volume potential of the sphere 0(0, )S �  we have 

2 d ( )d 0
d d

U r
r

r r
� � �	 

� �

, 
 

wherefrom 1 2( ) /U r C r C� � , 1 2, constC C � ; from (9.1.12) it results that 

1C m� , 2 0C � . 

1.2.4 Potential of the terrestrial spheroid 

In a better approximation, the Earth must be considered as a spheroid. Taking into 
account the Maclaurin series in Subsec. 1.2.1, the volume potential is given by 

1
0

1( ) (cos ) ( )dn
nn Vn

U P V
r

� � � �
�

�
�

�  ���r , (9.1.17) 

for a particle P  in the exterior of the Earth attractive mass. Corresponding to the first 
two Legendre polynomials, we notice that (the mass of the Earth and its static moment 
with respect to a plane normal to OP  and passing through the pole O  – centre of the 
Earth) 

( )d
V

V m� � ���� ,   cos ( )d 0
V

V� �� � ���� ;  

the third Legendre polynomial leads to 

� � � �2 2 2 23 cos 1 ( )d 2 3sin ( )d 2 3OV V
V V I I�� � � � � � � �� � � � ���� ��� ,  

where OI  is the polar moment of inertia of the Earth with respect to its centre, while I�   
is the axial moment of inertia with respect to OP . Choosing the principal axes of 
inertia 2O  and 3O  in the equatorial plane and the axis 1O  along the axis of the Earth (so 
that 1 2 3I I I� � ), we may write (we use the formulae (3.1.23) and (3.1.82''))  
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1 2 32 OI I I I� � �  and 2 2 2
1 1 2 2 3 3I I n I n I n� � � � , where in , 1,2, 3i � , are the 

direction cosines of the straight line OP  with respect to these axes; in spherical co-
ordinates, we have 1 cosn �� , 2 sin cosn � �� , 3 sin sinn � �� , so that 

� � � � � �2 2 2 2 2
1 2 32 3 1 3cos 1 3sin cos 1 3sin sinOI I I I I� � � � � �� � � � � � �  

� � � �2 3 2 2
1 2 3

3
1 3 cos sin cos2

2 2
I I

I I I� � ��� �� � � � �	 

� �

. 

 

Calculating the principal moments of inertia of the Earth, we get 
6

2 3 1( )/ 10 /3I I I �� � ; in this case, we may assume that 2 3I I1  (which 
corresponds to the spheroidal model accepted for the Earth). Thus, we deduce 

� �2
1 23

3 1
( ) ( ) ( ) cos

32
m

U U r I I
r r

�� � � � �r , (9.1.18) 

where m  is the mass of the Earth. 
In case of the spherical model of the Earth, we find again the result in the preceding 

subsection (formula (9.1.15)). 
For a more exact result, one may use the polynomial 3 (cos )P �  too. 
These results are very important in the study of the motion of artificial satellites of 

the Earth. 

2. Motion due to the action of Newtonian forces of attraction 
We have seen that, in the classical model of mechanical systems, the celestial bodies 

are subjected only to the action of internal forces (forces of Newtonian attraction). This 
allows a study of the motion of planets, of artificial satellites of the Earth, of 
interplanetary vehicles, as well as of other types of motion at the atomic level etc. We 
notice that we will study, e.g., the motion of a celestial body (modelled as a particle) 
with respect to another celestial body, considered as fixed, hence the motion of a 
particle subjected to the action of a central force. 

2.1 Motion of celestial bodies 

After a general study of the motion of a particle acted upon by a central force of the 
nature of a Newtonian attraction force (elliptic, hyperbolic or parabolic trajectories), we 
will consider the motion of planets and comets; we put in evidence the deviation of the 
light ray too. 

2.1.1 Rectilinear motion due to the action of a Newtonian force of attraction 

If the initial velocity 0v  is directed along 0 0OP �
�����

r , where 0P  is the initial position, 
then (as we have seen in Chap. 8, Subsec. 1.1.2) the trajectory of the particle P  is 
rectilinear; it is assumed that there exists a centre of attraction at O  (a particle of mass 
M ), the particle P  of mass m  being subjected to a force of Newtonian attraction 
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3/fmMOP x� �
����

F  (we choose the corresponding trajectory as Ox -axis). The 
equation of motion 

2
d d d
d d d
v x v mM

mx mv m mv f
x t x x

� � � � ����  
 

leads to 2 /2 /mv fmM x h� � , hence to a conservation law of mechanical energy, h  
being the energy constant; the initial conditions ( 0(0)x x� , 0(0)v v� ) allow to write 

2
0

0

1 12v fM v
x x

� �� 2 � �	 

� �

,   2
0

0

2
2
m fMh v

x
� �� �	 

� �

. (9.2.1) 

We assume that 0 0x �  (the positive direction of the Ox -axis is towards the initial 
position); one cannot have 0 0x � , from the mechanical point of view. One takes the 
sign 2 before the radical as 0 0v � . 

Figure 9.4.  Rectilinear motion due to the action of a Newtonian force of attraction. 

If 0 0v � , then the particle comes near to the point O  ( d /d 0x t � ) with a velocity 
increasing in absolute value, which tends to infinity for 0 0x � � . If 0 0v � , then 
the particle moves away from the point O  ( d /d 0x t � ); if 0h � , then the particle 
tends to infinity, while if 0h �  it stops at the point of abscissa 2 /x fM h� � , where 
the velocity changes of sign and returns, as in the foregoing case (Fig.9.4). 

Modelling the Earth as a particle of mass M  and denoting 0x R� , where R  is the 
radius of the Earth, approximated as a sphere, the condition 0h �  leads to 

2
0 2 fMv

R
� , (9.2.2) 

where we took into account (9.2.1). Introducing numerical values, we find that a 
particle from the Earth surface must be launched up along the local vertical with an 
initial velocity IIv v�  ( II 11.2 km/sv 1  being the second cosmic velocity, see 
Subsec. 2.2.2) so as not to return on the Earth; obviously, the resistance of the air has 
been neglected. 

In case of a particle which falls on the Earth without initial velocity from the initial 
position 0 0x x OP� � , we obtain the velocity at the Earth surface (the falling 
velocity) 

0

1 12v fM
R x

� �� � �	 

� �

; (9.2.3) 
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if 0x R H� � , H R� , and if we take into account Torricelli’s formula (7.1.17), 
then we find again the formula (1.1.85). Also from (9.2.1), one obtains the falling time 

0

0 0

0

0

0

d d 1
d

21 12

R R x

x x R

xxx x
t x

v x xfM
fM

x x

� � � �
�� ��	 


� �

� � � . (9.2.3') 

2.1.2 Curvilinear motion due to the action of a Newtonian force of attraction. 
Newton’s problem. Runge-Lenz vector 

Starting from the results obtained in Sec. 1.2, we may consider the motion of a 
particle in a field of central forces given by a potential of the form 

( ) kU r
r

� ; (9.2.4) 

thus, the Newtonian gravitational field is of attraction ( 0k fmM� � ), while the 
Coulombian one (specified by (1.1.84'')) may be an attractive or a repulsive field, 
depending on the relative signs of the charges in interaction ( 0k �  or 0k � , 
respectively). 

Figure 9.5.  Apparent potential: attractive (a); repulsive (b). 

We introduce the apparent potential (8.1.6') in the form 

2

2( )
2

k mCU r
r r

� � . 
 

In case of a potential of attraction ( 0k � ), we represent the apparent potential in 
Fig.9.5,a. At ( )U r h� �  corresponds max ( )U U r� , the orbit being circular; an 
elementary calculus shows that 2 2/2h k mC� � , with an orbit radius 2 /r mC k� . 
If 1( )U r h� � , 10 h h� � � � , then the orbit is contained in the circular annulus of 
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radii minr  and maxr , being a closed curve (in conformity to Bertrand’s theorem). For 

2( )U r h� � , 2 0h� � , we get a unbounded orbit with a pericentre at a distance minr �  
from the centre of attraction. In case of a repulsive potential ( 0k � ), we represent the 
apparent potential in Fig.9.5,b; for ( )U r h� � , 0h� � , there result only unbounded 
orbits of pericentres at the distance minr  from the repulsive centre. 

Let us consider now the case of a Newtonian potential of attraction. We choose the 
1Ox -axis so as to be an apsidal line; the formulae (8.1.6'), (8.1.6'') lead to the equation 

of the trajectory in polar co-ordinates in the form (we take 0 0� � ) 

min

min

1/

2 21/ 2
2

2 2 4 2 2

d(1/ )d

2 2 1
2

r r

r r
C

k mC k h kh
m r r m C mC mC

���
�

�

� �
� � � �� � � � �	 
	 


� �� �

� �  

2

2

2

1

arccos
1 2

k
r mC
k mh

mC C

�
�

�

, 

 

where we took into account that minr r�  corresponds to 0� � . We obtain thus the 
equation (9.1.1) of a conic, with 

2mCp
k

� ,   
2

2
2

1
mC h

e
k

� � . (9.2.5) 

 
Figure 9.6.  Curvilinear motion due to the action of a Newtonian force of attraction. 

In Cartesian co-ordinates, there results (we notice that 1 cosx r �� ) (Fig.9.6) 

2 2 2
1 2 1( ) 0x x ex p� � � � ; (9.2.5') 

the conic pierces the co-ordinate axes at the points min( , 0)r  and (0, )p , obtaining thus 
a geometric interpretation for the parameter of the conic too. Taking into account the 
eccentricity, it is seen that the trajectory is an ellipse, a parabola or a hyperbola as 

0h � , 0h �  or 0h � , respectively; in particular, if 2 2/2h k mC� � , then we have 
0e � , so that the ellipse is a circle. 
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We may obtain an equivalent form of this result starting from Binet’s equation 
(8.1.4). Introducing the force of Newtonian attraction 2/F fmM r� � , where M  is 
the mass of the attractive particle, we get the equation 

� �2

2 2
d 1 1
d

fM
r r C�

� � , 
 

wherefrom 

1 2 2
1

cos( )
fM

C C
r C

�� � � , 
 

1 2,C C  being two scalar integration constants; with the notations 1 /C e p� , 2 1C �� , 
2 /p C fM� , we find again the equation of the conic with respect to the focus F  and 

an axis inclined by 1�  towards the apsidal line, in the form 

11 cos( )
pr

e � �
�

� �
. (9.2.6) 

If we put the initial conditions at the moment 0t t�  as in Chap. 8, Subsec. 1.1.1, then 
we may express the conic parameter in the form 

2 2 22
0 0 0sinr vCp

fM fM
�

� � . (9.2.7) 

We use the conditions (8.1.4'') to determine the eccentricity e  and the angle 1� , 
obtaining thus 

0 1
0

1 cos( ) pe
r

� �� � � ,   0 01
0

sin( ) cotpe
r

� � �� � ,  

wherefrom 

2 2
2 2

02 2
0 00 0 0

1 cot 1 2
sin

p p p p
e

r rr r
�

�
� �� �� � � � � �	 
 	 
� � � �

 

2 2 2
0 0 0 0 0sin

1 2
r v r v
fM fM

� � �� � �	 

� �

, 

2
0 0 0 0 0

0 1 2 2
0 0 0 0

cot sin cos
tan( )

sin
p r v
p r r v fM

� � �� �
�

� � �
� �

. 

(9.2.7') 

Hence, the trajectory is an ellipse, a parabola or a hyperbola as 2
0 0 2r v fM� , as 

2
0 0 2r v fM�  or as 2

0 0 2r v fM� , respectively. The genus of the conic depends thus 
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only on the initial distance to the centre of attraction (radius 0r ), on the intensity of this 
centre (mass M ) and on the magnitude of the initial velocity (velocity 0v ), but does 
not depend on the direction of this velocity (angle 0� ). For the condition 0e � , it 
results ( 0 /2� �� , so that 0sin 1� � ) 

2 2
0 0 0 0 2 1
r v r v
fM fM

� �� � �	 

� �

; 
 

hence, the orbit is circular if 2
0 0r v fM� . These conditions are equivalent to those 

previously obtained, because the energy constant (the mechanical energy at the initial 
moment) is given by 2

0 0/2 /h mv fmM r� � . 
The angle ( , )� � � r v  (see Fig.8.1) is given by ( 2r C� �� ) 

d
tan

dr

v r C r
v r rr r
� � �� � � � �

�
� �

; (9.2.8) 

taking into account (9.2.6) we may also write 

1
tan

sin( )
p

re
�

� �
�

�
. (9.2.8') 

We denote 1 �� ��  too, because for �� ��  we obtain min /(1 )r p e� � , hence the 
pericentre. The angle �� � �� �  is called true anomaly, representing the angular 
distance of the particle with respect to the pericentre. 

From the law of areas it results 2 2d d dC t r r� �� � ; taking into account the 
equation of the conic /(1 cos )r p e �� �  and its parameter 2 /p C fM� , we may 
also write 

2 2 3/2
d d d

(1 cos )
C fMt t

e p p
�

�
� �

�
. 

 

With the notation 

tan
2
�� � , (9.2.9) 

we obtain 

2
2d

d
1+

��
�

� ,   
2

2
1

cos
1

��
�

�
�

�
, 

 

so that the law ( )t� �� , hence the law ( )t� ��  too, is given by the differential 
equation with separate variables 
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� �
� �

2

2 2 3/22

1 d2
(1 ) 1

fM
e p

� �

��

�
�

� �
,   1

1
e
e

� �
�

�
, (9.2.9') 

which will be integrated taking into account the nature of the conic. 
The formula (8.1.6''') allows to find the law of motion of the particle along the 

trajectory in the form 

min
0 2

2

d

2 2

r

r
t t

k C h
m m

�

� �

� �

� �
� . (9.2.10) 

In the study of Newton’s problem we used till now two first integrals, corresponding 
to the conservation of the moment of momentum (a vector first integral, equivalent to 
three scalar first integrals) and to the conservation of the mechanical energy (a scalar 
first integral), respectively; hence, it results that the trajectory is a plane curve and that 
one can determine the motion on it (from the first integral of areas, which is a 
component of the first integral of moment of momentum, or from the first integral of 
mechanical energy). The formula (8.1.6'') or Binet’s equation may be replaced by a 
third first integral specific for a field of Newtonian attraction. In case of a central force 

versF�F r , ( , ; )F F t� �r r , we may write, starting from Newton’s equation 

d ( ) ( )
dO O O

mFm m F
t r r

3 � 3 � 3 � 3 3�� � �rr K r K K r r r ,  

where we took into account the conservation theorem of moment of momentum 
( O ��K 0 ); it results (we notice that rr� �� �r r , in conformity to the formula (A.1.12)) 

� �2 2
2

d
( ) ( ) ( ) ( )

d O
F F r

r F r r r F
t r r r r

3 � 3 3 � � � � � � � �$ %& '
� �� � � � �� rr K r r r r r r r r r r , 

so that 

� �2d d( )
d dO r F
t t r

3 � �� rr K .  

Hence, if 2 constr F �  (in the above considered case 2/F fmM r� � ), then we may 
introduce the vector 

O fmM
r

� 3 �� rr KR , (9.2.11) 

called the Runge-Lenz vector, which is conserved in time along the trajectory of the 
particle ( d /dt � 0R , hence const�

������
R ), being a vector first integral of the motion, 

equivalent to three scalar first integrals. One obtains thus seven scalar first integrals 
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which are not independent (we may have at the most six independent first integrals for a 
single particle). Observing the scalar product 0O� �KR  (two zero mixed products), 
it results that the Runge-Lenz vector, applied at the pole O  of attraction, is contained in 
the plane of the motion (because O? KR , constO �

������
K ). Using the two previous first 

integrals, we can write ( O?�r K ) 

� �2 2 22( ) 2O O
fmMmC h
r

3 � � �� �r K r K ;  

it results then ( 2( ) ( )O O Om m K3 � � 3 � �� �r K r r r K ) 

� �2 2 2 2 2( ) 2 ( )O O OfmM fmM f m M
r r

3 � � 3 � 3 � �� � �r rr K r K r K  

� �2 2 2 2 2 2 2 2 2 22 2 2fmM MmC h f m C f m M mC h f m M
r r

� � � � � � , 

 

so that 

fmMe�R , (9.2.11') 

where we have introduced the eccentricity (9.2.5) (k fmM� ). Choosing the 1Ox -axis 
along the Runge-Lenz vector and denoting ( , )� � � rR , we may write 

cosr �� �rR R ; as well, ( )O fmMr� � 3 � ��r r K rR 2 /OK m fmMr� �  
2mC� fmMr� . Equating the two expressions of the scalar product and taking into 

account (9.2.7), (9.2.11'), we find again the equation (9.1.1) of the conic. The Runge-
Lenz vector allows thus to determine the equation of the trajectory on an algebraically 
way, its direction being from the centre of attraction to the pericentre. 

2.1.3 Elliptic motion. Kepler’s equation 

If 0h � , then the trajectory of the particle acted upon by a force of Newtonian 
attraction (we can have only 0k � , e.g., k fmM� ) is an ellipse; in the elliptic motion 
we write the equation (9.2.5') in the form � �2 2 2 2

1 2 11 2e x x pex p� � � �  (we have 
0 1e� � ). We notice that we may write this equation also in the form 

2 2
1 2

2 2
( )

1
x ae x
a b
�

� � ; (9.2.12) 

the semiaxes (Fig.9.7) 

2 21
p k

a
he

� � �
�

,   
2 21

p mb C
he
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�

 (9.2.12') 

and the focal distance 
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2 2
2 21

pe ke
c ae a b

he
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�
 (9.2.12'') 

are thus put in evidence. We mention that, for a given potential (k  is given), the semi-
major axis of the ellipse depends only on the mechanical energy constant h . We may 
express the semiaxes of the ellipse by means of the initial conditions in the form 

2
0

0

1
12

2

a
mv

r k

�
� ��	 

� �

,   0 0 0

2
0

0

sin
2
r v

b
k v
mr

�
�

�
; (9.2.12''') 

thus, we notice that a  does not depend on the direction of the initial velocity (Fig.9.7). 
From (9.2.12') it results that the conservation theorem of mechanical energy may be 
written in the remarkable form 

Figure 9.7.  Elliptic motion due to the potential ( ) /U r k r� . 

2

2 2
mv fmM fmM

r a
� � � . (9.2.12iv) 

To can determine the law of motion along the ellipse, we use the equation (9.2.10). 
From (9.1.1') and (9.2.12'), it results 

2k ah� � ,   � �
2

2 2 2
2

2 2 1
1
h p hC a e
m me

� � � � �
�

,   min (1 )r a e� � , 
 

so that 

0 2 2 2(1 )

d
2 ( )

r

e a

mt t
h a e a

� �
��

� � �
� �� ; 

 

by a change of variable (1 cos )a e u� � � , we may write 
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0 0
(1 cos )d

2
umt t a e u u

h
� � � �� ,  

wherefrom we get Kepler’s equation 

0 ( sin )mat t a u e u
k

� � � . (9.2.13) 

Figure 9.8.  Elliptic motion in Kepler’s representation. 

We assume now that, in general, the 1Fx -axis does not coincide with the apsidal line 
( 1 0� � , Fig.9.8), 1� � �� �  being the true anomaly. The equation of the conic takes 
the form � �2 2 2(1 cos ) / /r e p b a a c a a ce�� � � � � � � , where we used the 
notations (9.1.2), (9.1.2''); if we take into account the above change of variable, then we 
have cos ( )/ cosc r a r e a u�� � � � . The ordinate of the point P  meets the 

director circle of the ellipse at Q ; if �u QOF� , then we notice that 
cos cosOQ u a u�  is given by cosOF FM c r �� � � , hence just the expression 

obtained above. The angle u  has thus a simple geometric interpretation and is called 
eccentric anomaly. The Cartesian co-ordinates of the ellipse are easily obtained in the 
form (with respect to the axes in Fig.9.7) 

1 (cos )x a u e� � ,   2
2 1 sinx a e u� � , (9.2.14) 

where we took into account the relations 

(1 cos )r a e u� � ,   cos cosa u c r �� � . (9.2.14') 

One gets also 

coscos
(1 cos )
a u c
a e u

� �
�

�
; (9.2.14'') 

observing that 
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1 cos 1 cos 1 1 cos
1 cos 1 cos 1 1 cos

a c u e u
a c u e u

�
�
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� �
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, 

 

we obtain, finally, the relation which links the eccentric anomaly to the true anomaly in 
the form 

1tan tan
2 1 2

e u
e

� �
�

�
. (9.2.15) 

Considering the equation (9.2.9'), we may write ( 0� � ) 

� �
� � � �

2

2 2 22 2

1 d d d1 1
1

11 1

� � � �
� ����� ��

� � �� � �	 

� � �� �
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an integration by parts leads to 

� � � �

2

2 2 2 2 2 22 2
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2 2 2
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� � � � � � ��
�� �� �� ���� ��

� � � � �
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� � � � , 
 

so that, finally, we have 

� �
� �

2

2 2 22

1 d d1 1 1 11 1
2 21 11

� � � �
� ��� ����
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� �� � � ��

� � . 
 

Thus, the equation (9.2.9') can be integrated in the form 

03 2 2 20

d1 1 1( ) 1 1
(1 ) 1 1

fM t t
p e
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� ��� ��
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� � � �� �� . (9.2.16) 

We notice that 0 1e� � , so that 0 1�� � ; it results 

� �2
d 1 arctan

1
� ��

���
�

�� .  

By the change of variable tan( /2)u�� � , we find the equation 

� � � �
03 2 3/22

1 1( ) ( sin ) (1 sin )
(1 ) 1 1

fM t t u e u e u
p e e e�
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� � �

, 
 

equivalent to Kepler’s equation (9.2.13). 
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The particular case of circular motion ( 0e � ) has been considered in the preceding 
subsection; Kepler’s equation (9.2.13) puts thus in evidence a uniform motion. 

2.1.4 Keplerian motion. Kepler’s laws 

In the case in which the centre of attraction S  of mass M , considered to be fixed, is 
the Sun, the particle in motion (with respect to the centre S ) being a planet P , we 
have to do with the solar system. Analogously, one may consider the motion of a 
satellite of a planet with respect to that one, e.g., the motion of the Moon with respect to 
the Earth. We are in the case of the elliptic motion, considered above. Kepler’s laws, 
enounced in Subsec. 1.1.1 as a synthesis of astronomical observations, are obtained 
now as a mathematical consequence of the Newtonian model of the considered 
mechanical system. The results thus obtained allow us to state 
Theorem 9.2.1 (Kepler, I). The motion of a planet around the Sun is an elliptic one, the 
Sun being at one of the foci. 
Theorem 9.2.2 (Kepler, II; the law of areas). In the motion of a planet around the Sun, 
the radius vector of it describes equal areas in equal times. 

In celestial mechanics, the notation 

3 3
k fM

n
ma a

� �  (9.2.17) 

is used, so that Kepler’s equation may be written in the form 

0sin ( )u e u n t t� � � . (9.2.13') 

We notice that to a variation 2�  of the true anomaly there corresponds the same 
variation of the eccentric anomaly u . Kepler’s equation (9.2.13') leads to the period T  
in which the planet P  travels through the whole ellipse, hence effects a motion of 
revolution (the radius vector describes the whole area of the ellipse) in the form 

2
2

a
T a

n fM
� �� � ; (9.2.17') 

it results that n  represents the circular frequency (called the mean motion too). We 
may also write 

2 2

3
4T
fMa
�

�  (9.2.17'') 

stating thus (the ratio 24 / fM�  depends only on the mass of the Sun) 
Theorem 9.2.3 (Kepler, III). In the motion of planets around the Sun, the ratio of the 
square of the revolution time to the cube of the semi-major axis is the same for all 
planets. 

The eccentricity e  of the orbits of the nine planets of the solar system (recently, a 
tenth planet has been discovered) is, in general, very small as it results from the 
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mean 30 km/sv 1 ). For the Moon, satellite of the Earth, we can make analogous 
observations, the corresponding eccentricity being 0.066e � ; the point of the orbit 
which is the closest to the Earth is called perigee, while the point which is the most 
distant is called apogee. 
 

                                                                                                          Table 9.1 
Planet e  Planet e  Planet e  

Mercury 0.2056 Mars 0.0933 Uranus 0.0471 
Venus 0.0068 Jupiter 0.0484 Neptune 0.00855 
Earth 0.0167 Saturn 0.0558 Pluto 0.2486 

 
During the time, it was stated, by astronomical observations, with perfectionate 

instruments, that the theorems enounced above correspond to the reality only with a 
certain approximation. For instance, by the above calculation, one has obtained a 
immobile perihelion, while the observations put into evidence a displacement of this 
point of the planetary orbit, displacement which is more sensible for a planet close to 
the Sun, which has a great eccentricity; especially, Mercury has a secular displacement 
of 43.5'' of its perihelion, which has been put in evidence in 1859 by U.-J.-J. Leverrier. 
To eliminate the non-correspondence between the theory and the observation, an 
improvement of the mathematical model of Newtonian attraction law has been 
attempted, by introducing an additional term or an exponent other than 2 at the 
denominator; as well, it has been admitted the existence of a planet not discovered yet. 
In this order of ideas, Weber modelled the phenomenon by introducing a non-
conservative force of universal attraction of the form 

� �2
2
1

1 2W r rr
c

$ %� � �* +& '
� ��F F ,   constc � , (9.2.18) 

but did not obtain satisfactory results concerning the deviation of Mercury’s perihelion. 
Analogously, G. Armellini proposed a law of the form 

" #1A r�� � �F F ,   const� � , (9.2.18') 

to may explain the existence of circular orbits. In both cases, F  is a force of Newtonian 
attraction given by (9.1.7), (9.1.7'). But these non-concordances could be eliminated 
only in the frame of a non-classical model of mechanics: the relativistic model. 

Table 9.1, in which the planets are put in the order of the distances to the Sun. We 
notice thus that, excepting Mercury and Pluto, the planets at the smallest and at the 
greatest distance to the Sun, respectively, the other planets (the Earth included) have an 
almost circular orbit; the closest to a circular is the orbit of Venus. The pericentre of the 
orbit is called perihelion (denoted by � ), while the apocentre is called aphelion 
(denoted by � ). Corresponding to the Theorem 9.2.2, a planet has the maximal velocity 
at the perihelion and the minimal one at the aphelion; between those points the velocity 
has a monotone variation. For instance, the Earth has the velocity 30.27  km/sv� �  at 
the perihelion and the velocity 29.27  km/sv� �  at the aphelion (we take 
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The elliptic motion of a planet is defined in space by six parameters, called the 
elements of the elliptic motion. Using an ecliptic heliocentric frame, we take as 
reference plane the ecliptic plane e�  (which contains the orbit of the Earth), denoted as 
the Sxy -plane (S F� ). The Sx -axis passes through the first point of Aries (the 
vernal point) �  (on the celestial sphere of radius equal to unity, at the intersection of a 
plane parallel to the equatorial plane of the Earth, passing through the centre of mass of 
the Sun, and the ecliptic plane), corresponding to the spring equinox, while the Sy -axis 
passes, e.g., through the point corresponding to the summer solstice; the Sz -axis is 
directed towards the boreal pole of the ecliptic. The plane p�  of the planet P  orbit 
intersects the ecliptic plane at the line of nodes NN �  (N  and N �  are on  the  celestial 

Figure 9.9.  Elements of the elliptic motion of a planet. 

sphere; N  is the ascending node from which z  passes from negative values to positive 
ones, while N �  is the descending node from which z  passes from positive values to 
negative ones); this plane is specified by the angle �SN� �� , called the longitude of 
ascending node, and by its inclination i  with respect to the ecliptic plane (Fig.9.9). 
Choosing SN  as 1Sx -axis, we may specify the point �  by � 1NS� � �� �  (the 
argument of perihelion); the angle � ��  (obtained by summing two angles in 
different planes) is called the longitude of perihelion. The position of the ellipse is thus 
given in its plane. The magnitude of the orbit is then put in evidence by the semi-major 
axis a  and the eccentricity e . Finally, the motion along the ellipse is characterized by 
the period 2 /T n��  (the period of the revolution motion) and by the moment 

0t t� �  (the moment at which the planet P  passes through the perihelion). Hence, the 
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elements of the elliptic motion are , , , ,i a e� �  and t� ; these six elements may be 
determined by measuring three directions from the Earth to the planet P , from three 
successive locations on the ecliptic. 

We return now to Kepler’s equation (9.2.13'), written in the form 

sinu e u �� � ,   0( )n t t� � � , (9.2.13'') 

where �  is the mean anomaly. The solution of this equation is of the form ( )u u �� ; 
let us consider the function ( )u� ��  too. For 1 2,u u � 
 , 1 2u u� , we may write 

2 1 2 1 2 1( ) ( ) (sin sin )u u u u e u u� �� � � � � ; but 

" #2 1 2 1 2 1 2 1 2 1sin sin 2 sin ( )/2 2 ( )/2u u u u u u u u u u� � � � � � � � �   

and 0 1e� � , so that 2 1( ) ( )u u� �� . Hence, ( )u�  is a continuous function on 
 ; 
the inverse function ( )u �  exists and is uniform and continuous. Hence, there exists 
only one continuous function ( )u u ��  which verifies Kepler’s equation; in particular, 
for m� ��  it is seen that ( )u m m� �� , 0,1,2,...m �  

Let us consider the series expansions 

1
sin ( ) sinm

m
u a m� �

�

�
�  ,   0

1
cos ( ) cosm

m
u b b m� �

�

�
� �  , 

 

with the Fourier coefficients 

0

2 sin ( )sin dma u m
�

� � �
�

� � ,   0 0

1 cos ( )db u
�

� �
�

� � ,   

0

2 cos ( )cos dmb u m
�

� � �
�

� � , 

 

0b  being the mean value of cos ( )u �  on the interval " #0,� . We notice that 

00 0

1 1sin ( )sin d sin ( )cos cos ( )cos du m u m u m u
m m

� ��� � � � � � �� � �� �  

" #
0

1 cos( ) cos( ) d
2

u m u m u
m

�
� �� � � ��  

" # " #, -
0

1 cos ( 1) sin cos ( 1) sin d
2

m u me u m u me u u
m

�
� � � � � ��  

" #1 1( ) ( )
2 m mJ me J me
m
�

� �� � , 

 

00 0

1 1cos ( )cos d cos ( )sin sin ( )sin du m u m u m u
m m

� ��� � � � � � �� �� �  

" #1 1( ) ( )
2 m mJ me J me
m
�

� �� � , 
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" #
0 0

cos ( )d cos ( ) 1 cos ( ) du u e u u
� �

� � � �� �� �  

� �0
0

1
sin sin2

2 2 2
e

u u u e
�

� �
� � � � � , 

 

where we took into account Kepler’s equation (9.2.13'') and have introduced Bessel’s 
functions of order m  defined in the form 

0

1( ) cos( sin )dmJ x mu x u u
�

�
� �� ; (9.2.19) 

using the recurrence relations 

" #1 12 ( ) ( ) ( )m m mmJ x x J x J x� �� � ,   1 1
d2 ( ) ( ) ( )
d m m mJ x J x J x
x � �� � , 

 (9.2.19') 

we may, finally, write 

1

2 1sin ( ) ( )sinm
m

u J me m
e m

� �
�

�
�  , 

2
1

1 dcos ( ) 2 ( )cos
2 d m

m

eu J me m
em

� �
�

�
� � �  . 

(9.2.20) 

The relations (9.2.14') and (9.2.13'') lead to 

2

2
1

1 1 d( ) 1 2 ( )cos
2 d m

m

er e J me m
a em

� �
�

�
� � �  , (9.2.21) 

1

1( ) 2 ( )sinm
m

u J me m
m

� � �
�

�
� �  . (9.2.21') 

Introducing the notation 

2

2

1 1
1

1 1
e e

e e
� � �

� � �
� �

 (9.2.22) 

and observing that Euler’s formula ie cos i sin� � �2 � 2  leads to tan�  

� � � �2 i 2 ii 1 e / 1 e� �� � � , we may write the relation (9.2.15) in the form 

1tan tan
2 1

u� �
�

�
�

�
, (9.2.15') 

wherefrom 

i
i i

i
1 ee e
1 e

u
u

u
� �

�

��
�

�
; (9.2.15'') 
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applying now the logarithmic operator and taking into account the series expansion 

1
ln(1 )

k

k

xx
k

�

�
� � � ,   0 1x� � , 

 

and Euler’s formula, we get, finally, 

1
( ) ( ) 2 sin ( )

m

m
u mu

m
�� � � �

�

�
� �  . (9.2.22') 

We have thus put in evidence the polar co-ordinates ( )r r t�  and ( )t� ��  of the 
planet P  in the plane of the orbit, as well as the eccentric anomaly ( )u u t�  (solution 
of Kepler’s equation) as function of the time 0 /t t n�� � . 

2.1.5 Hyperbolic motion 
The trajectory of the particle acted upon by a Newtonian force of attraction is a 

hyperbola if 0h �  (we may have 0k � , e.g., k fmM� , or 0k � , when we have 
only 0h � ); in the hyperbolic motion, the equation (9.2.5') takes the form (we have 

1e � ) � �2 2
11e x� 2 2

2 12x pex p� � � � . The equation reads 

2 2
1 2

2 2
( )

1
x ae x
a b
�

� �  (9.2.23) 

too, where we have introduced the semiaxes (Fig.9.10) 

2 21
p k

a
he

� �
�

,   
2 21
p mb C

he
� �

�
 (9.2.23') 

and the focal distance 

2 2
2 21
pe k e

c ea a b
he

� � � � �
�

; (9.2.23'') 

we notice that, for a given potential (k  is given), the semi-major axis of the hyperbola 
depends only on the mechanical energy constant h . The semiaxes of the hyperbola may 
be expressed with the aid of the initial conditions in the form 

2
0

0
2

2

ka
mv k

r

�
� ��	 

� �

,   0 0

2
0

0

sin
2

r v
b

kv
mr

�
�

�
; (9.2.23''') 

as in case of the elliptic motion, a  does not depend on the direction of the initial 
velocity. The inclinations of the asymptotes are 2/ 1 2 /b a e C mh k2 � 2 � � 2 . In 
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the case in which 0k �  the particle moves along the hyperbola branch which 
surrounds the centre of attraction F �  (Fig.9.10,a), while, if 0k � , then the particle 
moves along the other hyperbola branch (Fig.9.10,b); in each of the mentioned cases, 
the other branch of the hyperbola leads to 0r �  (as in the case in Fig.9.2,b). We notice 
that min /(1 ) ( 1)r p e a e c� � � � �  for 0k �  and min /( 1)r p e� � (1 )a e� �  
c�  if 0k � ; the apsidal point is reached only once by the particle during the motion 

along the trajectory. Taking into account (9.2.23'), it results the remarkable form (for 
0k � ) 

Figure 9.10.  Hyperbolic motion due to the potential ( ) /U r k r� .  
Case 0k �  (a); case 0k �  (b). 

2

2 2
mv fmM fmM

r a
� �  (9.2.23iv) 

for the conservation theorem of mechanical energy. 
The law of motion along a hyperbola branch is given by the equation (9.2.10). The 

relations (9.1.1') and (9.2.23') allow to write (for 0k � ) 

2k ah� ,   � �
2

2 2 2
2

2 2 1
1

h p hC a e
m me

� � �
�

,   min ( 1)r a e� � , 
 

wherefrom 

0 2 2 2( 1)

d
2 ( )

r

e a

mt t
h a a e

� �
��

� �
� �� ; 

 



www.manaraa.com

Newtonian theory of universal attraction 573 

the change of variable ( cosh 1)a e u� � �  leads to 

0 0
( cosh 1)d

2
umt t a e u u

h
� � �� .  

Finally, we obtain the equation 

0sinh ( )e u u n t t� � � , (9.2.24) 

analogous to Kepler’s one for the elliptic motion, n  being given by (9.2.17); in this 
case, the parameter ( , )u � �� �  corresponds to the parametric equations 

1 coshx OM a u� � � , 2 sinhx MQ a u� �  of the rectangular hyperbola with the 
same centre O  and the same semiaxis a  (Fig.9.10,a). Taking into account the relations 

( cosh 1)r a e u� � ,   cosh cosa u c r �� �  (9.2.25) 

and the equation of the hyperbola, we get the Cartesian co-ordinates (Fig.9.10,a) 

1 ( cosh )x a e u� � ,   2
2 1 sinhx a e u� � . (9.2.25') 

It results 

coshcos
( cosh 1)
c a u
a e u

� �
�

�
, (9.2.25'') 

wherefrom we obtain the relation between the angle �  and the parameter u  in the form 

1tan tanh
2 1 2

e u
e

� �
�

�
. (9.2.26) 

One can use also the equation (9.2.16) to study the motion of the particle along the 
trajectory; we have 0� � , because 1e � . In this case 

� �2
d 1

arg tanh
1

� ��
���

� �
��� ;  

by the change of variable � �tanh /2u��� � , we may write 

� � � �
03 2 3/22

1 1
( ) ( sinh ) ( sinh )

( 1) 1 1

fM
t t e u u e u u

p e e e�
� � � � �

� � � �
, 

 

obtaining thus an equation equivalent to the equation (9.2.24). 
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In the particular motion on a rectangular hyperbola we have 2e � , so that p a� , 
while � � � � � �tan /2 1 2 tanh /2u� � � . 

2.1.6 Deviation of the light ray 

Starting from observations, it was stated that a light ray coming from a star S  far 
off, its path passing in the vicinity of the Sun S , is deviated; its final direction (for the 
observer O ) makes an angle �  with its first direction. We consider thus the trajectory 
of a photon, assuming that this one, modelled as a particle, has a mass. The photon 
describes a conic in its motion in the gravitational field of the Sun. Assuming that the 
photon passes very close to the surface of the Sun (Fig.9.11), we may take 

8
0 6.96 10  mr � � , corresponding to Sun’s radius (any point of the trajectory may be 

taken as initial position, in particular the apsidal point); as well, 8
0 3 10  m/sv � �  (the 

velocity of light in vacuum), while 332 10  gM � �  (Sun’s mass). The inequality 
2

0 0 2r v fM�  is satisfied, so that the trajectory of the photon is an arc of hyperbola. 

Figure 9.11.  Deviation of the light ray. 

From the equation (9.2.6) it results that the two asymptotes are specified by the 
equation 11 cos( ) 0e � �� � � , which has always solutions, because 1e � . The 
angles �� , corresponding to the two asymptotes, are given by 

� �1
1arcsin

2 e
�� �� � 2 � ; (9.2.27) 
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we may write (Fig.9.11) 

1
1arcsin

2 e
�� ��� � � � ,   1

3 1arcsin
2 e
�� ���� � � �  (9.2.27') 

too. We notice that each asymptote makes an angle equal to � �arcsin 1/ 1/e e1  with 
the imaginary axis of the hyperbola; hence, the angle made by the two asymptotes, 
equal to the angle � , corresponding to the deviation of the light ray, is given by 

1 22arcsin
e e

� � 1 . (9.2.27'') 

However, this formula could be obtained also by using the results in Chap. 8, Subsec. 
1.2.1 concerning the phenomenon of diffraction. In our case, the diffraction angle 
(Fig.9.11) is given by " #1 12 2 ( ) 2( )� � � � � � � � �� �� �� � � � � � � � � � �� ; 
from � � 1sin /2 cos( ) 1/e� ���� � � ��  it results 2/e1 �� , the angle of 
diffraction being negative, because the centre S  (the Sun) is of attraction. We notice 
that ��� . 

Because at the apsis the velocity is normal to the radius vector (which starts from 
S ), we have 0 /2� �� ; in this case, from (9.2.7') it results (e  is of an order of 
magnitude 610 ) 

2 2
0 0 0 01
r v r v

e
fM fM

� � 1 . (9.2.28) 

We may write 

2
0 0

2 fM
r v

� 1 ; (9.2.28') 

numerically, we obtain 0.87  s� 1 . 
Astronomical observations of great precision made during the total solar eclipses (for 

the first time in May 1919), to may “catch” the light ray coming from the star S, have 
put in evidence a double angle ( 1.74  s� 1 ), obtaining thus a new non-concordance of 
the Newtonian model with the physical reality (besides the secular displacement of 
Mercury’s perihelion, see Subsec. 2.1.4). However, one cannot be sure if these non-
concordances are due to Newton’s laws or to the Newtonian theory of gravitation (or to 
both mathematical models); some direct improvements of those models did not lead to 
convenient results, excepting the invariantive model built up by O. Onicescu (see Chap. 
21, Sec. 3.2). These contradictions disappear in the frame of the general theory of 
relativity elaborated by A. Einstein. 
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2.1.7 Parabolic motion 
If 0h �  (we can have only 0k � , e.g., k fmM� ), then the trajectory of a particle 

acted upon by a Newtonian force of attraction is a parabola. Observing that 1e � , the 
equation (9.2.5') takes the form (Fig.9.12) 

� �2
2 12

2
px p x� � �  (9.2.29) 

in the parabolic motion; the distance to the pericentre is given by 

 
Figure 9.12.  Parabolic motion due to the potential ( ) /U r k r� . 

2 2 22
0 0 0

min
sin

2 2 2
r vp Cr

fM fM
�

� � � . (9.2.29') 

The conservation theorem of mechanical energy takes the form 

2

2
mv fmM

r
� . (9.2.30) 

The formula (9.2.10) leads to 

0 /2

d
2 /2

r

p

m
t t

k p
� �

�
� �

�� ,  

wherefrom we get 

0
1 2

( ) /2
3

t t r p r p
fM

� � � � . (9.2.31) 
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The equation (9.2.6) becomes (we consider the most general case in which 1 0� �  and 
use the true anomaly 1� � �� � ) 

� �2

2
1 tan

1 cos 2 22 cos
2

p p p
r

�
��

� � � �
�

, (9.2.29'') 

so that 

� �2
0

1
tan 1 tan

2 2 3 2
p p

t t
fM

� �
� � � . (9.2.31') 

Starting from (9.2.9'), we obtain � �2 31 d 2 / dfM p t� �� � ; observing that 
� �tan /2� �� , we find again the above results. Using the co-ordinates 1 cosx r �� , 

2 sinx r �� , we get the Cartesian parametric equations of the trajectory 

� �2
1 1

2
px �� � ,   2x p�� . (9.2.29''') 

The equation (9.2.31') has only one real root � �tan /2�  for a given t . The moment 

0t  is obtained for 0t � ; if 0 0t � , then one cannot have 0� � , so that the particle 
starts from the initial position and describes an arc of parabola towards infinity, without 
passing through its vertex. 

2.1.8 Motion of comets 

Newton’s research has been extended also on the comets known at his time, 
especially on the Halley comet, appeared in 1680; he assimilated thus the trajectories of 
the comets to very elongated ellipses, to which Kepler’s laws may be applied. Based on 
Halley’s observations, Newton concluded that in case of comets too we have 

2 / constC p � , being thus led to the same law of universal attraction. Hence, the law 
of motion is that obtained in Subsec. 2.1.2, and the motion of a comet may be also a 
parabolic one; corresponding to the results of the preceding subsection, the Sun is at 
one of the foci, as it was shown by Newton. The theorem of areas may be applied too. 

The co-ordinates which specify the parabolic trajectory of a comet are , , ,i t�� �  and 
the perihelion distance /2p , hence only five independent parameters. 

2.2 Problem of artificial satellites of the Earth and of interplanetary 
vehicles 

Using the results obtained in the preceding subsection, we consider, in what follows, 
the problem of the artificial satellites of the Earth and of the interplanetary vehicles; we 
may thus put in evidence the cosmic velocities, the conditions of non-returning on the 
Earth, the conditions to become a satellite, and the conditions to escape in the cosmic 
space. As well, we make the study of the orbit of an artificial satellite. 
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2.2.1 Theory of artificial satellites of the Earth. Conditions to become a satellite 

The general theory presented in Subsec. 2.1.2 may be used to study the launching 
and the motion of the artificial satellites of the Earth. To this goal, we assume that the 
Earth is a sphere of radius R , its mass being distributed with spherical geometry. If M  
is the mass of the Earth, in conformity with the formula (1.1.85) we may write 

2fM gR� . In this case, the conservation theorem of mechanical energy takes the form 

2 2

2
mv mgR h

r
� � ,   

2 2
0

02
mv mgRh

r
� � ,   0r R H� � ; (9.2.32) 

we assume that the satellite P , modelled as a particle of mass m , is unbound from the 
launching rocket at the height H  from Earth’s surface, along the local vertical, at the 
point 0P  of position vector 0r , the initial velocity being 0v  (Fig.9.13). To obtain thus a 
satellite of the Earth, the trajectory of the particle P  must be an ellipse; in this case 

0h � , so that the initial velocity fulfils the condition 

 
Figure 9.13.  Launching of an artificial satellite of the Earth. 

2 2
2
0

0

2 2gR gRv
r R H

� �
�

. (9.2.33) 

The particle P  becomes a satellite if, supplementary, the distance to the perigee is at 
least equal to the radius of the Earth ( minr R� ). Taking into account the results in 
Subsec. 2.1.3, we must have (1 )a e R� � , wherefrom 1 /e R a� � . Because 0e � , 
one must have a R�  too; associating the inequality (9.2.33) to (9.2.12'''), we have 
finally, 

2
0

0 0

2 21
vR R

r gR r
� � � , (9.2.33') 

obtaining thus inferior and superior limits for the initial velocity. 
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Taking into account the first relation (9.2.12'), we may express the condition 
(1 )a e R� �  in the form /(1 )p e R� �  or / 1p R e� �  too; the first inequality 

(9.2.33') ensures that p R�  (because, in this case 0e � ), so that we may also write 
� �2 2/ 1p R e� � . The first relation (9.2.7') leads to 

� �
2 22

2
02

0 0
1 1 cotp p p

R r r
�� �� � � �	 


� �
; 

 

using the relation (9.2.7), we get then 

2 2 2
0 0 0

2 2
0

sin 1 11
2
v r

R rgR R
�� �� � �	 


� �
. (9.2.34) 

Because 01/ 1/R r� , it results that we must have 2 2 2
0 0sinr R� �  too, wherefrom 

0 0sinr R� � ; (9.2.34') 

this relation states that the support of the velocity 0v  cannot pierce the Earth’s sphere 
(at the limit, it may be tangent to it (Fig.9.12)). We notice that the relation 

� �
2

0
2 2 2

00 0 0

2 ( ) 2 1
sin
R r R R

rr r R�
�

� �
�

 
 

takes place; indeed, bringing to the same denominator, we read 

2
0 0 0 0 0( sin ) 2 sin (1 sin ) 0R r Rr� � �� � � � .  

The equality can take place only in case of a launching from the surface of the Earth, 
tangent to it. From (9.2.33')-(9.2.34') it results 

2
0 0

02 2 2
0 00 0

( )
sin

2sin
R r R vR R

r gR rr R
�

�
�

� � �
�

, (9.2.35) 

in this case. These inequalities represent the conditions to become a satellite; the first 
and the last inequality correspond to the non-returning on the Earth (to the escape from 
the Earth), while the second inequality corresponds to the transformation of the body 
launched from the surface of the Earth in a satellite of that one (elliptic trajectory). 

If the satellite enters on the orbit under an incidence angle 0 /2� �� , then the 
conditions (9.2.35) become (the last inequality is verified because 0R r� ) 

2
0

0 0 02
vR R R

r R r gR r
� �

�
, (9.2.35') 
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while in the case in which 0H 1 , hence 0r R1  (the launching point is very close to 
the surface of the Earth), we get 

0 2gR v gR� � . (9.2.35'') 

2.2.2 Cosmic velocities 

The inequalities (9.2.35'') may be written in the form 

0I IIv v v� � , (9.2.36) 

where we have introduced the first and the second cosmic velocities, respectively, given 
by 

Iv gR� ,   II I2 2v gR v� � ; (9.2.37) 

taking 29.81 m/sg �  and 66.38 10  mR � � , we get I 7.905 km/sv �  and 

II 11.179 km/sv � . 
In general, the velocities for which a terrestrial body becomes a celestial one are 

called cosmic velocities. The two velocities put here in evidence are called special 
cosmic velocities. The first special cosmic velocity (the circular cosmic velocity) 
represents the smallest velocity by which a body can be launched from the surface of 
the Earth (tangent to it) without returning on the Earth; the second special cosmic 
velocity (the parabolic cosmic velocity) is the greatest velocity by which a body may be 
launched from the surface of the Earth so that to remain a satellite of it. Any cosmic 
velocity contained between the two mentioned velocities leads to an elliptic trajectory. 
A cosmic velocity equal to IIv  leads to a parabolic trajectory, while a cosmic velocity 
greater than IIv  leads to a hyperbolic one. In the latter cases, the celestial body so 
created can no more be a satellite of the Earth, having a non-bounded trajectory in the 
interplanetary space; eventually, it can be captured by another celestial body in the 
proximity of which may pass its trajectory. 

The numerical results thus obtained have a certain degree of approximation; indeed, 
we should take into account the whole system of particles which are involved in motion 
(see Chap. 11 too), as well as the resistance of the atmosphere (on a trajectory of 
200-300 km , till the satellite enters in the interplanetary space, where the resistance of 
the air is negligible). In this order of ideas, if the entrance on the trajectory takes place 
at a height H  (measured along the local vertical), then the conditions (9.2.35') lead to 
(9.2.36) too, in the form 0I II

H Hv v v� � , with 

0 I
I I I

0 0 0

( / ) 22
( ) 1 / (1 / )(1 /2 )

H R r vRv v v
r R r R r H R H R

� � �
� � � �

 

� �
� �2I

I2

3 191
4 323 11

2 2

v H H v
R RH H

R R

$ %� 1 � �* +& '
� �

, 

 
 

 
(9.2.37') 
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� �2II
II II II

0

1 31
2 81 /

H vR H Hv v v
r R RH R

$ %� � 1 � �* +� & '
. 

 
(9.2.37'') 

Taking, e.g., 52 10  mH � � , we get I I(1 0.02355 0.00059)Hv v� � � I0.977v1  
7.723 km/s�  and II II(1 0.01570 0.00037)Hv v� � � II0.985v1 11.011 km/s� , 

hence velocities somewhat smaller. In general, we should take 

� �
0

I I I2 2 2 2 2
0 0 0 0

2 /2

sin (1 / ) (1 / ) sin 1
H H RR r R
v v v

r r R H R H R� �
�

� �
� � � �$ %& '

; 

 (9.2.37''') 

obviously, the angle 0�  cannot be chosen arbitrarily, because the quantity under the 
radical sign must be positive. 

Returning to the conservation theorem of mechanical energy (9.2.32) and assuming 
that a body (modelled as a particle) is launched from the Earth surface ( 0r R� ), we 
may write 

22 2
0

2 2
mvmv mgR mgR

r
� � � ; (9.2.38) 

it results 

� � � �2 2 2 2
0 0 II2 1 1R Rv v gR v v

r r
� � � � � � . (9.2.38') 

A particle can reach the point P , at a distance r  from the centre of the Earth 
(Fig.9.13), with a velocity 0v � , only if 

� �20 II II
1 1

1 1
2 8

R R Rv v v
r r r

$ %� � 1 � �* +& '
. (9.2.39) 

For instance, if 60r R�  (the distance from the centre of the Earth to the centre of the 
Moon), then we obtain 0 II(1 0.00833 0.00003)v v� � � II0.992 11.090 km/sv1 � . 

In general, the cosmic velocities corresponding to an arbitrary celestial body, of mass 
m , are given by 

0
I

0

r fmv
r

� ,   0 0
II I2r rv v� , (9.2.40) 

where 0r  is the distance from the interplanetary vehicle to the centre of the considered 
celestial body. These formulae are useful to establish the conditions in which a body 
which is launched from the Earth surface and reaches a certain distance from another 
celestial body (Moon, Sun etc.) becomes a satellite of that one or continues its 
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trajectory not being affected by a decisive influence; thus, if the velocity of the 
interplanetary vehicle is less than the second cosmic velocity of a celestial body in the 
vicinity of which it passes at the distance 0r , then the vehicle is captured by the 
respective celestial body. 

2.2.3 Study of conditions to become a satellite 

One can obtain a graphical image of conditions to become a satellite by introducing 
the non-dimensional variables 

0 1 0
r H
R R

� � � � � ,   
22

0 0

I
0

v v
gR v

� � �� � �	 

� �

; (9.2.41) 

the conditions (9.2.35), to which we associate also the first condition (9.2.33'), take the 
form 

2 2
0

1 2 2
1 1(1 ) (1 ) sin 1

� � �
� �� � �

�
� � �

� �� � �$ %& '
, (9.2.42) 

with 

0

1 1
sin

�
�

� � . (9.2.42') 

In a system of co-ordinate axes O��  we draw the arcs of rectangular hyperbola 0�  and 

0�  of equations (Fig.9.14) 

2
1

�
�

�
�

,   1
1

��
�

�
�

�
; (9.2.43) 

the domain D , the points ( , )� �  of which verify the conditions (9.2.42) to become a 
satellite, is contained between these curves and the axes O�  ( 0� � ) and O�  ( 0� � ). 
To specify this domain we draw also the curves 0( )� � ��  of equation 

2 2
0

2
(1 ) (1 ) sin 1

��
� � �

�
� � �$ %& '

. (9.2.43') 

Because 

" # 

2
0

22 20 0

2 (1 ) sin 2d
d (1 ) (1 ) sin 1

� � ��
� � � �

�
� �

� � �
, 

 

it results that 0d /d 0� � �  for 0 (0, /2)� �� , 0d /d 0� � �  for 0 /2� ��  and 

0d /d 0� � �  for 0 ( /2, )� � �� . Hence, if 0�  increases from 0 0� �  (without that 
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value), then the curve 0( )� �  goes down till a position corresponding to 0 /2� �� ; 
then 0( )� �  goes up together with the increasing of 0� . We notice that 

0 0( ) ( )� � � � �� � . The curves 0( )� �  are over the curve 0� , so as it was to be 
expected (only the curve 4 ( /2)� � ��  has a common point with the curve 0� ). The 
domain 0( )D D ��  for which exists the possibility to become a satellite (a height H  
being given, there corresponds a lot of possible initial velocities 0v ) is contained 
between the curves 0�  and 0( )� �  (without the frontier 0� ), which are piercing at  the 

Figure 9.14.  Graphic representation of the conditions to become a satellite in the O��  - plane. 

points of co-ordinates 2
0cot� �� , 2

02 sin� �� . In Fig.9.14 are drawn the curves 

1 ( /6)� � �� , 2 ( / 4)� � �� , 3 ( / 3)� � ��  and 4 ( /2)� � ��  (the domain 
( /6)D �  for which one gets a satellite is hatched). The maximal such domain is 
( /2)D �  and is contained between the curves 0�  and 4� , being bounded by the axis 

0� � . Indeed, only in this case we may have 0H � ; if 0 /2� �� , then a possibility 
to become a satellite takes place only for 

2
0cot� �� . (9.2.44) 

The condition (9.2.42') is included in the condition (9.2.44) because 
0 0(1 sin )/ sin� �� 2

0cot �� . 
The trajectory of the satellite is a circle if the eccentricity vanishes ( 0e � ); taking 

into account (9.2.7), (9.2.7') and observing that 2fM gR� , we must have 
simultaneously 

2

0
1 0p

r
� �� �	 

� �

,   
2

2
02

0
cot 0

p
r

� � ,   
2 2 2
0 0 0

2
sinr v

p
gR

�
� . 
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It results that 0 /2� �� , 2
0 0/ /v gR R r� . With the notations introduced above, we 

may write 

1
1

�
�

�
�

; (9.2.45) 

this arc of rectangular hyperbola (contained in the maximal domain ( /2)D � ), 
represented by a  broken line in Fig.9.14, specifies the velocity 0v  by which a vehicle 
must be launched in the space from a given height H  so that to become a satellite of 
the Earth, having a circular trajectory. 

An analogous study has been effected by L. Drago�, using the non-dimensional 
variables 0 /r R  and 0 /v gR . 

Figure 9.15.  Graphic representation of the conditions to become a satellite  
in the OXY  - plane. 

A graphical interpretation of the conditions to become a satellite may be obtained in 
the hodographic plane too; following a study made by C. Iacob (who used the 
dimensional co-ordinates 0 0cosv �  and 0 0sinv � ), we introduce the non-dimensional 
co-ordinates 

0 0
0 0 0

I
cos cos cos

v v
X

v gR
� � � �� � � , 

0 0
0 0 0

I
sin sin sin

v v
Y

v gR
� � � �� � �  

(9.2.46) 

of the extremity of the position vector 0 I/v v . The conditions (9.2.35) to become a 
satellite take the form 
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2 21 2
1 1

X Y
�
� �

�
� � �

� �
,   2 2 2

(2 )
1

Y X
�� �
�

� � �
�

, (9.2.47) 

to which we associate the condition (9.2.42'); we took into account the notation 
(9.2.41). The first inequalities show that the point ( , )X YP  must be in the interior of 
the circular annulus, bounded by the circles 

 1C  and 
 2C  of radii 

1 (1 )/(1 )� � �� � �  and 2 2/(1 )� �� � , respectively, or on the internal frontier 
of it (Fig.9.15). As well, this point must be interior to the hyperbola H  of equation 
(regions of the plane which do not contain the origin O ) 

2 2

2 2 1Y X
� �

� �  (9.2.48) 

and of semiaxes 2 /(1 )� � �� �  and 2/(1 )(2 )� � �� � � ; the foci (0, )�  and 
(0, )��  are specified by 2(1 )/(2 )� � �� � � . The asymptotes of the hyperbola 
make an angle �  given by cot (2 )� � �� �  with the OX -axis. 

If we draw a tangent from the launching point 0P  to the Earth sphere, then we notice 
that the angle �  is just the angle made by this tangent with the straight line 0P F �  
(Fig.9.13). The condition (9.2.42') leads to 0cot (2 )� � �� � , so that 0cot cot� �� ; 
hence, 0� ��  (the point ( , )X YP  must be in the interior of the asymptotes’ angle, 
which contains the hyperbola H, condition which is fulfilled together with the second 
condition (9.2.47)). If 0� ��  (the point ( , )X YP  being in the interior of the 
asymptotes’ angle, which does not contain the hyperbola H ), then the trajectory of the 
vehicle launched from the Earth surface pierces the Earth sphere immaterial of the 
launching velocity. These conditions are easily justified in Fig.9.15. 

We have 1 2� � �� � . Hence, one can launch satellites of the Earth from a given 
height H , that is for a given � , if the initial velocity 0v  and the direction of the 
launching 0�  are so that the point ( , )X YP  be in the interior of the domain D  
bounded by arcs of hyperbola H  and arcs of circle 

 2C  (the hatched regions in Fig. 
9.15). The points  , ,� �

�P P P  and  �P  of intersection of the hyperbola H  with the 
circle 

 2C  have the co-ordinates 2 /(1 )X � �� 2 � , 2 /(1 )Y �� 2 � . The angle 
�  formed by the OY -axis with the semi-lines O �P  and O �P  is given by 

arctan� �� ; it results that the launching angle 0�  depends on � , hence on the 
launching height H , and that we must have " #0 /2 , /2� � � � �� � � . 

The point � �0,1/ 1 ��  corresponds to a circular trajectory. 
The discussion has been made for 0Y � ; for 0Y �  one obtains analogous results 

and a trajectory symmetric to the first one. 
In conclusion, if the point ( , )X YP  belongs to the interior of the circle 

 2C , then 
the trajectory is an ellipse (if �P D , then the trajectory does not intersect the Earth’s 
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sphere), if the point P  is on the circle 
 2C , then the trajectory is a parabola, while if the 

point P  belongs to the exterior of the circle 
 2C , then the trajectory is an arc of 

hyperbola. A supplementary study is necessary to see if these arcs of parabola or of 
hyperbola intersect the Earth’s sphere. 

2.2.4 Study of the satellite orbit 
As we have seen in Subsec. 2.2.2 too, in a more exact theory we must take into 

account the resistance of the atmosphere. As well, we must notice that the Earth is 
neither spherical, nor homogeneous, so that the potential created by it is only with a 
certain approximation equal to the potential of a particle situated at the mass centre of 
the Earth and at which would be concentrated its whole mass; we may use with a better 
approximation the formula (9.1.18) for the potential ( )U r  of the terrestrial spheroid. 

The equation of motion reads ( sm  is the satellite mass) 

grads sim fm U m �� �a v , (9.2.49) 

where we have introduced the resistance ( )sm t�� �R v , ( ) ( ( ))t v t� �� . In 
spherical co-ordinates we can write (see Chap. 5, Subsecs 1.1.3 and 1.2.4) 

2 2 2sin Ur r r f r
r

� �� �(
� � � �

(
��� � � , 

� �2 2 2 2d 1 sin2
d 2

Ur r f r
t

� �� � �
�

(
� � �

(
� �� , 

� �2 2 2 2d
sin sin

d
U

r f r
t

�� � ��
�

(
� �

(
� � . 

(9.2.49') 

The terrestrial spheroid has properties of axial symmetry, so that / 0U �( ( � ; the 
third equation (9.2.49') leads thus to the first integral 

0
( )d2 2 2 2

0 0 0sin sin e
t

tr r � � ��� � � � ��� � , (9.2.49'') 

with 0 0( )r r t� , 0 0( )t� �� , 0 0( )t� ��� � . In particular, if the satellite is launched in 
a meridian plane ( 0 0 0 0( ) sin 0v t r� � �� �� ), then sin 0v r� ��� �� , hence 

const� � ; thus, the satellite continues its motion in the meridian plane. In this case, 
the equations of motion are 

2 Ur r f r
r

� �(
� � �

(
��� � , 

� �2 2d
d

Ur f r
t

� � �
�

(
� �

(
� � . 

(9.2.50) 

If, in a first approximation, we take / 0U �( ( � , then we get a second first integral 
( 0 0( )t� ��� � ) 
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0
( )d2 2

0 0e
t

tr r � � �� � � ��� � , (9.2.50') 

which shows that the areal velocity 2 /2r� �� �  has an exponential variation. 
The spherical co-ordinates ( )t� ��  and ( )t� ��  of the satellite S  being 

determined, the problem to specify the orbit co-ordinates on the celestial sphere of 
radius equal to unity is put. We choose a geocentric frame of reference (which we 
assume to be inertial) with the origin at the Earth centre P ; the principal plane is the 
equatorial one and the Px -axis is contained in this plane, being directed towards the 
first point of Aries �  (the vernal equinoctial point) (at the intersection of the equatorial 
plane with the ecliptic plane, which contains the trajectory described by the Earth); the 
Oz -axis is normal to this plane (it is the rotation axis of the Earth). The line of nodes 
PN  is specified by the angle �  in the plane Pxy ; the plane of satellite’s orbit, which 
passes through PN , is inclined on the principal plane by the angle i . The position S  
of the satellite is – in this case – given by arcu NS�  (Fig.9.16). Applying the 
formulae of spherical trigonometry to the spherical triangle NS S� , rectangular in S � , 
we get the relations 

 
Figure 9.16.  Trajectory of a satellite. 

cot tan sin( )i � � �� � ,   cos sin cos( )u � � �� � , (9.2.51) 

which give the angles i  and u . We mention also the relation 

sin sin cosi u �� . (9.2.51') 

2.3 Applications to the theory of motion at the atomic level 
The motion of a particle electrically charged, e.g. of an electron in the vicinity of an 

atomic nucleus, must be studied in the frame of the quantic model of mechanics; 
however, one can obtain many interesting and useful results in the frame of the 
Newtonian model too. After presenting the classical model of the atom, based on 
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Hertz’s oscillator, we pass to the study of Bohr’s atom; by this occasion, we put in 
evidence Ritz’s law too, which characterizes the lines spectrum of hydrogen. 

2.3.1 Hertz’s oscillator. Classical model of the atom 

If an electric charge 0 0e e �� � , where 0e  is the rationalized electric charge, 0�  
is the permittivity of the vacuum, while �  is a coefficient of rationalization ( 1��  in 
case of a non-rationalized system and 4���  in case of a rationalized one, e.g., the 
SI-system), passes from a condenser coat to another one (a rhythmical variation of the 
armatures’ polarity by an alternative variation of the tension applied upon them), then 
one obtains an experimental device which emits electromagnetic waves, equivalent to a 
linear oscillator dipole of moment 0 0 0/p p e x�� �� , where x  is the elongation, 
called Hertz’s oscillator. This device emits (i.e. it loses) energy in the form of 
spontaneously radiated energy, expressed by the power 

2 2 2
0 03 3

2 2
3 3

P p e x
c c

� ��� �� , (9.2.52) 

where c  is the velocity of light propagation in vacuum; the upper line indicates the 
mean value. Starting from the equation of motion (8.2.23), we may write 2 4 2x x���� ; 
taking into account the form (8.2.24) of the solution and observing that 

2
0

1 1cos ( )d
2

T
t t

T
� �� �� ,  

we obtain 2 4 4 28x a� ���� , where a  is the amplitude, while �  is the frequency given 
by (8.2.6'). It results 

2 2 44
0

3
16

3
e a

P
c
��

� . (9.2.52') 

Thus, by radiation, a quantity of mechanical energy d /dE t P� �  is lost from the 
mechanical energy E  given by (8.2.23''). We can write d /dE t E�� � , wherefrom 

0e tE E ��� ,   
2 22
0

3
8
3
e
mc
��� � , (9.2.53) 

�  being the radiation constant; as it was shown by Max Planck, one obtains thus a 
damping effect. 

The classical model of the atom is an oscillator of Hertz, that is an electron which 
oscillates around a position of equilibrium, where there is an atomic nucleus. But this 
mechanical system loses permanently energy, as we have seen above; because of this 
damped motion, after a sufficiently long (but finite) time, the electron falls towards the 
nucleus. Such a model of atom is labile and does not correspond to the reality; but it can 
be considered as satisfactory for a great lot of physical phenomena. 
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We notice that 2E Ka� , constK � ; taking into account (9.2.53), it results also 
for the amplitude a variation of the form 

/2
0e ta a ��� , (9.2.54) 

which characterizes a damped motion. Hence, the equation of motion of the electron 
quasi-elastically linked in the atom should be of a corresponding form. 

If F  is the force which arises under the influence of the atomic radiation, acting 
upon the oscillator itself and damping its motion, then we are led to the equation of 
motion 2mx m x F�� ��� ; multiplying by x� , we obtain d /dE t Fx� �  

� �2 3 2
02 /3e c x� � ��  (where we considered the non-averaged power), with 

� �2 2 2 /2E mv m x�� � . Taking into account (9.2.52) and observing that 
2 d( )/dx xx t��� ��� xx� ���� , we may write 

2 2
0 0

03 3
2 2
3 3

Te e
Fx xx xx

c c
� �� ���� ��� ; 

 

assuming that the period T  is sufficiently small, the second term may be neglected 
with respect to the first one and we can take 

2
0
3

2
3
e

F x
c

� ��� . (9.2.55) 

We obtain thus the equation of motion of the electron quasi-elastically linked to the 
atom in the form 

2
02
3

2
0

3
e

mx m x x
c

�� � ��� ��� . (9.2.56) 

Introducing the radiation constant 

2 2
0

3
2
3
e
mc
�� � , (9.2.53') 

the equation (9.2.56) becomes 

2 4
0x x x� �

� �
� � ���� �� . (9.2.56') 

Choosing a solution of the form ( ) tx t e�� , we find the condition 
3 2 2 4 0�� � � �� � � . Let us introduce the function 3 2 2 4( )� � �� � � �� � � ; we 

notice that ( )� �� � �� , 4(0)� �� � , ( )� � � � . As well, d /d� � 23���  
22� �� , 2 2 2d /d 6 2� � �� �� � . We obtain the graphic representation in Fig.9.17. 
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We have thus only one real root of the form 2 /� � �� , (0, )� �� , because 

� �2 4/� � � �� � , � � � �2 2 2 2/ 2� � � � � � �� � � ; the other two roots are 

/2 i� �� 2  (the sum of the roots is 2 /� � ). Hence, the general integral of the 
equation (9.2.56') is of the form (we use the other two Viète’s relations between the 
roots and the coefficients) 

Figure 9.17.  Graphic of the function ( )� � . 

/2( ) e ( cos sin ) et tx t A t B t C� �� � ��� � � ,   (0, )� �� , 
22

2 2 2
2

3
4 41 /

� ��� � �
� �� �

� � � �
�

,   
2�� �
�

� � � . 
(9.2.57) 

The phenomenon corresponds to damped oscillations, so that one can take 0C � . 

2.3.2 Bohr’s atom. Ritz’s law 

The classical model of the atom gives some useful information with a sufficient good 
approximation for some physical phenomena, but it is invalidated by other physical 
phenomena, e.g. the spectral emissions (in the form of lines spectra). In 1913, Niels 
Bohr, starting from Rutherford’s conception, which considers a model similar to that of 
the solar system, develops a new model of the atom. Assuming the existence of a 
central nucleus, formed by positive charges, and of electrons with negative charges, 
attracted correspondingly to Coulomb’s law (1.1.84''), one obtains a mechanical system 
in motion after Kepler’s laws. As a consequence of the lose of energy, on a way 
analogous to that presented in the previous subsection, we are led to the motion of the 
axis of the elliptic trajectory, hence to the possibility of falling of the electron towards 
the nucleus (the so-called atomic catastrophe). To avoid such a phenomenon in the 
mathematical model, N. Bohr completed it with following principles: i) The electrons 
describe elliptic trajectories around the nucleus, after Kepler’s laws, without lose of 
energy by radiation; from the set of all possible trajectories, these ones are stationary, 
characterized by quantic conditions. ii) In conformity to the quantification conditions, 
the integral of the generalized momentum corresponding to each generalized co-
ordinate (to each degree of freedom) along the complete trajectory must be an  
integer multiple of Planck’s universal constant 276.626196 10  erg sh �� � �  for the 
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stationarity trajectories. iii) The emission of radiations takes place only if the electron 
“jumps” from a stationary trajectory on another stationary trajectory, due to an external 
excitation. 

In case of a single electron which moves around a nucleus, Bohr’s model 
corresponds to the atom of hydrogen. We consider thus the motion of a particle of mass 
m , which has a negative electric charge and moves around a positive centre of 
attraction being acted upon by a Coulombian force which derives from the potential 

/k r , 0k � . In our case, 2 2
0 0/k e e �� � � , where 191.6021917 10  Ce �� �  (in 

coulombs) is the electric charge in the SI-system; the coefficient �  in (1.1.84'') is, in 
this case, equal to unity. 

Taking into account (9.2.6) and (9.2.12'), we may write the equation of the elliptic 
trajectory in the form 

� �21
1 cos
a e

r
e �
�

�
�

 (9.2.58) 

1� � �� �  being the real anomaly. Because the kinetic energy is given by 

� �2 2 2 /2T m r r �� � �� , we define the generalized momenta corresponding to polar co-
ordinates by 

r
Tp mr
r

(
� �

(
�

�
,   2 2T
p mr mr mC� � �

�
(

� � � �
(

� �
� , (9.2.59) 

where C  is the constant of areas. The stationarity trajectories are thus specified by the 
quantification conditions 

drp r n h���� ,   
2

0
dp nh

�
� � �� ,   ,n n � � � , (9.2.59') 

where h  is Planck’s constant; the integrals are calculated along the complete trajectory 
(for the first integral, r  varies from minr  to maxr  and again to minr ). Observing that 

� �
2 2 2

22 2
2

d sin
d d 1 d

d (1 cos )
r emr r m ma e

e
�� � � �

� �
� �� � �	 

� � �

� ��  

2 2 2 2
2

2 2
sin sind d

(1 cos ) (1 cos )
e emr mC
e e

� �� � �
� �

� �
� �

� , 

 

we may write 
222 22

20 00

sin sin cos d
d d

1 cos 1 cos(1 cos )
rp r mCe mCe

e ee

�� �� � � ��
� ��

� �
� � �	 
� �� � �

� � ��  

2

2

20

0

tan1 2 21 d arctan 2
1 cos 11

1

mCmC mC
e ee

e

�

�
�

� �
�

� �� � � �	 
� �� � �
�

�  
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2

12 1
1

mC n h
e

� � � �� � �	 

� ��

; 
 

as well 

 

2 2

0 0
d d 2p mC mC nh

� �
� � � �� � �� � .  

Finally, we get 

mC n� 	 ,   
2

2
21

( )
n

e
n n

� �
��

,   ,n n � � � , (9.2.60) 

where 

341.0545919 10  J s
2
h
�

�� � � �	  (9.2.61) 

is the rationalized Planck’s constant (in the SI-system, in joule-seconds). The first 
relation (9.2.60) determines the magnitude of the ellipse, because (see the relations 
(9.2.7) and (9.2.12') too) 

� � � � � �
2 22 2 2 2

2 2 2 2 2 2 2
0 0 0 0

( )
1 / 1 1

n nC mC na
e e m e e e me me

��
� � � �

� � �
		 , (9.2.62) 

while the second relation (9.2.60) specifies its form. 
Taking into account (9.2.58) and (9.2.59), the kinetic energy is given by 

� �
22 2

2 2 2 2
2 2

1 1 d 1
2 2 d2

r
pm mC rT r r p

m rr r
��

�
$ %� � � �� � � � � �	 
	 
 * +� �� � & '

��  

� �

2 2

22 2

1
cos

21

mC e
e

a e
��� �� �	 


� ��
, 

 

while the potential energy reads 

� �
2 2
0 0

2 (1 cos )
1

e e
V e

r a e
�� � � � �

�
; 

 

the mechanical energy results in the form 

� � � � � �
2 2 2

2 2
0 02 2 2 2

1 1 cos
21 1 1 1
mC e e mC

E T V e e
aa e e a e a e

� $ %�� �� � � � � �* +	 
� � � �� � & '
, 

 

so that, taking into account (9.2.62), we get 
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2 4
0 0

2
1

2 2 ( )
e me

E
a n n

� � � �
��	

. (9.2.63) 

From this basic formula in the theory of lines spectra, we see that on a stationary 
trajectory with the quantic numbers n  and n �  the mechanical energy is constant. 

Considering two stationary trajectories of indices 1 and 2, the principle iii) shows 
that the emitted energy has a frequency given by 2 1h E E� � �  (if 

2 2 1 1n n n n� �� � � , then 2 1E E� ); we obtain Ritz’s law 

2 2
1 1 2 2

1 1
( ) ( )

R
n n n n

� $ %
� � �* +� �� �& '

, (9.2.64) 

where 

4
0
34

me
R

�
�

	
 (9.2.64') 

is Rydberg’s constant. 
We notice that the quantic numbers appear only in the combination n n �� , so that 

we may consider that we have only one quantic number, called principal quantic 
number (as only one degree of freedom would be quantified). The relation (9.2.64) 
emphasizes the lines spectrum of the hydrogen, with the various series obtained on an 
experimental way (Balmer, Fowler etc.). 
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Chapter 10 

OTHER CONSIDERATIONS ON PARTICLE 
DYNAMICS 

To complete the study of a mechanical system, which can be modelled by only one 
particle, we present some problems with a special character; we consider thus the 
motion with discontinuity, the motion of the particle with respect to a non-inertial frame 
of reference, as well as the motion of the particle of variable mass. 

1. Motion with discontinuity 
In the mathematical modelling of the motion of a particle we assumed, in general, 

that the vector r  has derivatives of the first and the second order (its components are 
functions of class 2C ); as well, we assumed that the force ( , ; )t� �F F r r  is continuous 
with respect to the position vector, the velocity and the time. In this case, we have seen 
that the equations of the problems that are put may be integrated with certain boundary 
conditions and in certain conditions of existence and uniqueness. 

But, in case of many mechanical phenomena, the conditions of continuity mentioned 
above are not fulfilled; such phenomena cannot be easily integrated in the classical 
schemata based on usual functions. There appears thus the necessity to extend 
Newtonian mechanics and to complete its mathematical model with the aid of the 
methods of the theory of distributions. We establish thus the general equation of motion 
with discontinuity of a particle, stating then the general theorems corresponding to this 
motion. 

1.1 Particle dynamics 
After some general considerations concerning the trajectory, the velocity, the 

acceleration and the force, we establish, in what follows, the fundamental equation of 
motion for a free particle, as well as for a particle subjected to constraints. A special 
attention is paid for the motion of the heavy particle in vacuum. 

1.1.1 General considerations 
One of the mechanical phenomena which needs the introduction of methods of the 

theory of distributions is (as it was seen in Chap. 5, Subsec. 1.2.6) that in which the 
position vector is a continuous function, while the velocity and the acceleration have 
discontinuities of the first species at 0t t� , i.e. 0 0( 0) ( 0)t t� � �v v  and 

0 0( 0) ( 0)t t� � �� �v v . 

595  
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A simple example of such a mechanical phenomenon is the motion of a heavy 
particle P  on a trajectory ABC  (a broken line, Fig.10.1,a), assuming, for the sake of 
simplicity, that it is frictionless; in fact, the character of the mechanical phenomenon 
does not change if the friction is taken into consideration. As it is easy to see, the 
trajectory of the particle P  is represented by a continuous function, formed by two 
segments of a line AB  and BC ; we notice that the function which represents the 
trajectory has not derivatives of first and second order at B , so that we cannot 
determine the velocity, the acceleration and the constraint force at this point. We 
assume that at the moment 0t �  the particle is at A  and that at the moment 0t t�  it 
reaches B ; in this case, the acceleration modulus may be written in the form 

 
Figure 10.1.  Particle in motion on a broken line. Trajectory (a);  

the acceleration modulus vs time (b). 

" #
 0

0
0

sin  for  0 ,
sin 1 ( )

  0      for  ,

g t t
g t t

t t

�
� �

� ���� � � �  ��!
�v                (10.1.1) 

where g  is the gravity acceleration (Fig.10.1,b), while �  is Heaviside’s function. A 
discontinuity of the first species is thus put into evidence, because, at the moment 

0t t� , we may write 

0 0
lim sin
t t

g �
� �

��v ,   
0 0

lim 0
t t� �

��v . 

We notice also that, besides the discontinuity of the modulus, the acceleration has also a 
discontinuity in direction; thus, the acceleration vector has a discontinuity of the first 
species at the moment 0t t� , given by 

 

0
1 10

lim ( ) sin
t t

t g �
� �

� ��v a u ,   
0 0

lim ( )
t t

t
� �

��v 0 ,                  (10.1.1') 

where the unit vector 1u  specifies the line AB  and is directed corresponding to the 
motion of the particle. The modulus of the velocity reads, in this case, 

" #
 0

0 0
0 0

 sin   for  0 ,
sin ( ) ( )

sin   for  ,

gt t t
g t t kt t t

kgt t t

�
� �

�

� ���� � � � �  ��!
v         (10.1.2) 
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where k , 0 1k� � , is a coefficient of restitution. Corresponding to the principle of 
inertia, the velocity of the particle on BC  must be equal to the velocity at the right of 
B , hence equal to 0( 0)t �v . But this velocity is not known, so that it remains non-
determinate on BC . To solve the problem, we assume that at the point of discontinuity 
takes place a phenomenon of collision; hence, we assume that the magnitude of the 
velocity at the right is proportional to its magnitude at the left, that is 

0 0( 0) ( 0)t k t� � �v v .                                      (10.1.3) 

If the coefficient of restitution is equal to unity ( 1k � ), then the collision at B  is 
perfect elastic and the magnitude of the velocity is a continuous function. Usually, this 
is the hypothesis that is assumed, although it is not the only possibility. Indeed, 
independent of the modulus of the velocity on the segment of a line BC , specified by 
the unit vector 2u , directed corresponding to the motion, the velocity vector has a 
discontinuity of the first species at B , because 

 
0

0 0 1 10
lim ( ) ( 0) ( 0)
t t

t t v t
� �

� � � � �v v u v , 

0
0 0 2 20

lim ( ) ( 0) ( 0)
t t

t t v t
� �

� � � � �v v u v ;    

 
(10.1.4) 

 
Figure 10.2.  The collision model for a particle in motion on a broken line.  

The velocity modulus vs time. 

1v  is the velocity of the particle P  at B  on AB , while 2v  is the velocity of the same 
particle at B  on BC . In Fig.10.2 is drawn the diagram of the modulus of the velocity 
as a function of time (the line segments ON  and NQ  for 1k � , the line segments 
ON  and N Q� �  for 0 1k� �  and the segments ON  and N Q�� ��  for 0k � , the case 
of a plastic collision). 

The study of problems of the kind considered above needs the introduction of 
various mechanical quantities in the frame of the theory of distributions. 

1.1.2 Trajectory. Velocity. Acceleration. Force. Principles of mechanics 

Starting from the equation ( )t�r r  of the trajectory, we introduce the velocity 
( ) ( )t t� �v r  and the acceleration ( ) ( ) ( )t t t� � ���a v r  as continuous functions of t  in 

the interval " #,t t� �� , excepting a finite number of discontinuities of the first species at 
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the moments it t� , it t t� ��� � , 1,2,...,i n� . In these conditions, the jump iV  of 
the velocity, given by (5.1.34'), allows to introduce the complementary acceleration 

( )c ta  in the form (5.1.34''); adding the acceleration in the usual sense ( )t�a  to this 
acceleration, we obtain the acceleration in the sense of the theory of distributions ( )ta  
(the formula (5.1.34''')), corresponding to the Theorem 5.1.2 of the generalized 
acceleration. 

Taking into account Newton’s law (1.1.89), we introduce the notations 

( ) ( )t m t�F a ,   �( ) ( )t m t� �F a ,   ( ) ( )c ct m t�F a ,                      (10.1.5) 

where ( )tF  is the generalized force (in the sense of the theory of distributions), �( )tF  
is the force in the usual sense, while ( )c tF  is the complementary force due to the 
discontinuities; the relation (5.1.34''') becomes 

�( ) ( ) ( )ct t t� �F F F .                                          (10.1.5') 

We thus state 
Theorem 10.1.1 (theorem of the generalized force). The generalized force (in the sense 
of the theory of distributions), which acts upon a particle, is equal to the sum of the 
force in the usual sense and the complementary force (due to discontinuities), which act 
upon the same particle. 

In this case, one can affirm that by introducing the generalized accelerations and 
forces, as well as by using the derivatives in the sense of the theory of distributions, the 
second principle of mechanics, given by the formula (1.1.89), may be used in the frame 
of this theory too. 

In what concerns the principle of inertia, we assume that for the generalized force 
�F 0  we have �a 0 , that is 

1
( ) ( )

n

i i
i

t t t
�

� � ��a V 0 .                                         (10.1.6) 

Considering the arbitrary fundamental function ( )t� , the support of which does not 
contain the moments it , 1,2,...,i n� , the relation (10.1.6) leads to � �( ), ( )t t� ��a 0 , 
wherefrom we deduce that the function ( )t�a  vanishes everywhere, excepting 
eventually at the moments it . Let be now a fundamental function ( )t� , the support of 
which contains only the moment it ; we obtain ( )i it� �V 0 , so that i �V 0 . 
Proceeding in the same manner for 1,2,...,i n� , we may write i �V 0 , 

1,2,...,i n� , ; replacing in (10.1.6), it results ( )t ��a 0 , hence the particle has a 
rectilinear and uniform motion. In conclusion, the principle of inertia (which represents 
a criterion by which we may know if upon a particle is acting a force) can be enounced 
in the classical form. 

The other three principles of mechanics may be applied as in the case of the classical 
model. 
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1.1.3 Basic equation of motion 
The motion of a particle is modelled by the second principle of Newton. We consider 

thus the equation of motion (6.1.22), where ( )tF  is the generalized force (10.1.5') and 
the differentiation takes place in the sense of the theory of distributions; we assume that 
( )tr  is defined for t � 
 . This represents one of the methods to express the equation 

of motion in distributions; the boundary conditions must be separately specified. 
If we wish to include the boundary conditions in the equation of motion, then we use 

another procedure. We start from the same equation of motion (6.1.22), but the force is 
that in the usual sense �F ; differentiating in the usual sense too, we write 

�
2

2
d

( ) ( )
d

m t t
t

�
�

r F ,   0t t� .                                      (10.1.7) 

We assume that, at the initial moment 0t t� , the position vector and the velocity are 
given by 0r  and 0v , respectively (initial conditions of Cauchy type). We introduce a 
new function ( )r t , defined for t � 
  by the relation 

 0

 0 0 0

 0

 

    for   ,

( ) ( ) ( )    for   ,

( )  for ; 

t t

t t t t t t

t t t

�

� �
��� � � � 
�

��!

0

r r r

r

                           (10.1.8) 

the velocity reads 

 

 0

 0 0 0

 0

 

   for   ,

( ) ( ) ( )   for   ,

( )  for . 

t t

t t t t t t

t t t

�

� �
��� � � � 
�

��!

0

v v v

v

                          (10.1.8') 

We notice thus that 0r  and 0v  are the jumps of the position vector and of the velocity, 
respectively, at the initial moment 0t t� . Differentiating successively the distribution 
corresponding to the function (10.1.8), we get the velocity and the acceleration of the 
particle in the form 

0 0
d d( ) ( ) ( ) ( )
d d

t t t t t
t t


� � � �
�

v r r r , 
22

0 0 0 02 2
d d( ) ( ) ( ) ( ) ( )
d d

t t t t t t t
t t


 
� � � � � �
�

�a r r v r . 

The first of these relations corresponds to the distribution defined by (10.1.8'); as well, 
the velocity and the acceleration in the usual sense have been put into evidence. 
Replacing in the equation (10.1.7) and assuming that, besides the moment of 
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discontinuity 0t t� , may appear also other moments of discontinuity, which introduce 
the complementary force ( )c tF , we can write the basic equation of mechanics in the 
form 

2

0 0 0 02
d ( ) ( ) ( ) ( )
d

m t t m t t m t t
t


 
� � � � ��r F v r ,                    (10.1.9) 

where the generalized force ( )tF  is given by (10.1.5), (10.1.5'). 
By means of the formula (A.3.33'), we may write a fundamental particular solution 

of the operator 2 2d /dt  in the form 

( ) ( )E t t t t� �� � ;                                            (10.1.10) 

in this case, the solution of the equation (10.1.9) is given by 

0 0 0 0
1

( ) ( ) ( ) ( ) ( )t t t t t t t t
m

� 
 
$ %� D � � � �* +& '
�r F v r , 

wherefrom it results 

0 0 0 0
1( ) ( ) ( ) ( )t t t t t t t
m

�� �� D � � � �r F v r .                     (10.1.11) 

If ( )tF  is a locally integrable function, then we may write 

0 0 00

1( ) ( ) ( )d ( )
t

t t t t
m

� � �� � � � ��r F v r ,   0t t� .                 (10.1.11') 

In particular, if � 0( ) constt � �
������

F F , c �F 0 , then we get 

2
0 0 0 0 0 0

1( ) ( ) ( ) ( )
2

t t t t t t t
m

�� �� � � � � �r F v r ;                     (10.1.12) 

this relation may be expressed also in the form 

2
0 0 0 0 0

1( ) ( ) ( )
2

t t t t t
m

� � � � �r F v r ,   0t t� .                      (10.1.12') 

In the case in which ( , ; )t� �F F r r , the basic equation remains, further, of the form 
(10.1.9), the force in the sense of the theory of distributions having, obviously, this 
general character. To solve this equation one can no more use the method given above, 
because one must take into account the new form of the differential equation of motion. 
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1.1.4 Case of a particle subjected to constraints 

In case of a particle subjected to constraints, these ones must be eliminated by 
introducing constraint forces. Let us thus consider the case of a particle subjected to a 
single holonomic and rheonomic bilateral constraint (the case of two constraints may be 
studied analogously), expressed in the form 1 2 3( , , ; ) 0f x x x t � , where the function f  
is piecewise defined in the form 

1 2 3 1 2 3
1

( , , ; ) ( , , ; )
n

i
i

f x x x t f x x x t
�

�  ;                               (10.1.13) 

we denoted 

 

1 2 3 1
1 2 3

1

( , , ; )  for  ( , ),
( , , ; )

       0          for  ( , ),
i ii

i
ii

f x x x t t t t
f x x x t

t t t
�

�

����  >�!
               (10.1.13') 

assuming that 0 1 2 1... nnt t t t t�� � � � �  for the moments of discontinuity. 
Eliminating the constraint and introducing the generalized constraint force ( )tR , 

the equation of motion of the particle, considered now as a free one, reads 

2

2
d ( )

( ) ( )
d
t

m t t
t

� �
r

F R ,                                 (10.1.14) 

where, for the sake of simplicity, in the generalized force ( )tF  we have introduced also 
the sum 0 0 0 0( ) ( )m t t m t t
 
� � ��v r , which is of the nature of a complementary 
force. 

The generalized constraint force ( )tR  may be expressed by the relation 

1
( ) ( )

n

i
i

t t
�

� R R ,                                       (10.1.15) 

where ( )i tR  are the generalized constraint forces given by 

�( ) ( ) ( )ii ict t t� �R R R .                                 (10.1.15') 

We denoted by � ( )i tR  the constraint forces in the usual sense, which correspond to the 
moments 1( , )iit t t�� , 1,2,...,i n� , and are expressed in the form 

� ( ) ( ) ( )gradi i ii it t f t f� �� �R / ,                              (10.1.15'') 

where ( )i t�  is a scalar, /  is Hamilton’s operator and 1
if C� ; as well, ( )ic tR  are 

complementary constraint forces, corresponding to the moments of discontinuity it , 
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0,1,2,...,i n� . The constraint forces in the usual sense are directed, in the intervals of 
definition, along the normals to the surfaces 1 2 3( , , ; ) 0if x x x t � , considered as rigid at 
the moment 1( , )iit t t�� . On the intersection lines of these surfaces, that is on the lines 
corresponding to the moments it , these forces cannot be determined by means of the 
expressions (10.1.15''). 

To obtain a unitary expression of the generalized constraint force ( )i tR , we use the 
equation of motion (10.1.14), written in the form 

2

2
d( ) ( ) ( )
d

t t t m
t

� � � �
rF R 0F ;                               (10.1.14') 

this equation may be written everywhere, excepting the points which correspond to the 
moments it . We introduce also the moments of discontinuity if we replace the equation 
(10.1.14') by the equation 

1

1
( ) ( )i

n
m

i
i
t t t�

�
� �R F 0 ,   im � � ,                         (10.1.14'') 

which, obviously, may be written for t � 
 . In the frame of the usual functions, the 
solution of the equation (10.1.14'') is (10.1.14'); to obtain a generalized solution, we 
assume that ( )tF  can be a distribution and we consider the equation (10.1.14'') in the 
sense of the theory of distributions. Thus, the solution in distributions of the equation 
(10.1.14'') includes, as a particular case, the solution (10.1.14') too. 

To can make a study of the equation (10.1.14''), there are necessary some results 
concerning the structure of the distributions with punctual support. In this order of 
ideas, we state 
Theorem 10.1.2. A distribution ( )f x  of a single variable satisfies the equation 

( ) ( ) 0P x f x � ,                                                (10.1.16) 

where ( )P x  is a polynomial, if and only if that one is expressed in the form 

1
( )

1 1 0
( ) ( ) ( )

kms r
k j

i i j k
i k j

f x c x x c x x
 

�

� � �
�� � � �   .                    (10.1.16') 

Here, ix , 1,2,...,i s� , are the simple roots of the polynomial ( )P x , while kx � , 
1,2,...,k r� , represent the multiple roots, the multiplicity order of which is km ; the 

quantities ic  and kjc  are constants, while 
  is Dirac’s distribution. 
As well, we can state 

Theorem 10.1.3. If the support of the distribution ( )f x  is formed by the points ix , 
1,2,...,i n� , then ( )f x  is of the form 
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( )

1 0
( ) ( )

imn
i j
j i

i j
f x c x x


� �
� � ,                                 (10.1.16'') 

where ijc  and im  are constants, while 
  is Dirac’s distribution. 
Taking into account the Theorem 10.1.2, we obtain the complementary constraint 

force in the form 

( )

1 1 0
( )

imn n
j

c ic ij i
i i j

t t

� � �

� � � R R 5 ;                            (10.1.17) 

adding the solution corresponding to usual functions, it results the generalized 
constraint force 

( )

1 1 0
( ) ( ) ( )

imn n
j

i ij ii
i i j

t t f t t� 

� � �

� � � R / 5 .                      (10.1.17') 

We may thus state (the result remains valid also in the case of two constraints) 
Theorem 10.1.4 (theorem of the generalized constraint force). The generalized 
constraint force which acts upon a particle subjected to holonomic and rheonomic 
bilateral constraints is equal to the sum of the constraint force in the usual sense at the 
moments in which that one is defined and the complementary constraint force due to the 
moments of discontinuity and expressed by means of Dirac’s distribution and of its 
derivatives. 

This result shows that the operator / , applied in the sense of the theory of 
distributions, leads to a formula of the form 

� ( )

1 0
( )

imn
j

ij i
i j

f f t t

� �

� � �/ / 5 ,                              (10.1.18) 

where 1 2 3( , , ; )f x x x t  is a function of class 1C , excepting the points of discontinuity of 

the first species it t� , 1,2,...,i n� , and the symbol �/  represents the operator /  in 
the usual sense. 

We notice that the number im  is indeterminate in the formulae (10.1.17), (10.1.17'); 
we make the same remark concerning the vectors ij5 . The significance of those 
quantities is clear if we take into consideration the motion of the particle. Thus, 
comparing the equation (10.1.14), (10.1.17') with the equation (10.1.9), we see that 

1 1m � , while 010 m� v5 , 011 m� r5 ; there are not other moments of discontinuity 
unlike the initial moment. 

We must also notice that, in order to ensure the existence and the uniqueness of the 
solution, it is necessary to put supplementary conditions at the points of discontinuity. 
Thus, returning to the example in Subsec. 1.1.1, (Fig.10.1), it is necessary to give, 
besides the initial conditions at the point A  (at the moment 0t � ), the velocity to the 
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right of the point B ; otherwise, the motion on the line segment BC  remains 
indeterminate. In conformity with the Cauchy-Lipschitz theorem, the force which acts 
upon the particle must be of class 0C ; just this condition is not satisfied at the point B . 
To determine the motion on BC , the initial conditions at B  must be given (at the 
moment 0t t� ); hence, one has to specify 0( 0)v t �  (the direction of the velocity is 
known). As we have seen, a relation of experimental nature between 0( 0)t �v  and 

0( 0)t �v  is usually given. 

1.1.5 Motion of a heavy particle in vacuum. Bilocal problems 

Let us consider the motion of a heavy particle in vacuum, acted upon by the force 
m�F g , where g  is the gravity acceleration. The corresponding Cauchy problem 

consists in the determination of the position vector ( )t�r r  if the position vector 0r  
and the velocity 0v  at the initial moment 0t  are given (see Chap. 7, Subsec. 1.2.1 too) 

(Fig.10.3,a). We are in the case const�
������

F , so that the formula (10.1.12) allows to 
write 

Figure 10.3.  Motion of a heavy particle in vacuum. Cauchy’s problem (a);  
bilocal problem (b). 

2
0 0 0 0 0

1( ) ( ) ( ) ( )
2

t t t t t t t�� �� � � � � �r g v r , 
 0 0 0 0 0( ) ( ) ( ) ( )t t t t t t t� 
� � � � � �+v g v r     

 
 

(10.1.19) 

or 

2
0 0 0 0

1( ) ( ) ( )
2

t t t t t� � � � �r g v r ,   0t � .                      (10.1.19') 

This result can be used to solve bilocal problems too; thus, if we have to determine 
the motion of a heavy particle in vacuum, for which the conditions (Fig.10.3,b) 

1 1( )t �r r ,   2 2( )t �r r                                    (10.1.20) 

are fulfilled, then we may use as well a formula of the form (10.1.19), assuming that the 
velocity at the initial moment 1t t�  is known. It results 
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2
1 1 1 1 1

1( ) ( ) ( ) ( )
2

t t t t t t t��� � � � � �+r g v r . 

If we put also the second condition (10.1.20), then we can write 

2
2 2 1 2 1 1 2 1 1

1 ( ) ( ) ( )
2
t t t t t t��� � � � � �+r g v r 2

2 1 2 1 1 1
1 ( ) ( )
2
t t t t� � � � �g v r , 

wherefrom 

1 2 1 2 1
2 1

1 1( ) ( )
2
t t

t t
� � � �

�
v r r g ; 

we get thus the solution of the bilocal problem in the form 

    

" #1 1 2 1 1 2 1 1 1
2 1

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2

t t t t t t t t t t t
t t

��� � � � � � � � � �
�+ +r g r r r  

 (10.1.21) 
or 

" #1 2 1 2 2 1
2 1

1 1( ) ( )( ) ( ) ( )
2

t t t t t t t t t
t t

� � � � � � � �
�

r g r r ,   " #1 2,t t t� . 

    (10.1.21') 
The velocity is given by 

1 2 2 1
2 1

1 1( ) ( ) ( )
2

t t t t
t t

$ %� � � � �* + �& '
v g r r ,   " #1 2,t t t� .            (10.1.21'') 

Let us consider also the case of the mixed bilocal problem for which the boundary 
conditions 

1 1( )t �r r ,   2 2( )t �v v                                          (10.1.22) 

are put. If the velocity at the initial moment 1t t�  would be known too, then we could 
write 

1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t� 
� � � � � �+v g v r ; 

if we put now the second bilocal condition (10.1.22), then it results 
2 2 1 1( )t t� � �v g v , wherefrom 1 2 2 1( )t t� � �v v g . The trajectory of the particle 

is thus given by the relation 

1 1 2 1 1 2 1 1
1

( ) ( ) ( ) ( ) ( ) ( )
2

t t t t t t t t t t t�� � �
$ %� � � � � � � � �* +& '

r g v r      (10.1.23) 
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or by the relation 

1 2 1 1 2 1
1( ) ( )(2 ) ( )
2

t t t t t t t t� � � � � � � �r g v r ,   " #1 2,t t t� .        (10.1.23') 

The velocity reads 

2 2( ) ( )t t t� � �v g v ,   " #1 2,t t t� .                              (10.1.23'') 

1.2 General theorems 

In the following, we introduce some mechanical quantities (moment, moment of 
momentum, work, kinetic energy, impulse of the force, impulse of the moment of the 
force) in the frame of the theory of distributions. This allows the statement of the 
general theorems corresponding to motions with discontinuous characteristics or to the 
case of elastic collisions. 

1.2.1 Momentum. Moment of momentum. Work. Kinetic energy 

The momentum 

( ) ( )t m t�H v                                                 (10.1.24) 

of a particle is a continuous function in the considered interval of time " #,t t� �� , 
excepting the moments it , 1,2,...,i n� , where appear discontinuities of the first 
species. The jump of the momentum at the moment of discontinuity it  is given by 

" #( ) ( 0) ( 0)i i i im m t t) � � � � �H V v v ,                          (10.1.24') 

being expressed by means of the velocity at the same moment. 
We introduce also the quantities 

( )d
t

t
t t

��

�� F ,   �( )d
t

t
t t

��

�� F ,   ( )d
t
c

t
t t

��

�� F ,                               (10.1.25) 

which represent the impulse of the generalized force, of the force in the usual sense and 
of the complementary force, respectively, in the time interval " #,t t� �� ; we have adopted 
classical notations for the first and the third of these quantities, to have a uniform 
symbolism, although the respective integrals have not sense, in general, from the point 
of view of the theory of distributions. Observing that 

1 1
d ( )d

n nt t
c i i it ti i
t m t t t m


�� ��

� �
� �

� � � � �F V V ,   t t t� ��� � ,   

and taking into account (10.1.5'), we may write 

�
1

( )d ( )d ( )
nt t

it t i
t t t t

�� ��

� �
�

� � )� �F F H ,                             (10.1.26) 
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wherefrom we state 
Theorem 10.1.5 (theorem of impulse of the generalized force). The impulse of the 
generalized force which acts upon a particle, in a certain time interval, is equal to the 
sum of the impulse of the force in the usual sense, which acts upon that particle, in the 
same time interval, and the sum of the jumps of the momentum of the particle, 
corresponding to the moments of discontinuity. 

In case of the problem considered in Subsec. 1.1.1 we may write ( 0t � � , 0t t�� � ) 

0
0 1 2 10

( )d sin ( )
t
t t mgt m�� � �� F u v v . 

The moment of momentum of a particle is introduced by means of the relation 

" #( ) ( ) ( ) ( ) ( )O t t t t m t� 3 � 3K r H r v ;                        (10.1.27) 

its jump at the moment of discontinuity it  is given by 

( ) ( ) ( 0) ( ) ( 0) ( ) ( ) ( )i i i i i i i i iO m t t m t t m t t) � 3 � � 3 � � 3 � 3 )K r v r v r V r H  
(10.1.27') 

and is expressed with the aid of the jump of the momentum (or of the jump of the 
velocity) at the same moment. 

We introduce also the quantities 

( ( ))d
t

Ot
t t

��

�� M F ,   �( ( ))d
t

Ot
t t

��

�� M F ,   ( ( ))d
t

cOt
t t

��

�� M F ,               (10.1.28) 

which represent the impulse of the moment of the generalized force, of the moment of 
the force in the usual sense and of the moment of the complementary force, respectively, 
in the time interval " #,t t� �� . In general, the first and the third of these integrals have no 
sense from the point of view of the theory of distributions; but we adopted classical 
notations, so as to have a uniform symbolism. Starting from the relation (10.1.5'), we 
can write 

�( ( ))d ( ( ))d ( ( ))d
t t t

cO O Ot t t
t t t t t t

�� �� ��

� � �
� �� � �M F M F M F  

and are led to 

�
1

( ( ))d ( ( ))d ( )
nt t

iO O Ot t i
t t t t

�� ��

� �
�

� � )� �M F M F K ;                 (10.1.29) 

thus, we may state 
Theorem 10.1.6 (theorem of impulse of the moment of the generalized force). The 
impulse of the moment with respect to a given pole of the generalized force, which acts 
upon a particle, in a certain time interval, is equal to the sum of the impulse of the 
moment with respect to the same pole of the force in the usual sense, which acts upon 
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that particle, in the same time interval, and the sum of the jumps of the moment of 
momentum of the particle, corresponding to the moments of discontinuity. 

In case of the problem in Subsec. 1.1.1, we can write 

� " #0 0
0 2 10 0

( ) ( )d ( ) ( )d ( ) ( )
t t
t t t t t t t m3 � 3 � 3 �� �r F r F r v v  

�0
20

( ) ( )d ( )
t
t t t AB m� 3 � 3�

����
r F v , 

assuming that the point A  is chosen as pole of the position vectors. 
The work effected by the force ( )tF  in the interval of time " #,t t� ��  is given by 

( ) d ( )
t

t
W t t

��

�
� �� F r ;                                          (10.1.30) 

we introduce the notations 

( ) d ( )
t

F t
W t t

��

�
� �� F r ,   �

�( ) d ( )
t

F t
W t t

��

�
� �� F r ,  ( ) d ( )c

t
cF t

W t t
��

�
� �� F r ,   (10.1.31) 

where FW  is the work of the generalized force ( )tF , �FW  is the work of the force in 

the usual sense  �( )tF  and cFW  is the work of the complementary force ( )c tF , in the 
time interval " #,t t� �� . The first and the third of these integrals have no sense from the 
point of view of the theory of distributions; but for the uniformity of the symbolism we 
adopt these classical notations. Taking into account (10.1.5'), we may write 

� cF FFW W W� � ,                                             (10.1.31') 

obtaining thus 
Theorem 10.1.7 (theorem of work). The work of the generalized force which acts upon 
a particle in a certain time interval is the sum of the work of the force in the usual 
sense, which acts upon that particle, in the same time interval, and the work of the 
complementary force, which acts upon the same particle in the considered time 
interval. 

The kinetic energy of the particle is given by the relation 

21 ( )
2

T mv t� .                                               (10.1.32) 

If it  is a moment of discontinuity, then we may write the relations 

2
2

0 0

1 1lim ( ) lim ( ) ( 0)
2 2i i

it t t t
T t m v t mv t

� 2 � 2
$ %� � 2* +& '

                    (10.1.32') 

hence, there results that the moments of discontinuity of the velocity are the moments of 
discontinuity of the kinetic energy too. We obtain, as well, 
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2 21( ) ( 0) ( 0)
2i i iT m v t v t) � � � �$ %& '.                           (10.1.32'') 

1.2.2 General theorems in case of motions with discontinuous characteristics 

The second principle of mechanics takes the form 

" #d d( ) ( ) ( )
d d

t m t t
t t

� �F v H                                   (10.1.33) 

in the frame of the theory of distributions; if discontinuities (in the usual sense) do not 
appear, then it becomes 

� " #d d( ) ( ) ( )
d d

t m t t
t t

� �
� �

F v H .                                (10.1.33') 

We notice that 

1

d d( ) ( ) ( ) ( )
d d

n

i i
i

t t t t
t t



�

� � ) �
�

H H H , 

where the jump of the momentum is given by (10.1.24'); taking into account also the 
relation 

1
( ) ( )

n
c i i

i
t t


�
� ) �F H ,                                         (10.1.34) 

which gives the complementary force, we find the relation 

�d ( ) ( ) ( ) ( )
d ct t t t
t

� � �H F F F ,                                (10.1.35) 

being thus led to 
Theorem 10.1.8 (theorem of momentum). The derivative with respect to time, in the 
sense of the theory of distributions, of the momentum of a free particle is equal to the 
generalized force which acts upon that particle. 

As we have seen in Subsec. 1.1.4, if the particle is subjected to bilateral constraints, 
then we must introduce the generalized constraint force (in the sense of the theory of 
distributions) ( )tR , given by 

�( ) ( ) ( )ct t t� �R R R ,                                           (10.1.36) 

where �( )tR  is the constraint force in the usual sense, while ( )c tR  is the 
complementary constraint force due to the discontinuities. In this case, the theorem of 
momentum takes the form 
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d ( ) ( ) ( )
d

t t t
t

� �H F R .                                        (10.1.35') 

The complementary constraint force is expressed in the form 

1 1
( ) ( ) ( )

n n
c ic i i

i i
t t m t t


� �
� � � R R V . 

Returning to the problem in Subsec. 1.1.1, we notice that the constraint force at the 
point B  is given by 

0 02 1( ) ( ) ( )m t t m t t
 
� � � � �R V v v . 

If we have 1k �  in the relation (10.1.2) (perfect elastic collision), then it results 
2 1�v v ; the jump of the constraint force will have as direction the internal bisectrix 

of �ABC , while the trajectory will be tangent to the external bisectrix. If 0k �  
(perfect plastic collision), then we have 2 �v 0  (the second limit case). 

If the velocity and the acceleration are continuous functions (in the usual sense), then 
we can write the theorem of moment of momentum in the form 

� �d ( ) ( ) ( ) ( ( ))
d O Ot t t t
t

� 3 �
�

K r F M F . 

But if the velocity and the acceleration have discontinuities of the first species, then we 
notice that the moment of momentum ( )O tK  and its derivative in the sense of the 
theory of distributions have the same moments of discontinuity; we may write 

1

d d( ) ( ) ( ) ( )
d d

n

i iO O O
i

t t t t
t t



�

� � ) �
�

K K K , 

where the jump of the moment of momentum is given by (10.1.27'). In this case, we get 

�d ( ) ( ( )) ( ( )) ( ( ))
d cO O O Ot t t t
t

� � �K M F M F M F ,                 (10.1.37) 

the moment of the complementary force being given by 

1 1
( ( )) ( ) ( ) ( ) ( ) ( )

n n
c i i i i iO O

i i
t t t t t t
 


� �
� 3 ) � � ) � M F r H K .          (10.1.38) 

In this case, we can state 
Theorem 10.1.9 (theorem of moment of momentum). The derivative with respect to 
time, in the sense of the theory of distributions, of the moment of momentum with 
respect to a given pole of a free particle is equal to the moment, with respect to the 
same pole, of the generalized force which acts upon the respective particle. 
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Introducing the generalized force too, in case of a particle subjected to bilateral 
constraints, the theorem of moment of momentum takes the form 

d ( ) ( ( )) ( ( ))
d O O Ot t t
t

� �K M F M R .                             (10.1.37') 

In the classical case (in the usual sense), the theorem of kinetic energy has the finite 
form 

( ) ( )W T t T t�� �� � . 

For the derivative with respect to time of the kinetic energy we may write 

1

d d( ) ( ) ( ) ( )
d d

n

i i
i

T t T t T t t
t t



�

� � ) �
�

, 

where the jump of the kinetic energy, corresponding to the moment of discontinuity it , 
is given by (10.1.32''). Using the relation (10.1.31), we obtain 

1

d ( )d ( ) ( )d
d

nt t
i iF t ti

W T t t T t t t
t



�� ��

� �
�

� � ) �� �
�

, 

wherefrom 

1
( ) ( ) ( )

n

iF
i

W T t T t T
�

�� �� � � ) .                             (10.1.39) 

We notice thus that the complementary work is just the jump of the kinetic energy at the 
respective moment of discontinuity. We may state 
Theorem 10.1.10 (theorem of kinetic energy in finite form). The work of the 
generalized force which acts upon a particle in a certain interval of time is equal to the 
sum of the difference between the kinetic energy at the final moment and the kinetic 
energy at the initial one and the sum of the jumps of the kinetic energy of that particle, 
corresponding to the moments of discontinuity. 

In case of the problem considered in Subsec. 1.1.1, we have 

� �0 2 2
0 2 10

1sin d ( ) sin
2

t
FW mg r T mgAB m v v� �� � ) � � �� ; 

if 1k �  (perfect elastic collision), then the jump of the kinetic energy vanishes.  

1.2.3 General theorems in case of elastic collisions 
Starting from the notion of generalized force and of impulse of the generalized force, 

we introduce the notion of percussion of a particle, by means of the definition formula 
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0 0
lim ( )d

t

tt t
t t

��

��� �� � �
� �P F ,                                     (10.1.40) 

where the limit is considered in the sense of the theory of distributions. Obviously, 
neither in this case the integral written above has not sense from the point of view of the 
theory of distributions; but we use this symbolism, to be closer to the classical one. We 
assume, as well, that the time interval " #,t t� ��  contains only one moment of 
discontinuity 0t  and is thus that t t ��� �� � , 0� �  arbitrary. In this case, we have 
not to do with usual forces, but with generalized ones, more precisely, the distribution 

0( )t t
 �  appears; thus, the phenomenon of collision is no more introduced in 
mechanics as a special phenomenon, but as a usual one, where the principles of 
mechanics are applied in the conditions enounced in Subsec. 1.1.2. 

Using a mean value theorem, we may write 

�
0 0

lim ( )d
t

tt t
t t

��

��� �� � �
�� F 0 ,   �� �

0 0
lim ( ) d

t
Ott t

t t
��

��� �� � �
�� M F 0 . 

Hence, the impulse of the force and the impulse of the moment of the force in the usual 
sense are quantities which can be neglected with respect to the impulse of the 
complementary force and of the moment of the complementary force due to the 
discontinuities, respectively; it results 

00 0
lim ( )d

t

tt t
t t m

��

��� �� � �
�� F v ,   � � 0 00 0

lim ( ) d ( )
t

Ott t
t t m

��

��� �� � �
� 3� M F r v , 

where 0r  is the position vector corresponding to the moment of discontinuity, while 0v  
is the jump of the velocity, corresponding to the same moment. The Theorem 10.1.8 
takes the form 

0( )) �H P ,                                                 (10.1.41) 

so that we may state 
Theorem 10.1.11 (theorem of momentum). The jump of the momentum of a free 
particle at a moment of discontinuity is equal to the percussion which acts upon that 
particle at the same moment. 

Using the Theorem 10.1.9 and the notation (10.1.40), we get 

0 0 0 0( ) ( )O) � 3 ) � 3K r H r P ;                                (10.1.42) 

thus, we state 
Theorem 10.1.12 (theorem of moment of momentum). The jump of the moment of 
momentum with respect to a given pole of a free particle (which is equal to the moment 
with respect to that pole of the jump of the momentum of the particle) at a moment of 
discontinuity is equal to the moment with respect to the same pole of the percussion 
which acts upon that particle at the same moment. 
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Let �v  and ��v  be the velocities of the particle before and after collision, 
respectively; we can write the theorem of momentum (10.1.41) in the form 

0 ( )m m �� �� � �v v v P .                                     (10.1.43) 

A scalar product of this relation by ��v  leads to 2( )m v m�� � �� ��� � � �v v P v  or 

0T T T�� � ��� � � �P v , where ( 0 �� �� �v v v ) 

21 ( )
2

T m v� �� ,   21 ( )
2

T m v�� ��� ,   2 2
0 0

1 1( )
2 2

T m mv�� �� � �v v           (10.1.44) 

are the kinetic energy before and after collision and the kinetic energy of the lost 
velocities, respectively. The variation of the kinetic energy is given by 

0( )T T T�� �) � � ;                                           (10.1.44') 

thus, we may write 

0 0( )T T ��) � � �P v                                          (10.1.45) 

and we can state 
Theorem 10.1.13 (theorem of kinetic energy). The sum of the variation of the kinetic 
energy of a free particle at a moment of discontinuity and the kinetic energy of the lost 
velocity at the same moment is equal to the scalar product of the percussion which acts 
upon the particle by the velocity after that moment of discontinuity. 

If the relation 

0��� �P v                                                    (10.1.46) 

takes place, which can happen, e.g., if the velocity of the particle vanishes after 
collision, then we obtain the relation 

0 0( ) 0T T) � � ,                                             (10.1.47) 

so that we may state 
Theorem 10.1.14 (Carnot). If, in the motion of a free particle subjected to collision, the 
condition (10.1.46) is fulfilled, then the sum of the variation of the kinetic energy of that 
particle at a moment of discontinuity and the kinetic energy of the lost velocity at the 
same moment is equal to zero. 

A scalar product of the relation (10.1.43) by �v  leads to 2( )m m v� �� � �� � � �v v P v  
or to 0T T T�� � �� � � �P v , wherefrom 

0 0( )T T �) � � �P v ;                                         (10.1.45') 

we may thus state 
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Theorem 10.1.13' (analogous to the theorem of kinetic energy). The difference between 
the variation of the kinetic energy of a free particle at a moment of discontinuity and 
the kinetic energy of the lost velocity at the same moment is equal to the scalar product 
of the percussion which acts upon this particle by its velocity before that moment of 
discontinuity. 

If, in particular, 

0�� �P v ,                                                   (10.1.46') 

it results 

0 0( )T T) � .                                                (10.1.47') 

Thus, we state 
Theorem 10.1.14' (analogous to Carnot’s theorem). If the condition (10.1.46') is 
fulfilled, in the motion of a free particle subjected to collision, then the variation of the 
kinetic energy of that particle, at a moment of discontinuity, is equal to the kinetic 
energy of the lost velocity at the same moment. 

Summing the relations (10.1.45) and (10.1.45'), we get 

0
1( ) ( )
2

T � ��) � � �P v v ,                                        (10.1.48) 

so that it results 
Theorem 10.1.15 (Kelvin). The variation of the kinetic energy of a free particle at a 
moment of discontinuity is equal to the scalar product of the percussion which acts 
upon the particle by the semi-sum of both the velocities before and after the 
phenomenon of discontinuity. 

Subtracting (10.1.45') from (10.1.45), we get 

0 0
1 1( )
2 2

T �� �� � � � �P v v P v ;                                   (10.1.48') 

we may thus write 
Theorem 10.1.15' (analogous of Kelvin’s theorem). The kinetic energy of the lost 
velocity of a free particle at a moment of discontinuity is equal to half of the scalar 
product of the percussion which acts upon the particle by the jump of the velocity at the 
moment of discontinuity. 

The phenomenon of collision will be studied in detail in Chap. 13, §1, where the 
corresponding mathematical model is better put in evidence in case of a mechanical 
system which is not reduced to only one particle. 
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2. Motion of a particle with respect to a non-inertial frame of 
reference 

The results obtained till now concerning the motion of a particle are using the 
fundamental law of Newton, written with respect to an inertial frame of reference. 
Taking into account that not all frames are inertial (or cannot be approximated to 
inertial ones), it is necessary to perform a study of the motion of a particle with respect 
to a non-inertial frame (starting, e.g., from a geocentric or heliocentric frame); we 
obtain thus important results concerning terrestrial mechanics too. 

2.1 Relative motion. Relative equilibrium 
Starting from the results obtained in Chap. 5, Sec. 3.1, concerning kinematics of the 

relative motion of a particle, we make, in what follows, a study of dynamics of the 
relative motion of that particle; in particular, we get results for the relative equilibrium 
of it. The application of general theorems leads to the law of motion with respect to a 
movable frame; one can thus specify the set of inertial frames which forms the Galileo-
Newton group. As well, we put in evidence the general theorems and conservation 
theorems of mechanics and the principle of equivalence. 

2.1.1 Dynamics of the relative motion of a particle 

Let be an inertial frame of reference 1 2 3O x x x� � � � , which is considered to be fixed, and 
a non-inertial frame (movable frame) 1 2 3Ox x x  in motion with respect to the fixed one. 
Newton’s law (1.1.89) for a particle P  is written with respect to an inertial frame (in 
absolute motion); in Chap. 5, Sec. 3.1 we have seen that the absolute motion is obtained 
by the composition of the relative motion and the transportation one (a vector 
composition for the velocities, while for the accelerations one must add the Coriolis 
acceleration too). Starting from the formula (5.3.5) of composition of the accelerations 
and multiplying both members by the mass m , we can write 

a rt Cm m m m� � �a a a a , where , ,rt Ca a a  are the transportation, relative and 
Coriolis accelerations, respectively, given by (5.3.4). Taking into account the equation 
of motion of a free particle ( am �a F , where F  is the resultant of the given forces), 
we get 

r t Cm � � �a F F F ,                                             (10.2.1) 

where 

 " #( )t t Om m �� � � � � 3 � 3 3�F a a r r7 7 7 , 
2 rC Cm m� � � � 3F a v7  

 
(10.2.1') 

are complementary forces (the transportation force and the Coriolis force, 
respectively); these forces are added to the given force F  and allow writing the 
equation of motion in a non-inertial frame of reference. We notice that the forces tF  
and CF  depend on O�a  and 7 , hence on the acceleration of the movable frame pole and 
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on the rotation vector of this frame with respect to the fixed (inertial) one, respectively; 
hence, the motion with respect to a non-inertial frame can be determined only starting 
from an inertial one. 

The complementary forces are called also inertial forces because their magnitude is 
proportional to the inertial mass; these forces are applied to the particle in motion 
(unlike the forces of inertia (6.2.11) which are applied to the agent which provokes the 
motion). The inertial forces are real ones with respect to an observer linked to a non-
inertial frame of reference; e.g., the centrifugal force, which appears in a motion of 
rotation, is a transportation force. 

Introducing the relative force 

r t C� � �F F F F ,                                             (10.2.2) 

we may write the equation (10.2.1) in the form 

r rm �a F ,   ( , ; )r r r t�F F r v ;                                   (10.2.2') 

we put initial conditions of Cauchy type 

0 0( )t �r r ,   0
0( )r rt �v v                                      (10.2.2'') 

and notice that one can use all the results given in Chap. 6, stating thus 
Theorem 10.2.1 (theorem of the relative motion). The equation of motion of a particle 
with respect to an inertial frame of reference maintains its form with respect to a non-
inertial one if the given force is replaced by the force relative to the latter frame. 

As well, we state 
Theorem 10.2.2 (theorem of the relative force). The relative force (with respect to a 
non-inertial frame of reference) is equal to the sum of the given force and the 
complementary forces (the force of transportation and the Coriolis force) with respect 
to an inertial one. 

In case of a particle subjected to bilateral constraints, we use the axiom of liberation 
of constraints, introducing the constraint force R . The equation of motion (10.2.1) 
becomes 

r t Cm � � � �a F F F R ;                                       (10.2.1'') 

taking into account (10.2.2), we may also write 

r rm � �a F R                                                 (10.2.2''') 

too. We notice that the Theorems 10.2.1 and 10.2.2 remain still valid. 
Thus, the problem of motion with respect to a non-inertial frame of reference may be 

reduced to a corresponding problem with respect to an inertial frame, chosen 
conveniently (with respect to which the Newtonian model of mechanics is verified with 
a sufficient good approximation). 



www.manaraa.com

Other considerations on particle dynamics 

 

617 

2.1.2 Particular cases of non-inertial frames of reference 
Let us consider first of all the case of a non-inertial frame of reference in a motion of 

translation with respect to an inertial one; hence, we assume that � 07 . In this case, 
the equation of motion is ( t Om �� �F a , C �F 0 ) 

r Om m �� �a F a .                                               (10.2.3) 

We assume, in particular, that the particle P  is acted upon by its own weight 
( m�F g ), so that we can write 

r O�� �a g a .                                                  (10.2.4) 

In the case in which O� �a g  we have the elevator problem. If O�a  has the same 
direction as g  (it is directed towards the centre of the Earth), then the particle P  seems 
to be lighter ( r O�� �a g a ), while if O�a  has a direction opposite to that of g  
( r O�� �a g a ), then the particle seems to be heavier. In particular, if the elevator is in a 
free falling ( O� �a g ), then the apparent weight of the particle with respect to it 
vanishes; we are in the case of imponderability. 

Moreover, let us suppose that constO� �
������

a . If, for instance, the particle is in free 
falling ( 0 0v �  for 0t � ) from a height h  with respect to the floor of the elevator 
( 0x � , the Ox -axis of unit vector i  along the ascendent vertical), we get, in the 
movable non-inertial frame, � � 2 /2Ox g a t h�� � � � , so that the falling time is given 
by 

2
O

hT
g a

�
��

,                                                  (10.2.5) 

assuming that 0Og a �� �  ( O Oa� ��a i , with 0Oa � � , of an opposite direction to that of 
the gravitation g� �g i , or with 0Oa � � , of the same direction but with O� �a g ). 
If 0Og a �� � , then the particle is immobile, while if 0Og a �� �  ( 0Oa � �  with 

O� �a g ), then the particle goes up along the vertical Ox  with respect to an observer 
linked to the movable frame. If 0Oa � � , then the movable frame becomes an inertial 
one, finding again the usual laws of falling. 

Another important particular case is that of a non-inertial frame of reference in 
motion of rotation with respect to a fixed 3Ox � -axis ( O O� �� �v a 0 , 3�� i7 , 

( )t� �� , Fig.10.4). The transportation force is given by ( OP P P� �� �
����� �����

r  
0OP �� �

�����
r ) 

 0 0( ) ( )t m m m m� � 3 � 3 3 � � 3 � 3 3� �F r r r r7 7 7 7 7 7  
0 2 0

3m m� �� � 3 �� i r r , 
 

(10.2.6) 
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corresponding to Rival’s formula (5.2.6'''), and the Coriolis force by 

32 2r rC m m�� � 3 � � 3F v i v7 .                                 (10.2.6') 

In case of a uniform rotation ( �� 07 ), we have 

2 0
t m��F r .                                                 (10.2.6'') 

Figure 10.4.  Non-inertial frame of reference in motion of rotation with respect to a fixed axis. 

Assuming that the particle P  is moving in the 1 3Ox x -plane (with respect to the non-
inertial frame) and taking into account (10.2.6), (10.2.6'), we may write the equation of 
motion (10.2.1) in components, in the form 

2
1 1 1mx F m x�� ��� ,   2 1 10 2F m x m x� �� � � �� ,   3 3mx F��� ; 

observing then that � �� �  and replacing 1x  by r  and 3x  by z , we find again the 
equations of motion of the particle in cylindrical co-ordinates (6.1.26), with respect to a 
fixed (inertial) frame. 

By composition of the two particular cases considered above, one can obtain the case 
of a non-inertial frame of reference in a finite motion of rototranslation with respect to 
an inertial one. In the case of a non-inertial frame of reference in an arbitrary motion 
with respect to an inertial one, one may use the results obtained in Chap. 5, Subsec. 
2.3.1 concerning the instantaneous helical motion. 

If the forces do not intervene explicitly in the relative motion, then the composition 
of motions can be reduced to the composition of velocities. Let be thus the case of a 
non-inertial frame in motion of translation with respect to an inertial one, with the 
velocity O�v ; if the particle has a relative velocity rv , then the composition of the 
velocities leads to rO� �� �v v v . Assuming that the velocities O�v  and rv  are collinear 
(e.g., a boat which is moving with the velocity rv  along a river, the velocity of  
which with respect to the riversides is Ov � ), we have rOv v v� �� �  (the boat is moving 
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in the same direction as the river) or r Ov v v� �� �  (the boat is moving in a direction 
opposite to that of the river). 

As well, we mention the meeting problem of a particle 1P , which has a rectilinear 
and uniform motion of velocity 1v , and a particle 2P , which has a curvilinear and 
uniform motion of velocity 2v ; the latter velocity will be collinear with the vector 

2 1P P
�����

, tangent to the trajectory of the particle 2P , which has to be determined 
(Fig.10.5). We choose an inertial frame of reference 0

1 1 2P x x� � , linked to the initial 
position 0

1P  of the particle 1P , and a non-inertial frame 1 1 2P x x , linked to a location of 
the particle 1P  in uniform translation with respect to the first frame; in fact, this second 
frame is inertial too, its motion being specified by the equations (we assume that the 
two particles start from the points 0

1P  and 0
2P , respectively, at the initial moment 

0t � ) 1 1x x� � , 2 1 2x v t x� � � . Observing that 2 2 2 1versv P P�
�����

v , we get the 
differential equations, which determine the trajectory of the particle 2P  in the movable 
frame, in the form ( 2v  has the components 1x�  and 2x� ) 

 
Figure 10.5.  The meeting problem of two particles. 

2 1
1 2 2

1 2

v x
x

x x
� �

�
� ,   2 2

2 1 2 2
1 2

v x
x v

x x
� � �

�
� ; 

dividing member by member the two equations (eliminating the time t ), it results 

2
2 2 1 2

1 1 2 1

d
1

d
x x v x
x x v x

� �� � � 	 

� �

. 

Observing that 2 1 2 1 1 1 2 1d /d / ( /d )d( / )x x x x x x x x� �  and integrating, we can 
write the equation of the trajectory with respect to the movable frame in the form 

� � � �1 2 1 2/ /
1 1 1

2 2

v v v vx x x
x

a a

�$ %� �* +& '
.                                (10.2.7) 
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Eliminating 2 2
1 2x x�  between the two differential equations, we may write 

1 1 2 1 2( )( / )x v x x x� �� � ; taking into account the previous observation, as well as 
(10.2.7), it results 

2 2
1 2 1

1 1 1 1

1 1d d d d
x x

t x x x
v x v x

� � � �� � � �	 
 	 

� � � �

 

� � � � � �1 2 1 2/ /
1 1 1d

2 2

v v v vx x xa
a a a

�$ %� � �* +& '
, 

wherefrom, assuming that 1 2v v� , 

1 2 1 2/ /
1 11

1 2 1 2

( / ) ( / )
2

v v v vx a x ax
t t

v v v v

�$ %
� � �* +� �& '

.                            (10.2.7') 

Calculating 1 1 ( )x x t�  and then 2 2 ( )x x t� , we obtain the motion of the particle 
along the trajectory. The equation of the trajectory with respect to the fixed frame is of 
the form 

1 2 1 2/ /
1 12 1

2 1
1 2 1 2

( / ) ( / )
2

v v v vx a x av x
x v t

v v v v

�� �� $ %
� � � �* +� �& '

.                      (10.2.7'') 

The constants a  and t  are specified by (10.2.7), (10.2.7') with the initial conditions 
0 0

1 1 1x x x �� � , 0 0
2 2 2x x x �� � , for 0t � . For 1 0x �  we have 2 0x � , t t�  if 

1 2v v�  and 2x � �� , t � �  if 1 2v v� . As a consequence, if 1 2v v� , then the 
particle 2P  meets the particle 1P  at the moment t t� , at the point of co-ordinates 

1 0x � � , 2 1x v t� �  with respect to the inertial frame. But if 1 2v v� , then the two 

particles do not meet. The distance between them is given by 2 2 2
2 1 1 2P P x x� � , so that 

� � � � � � � �1 2 1 2 1 2 1 2/ / 1 / 1 /
1 1 1 1 1

2 1 2 2

v v v v v v v vx x x x xaP P
a a a a

� � �$ % $ %� � � �* + * +& ' & '
;     (10.2.8) 

the minimum of this distance is obtained for 

2 1/2
1 2

1
1 2

v vv v
x a

v v
�� �� 	 
�� �

,                                        (10.2.8') 

so that 

2 1/2
1 1 2

2 1min 2 2 1 21 2

v vav v v
P P

v vv v

�� �� 	 
�� ��
                             (10.2.8'') 
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at the moment 

� �
2 1/2

1 2 1 2
2 2 2 2 1 21 2 1 2

2 v vav v v v
t t

v vv v v v

�� �� � 	 
�� �� �
.                        (10.2.8''') 

If 1 2v v v� � , then we get the equation of the trajectory with respect to the movable 
frame 

2 2
1

2 2
x a

x
a
�

� ,                                                   (10.2.9) 

the motion being specified by 

� �21 11
ln

2 2
x xa

t t
v a a
$ %� � �* +& '

;                                    (10.2.9') 

as well, 

2 2
1

2 1 2
x a

P P
a
�

� .                                            (10.2.9'') 

The two particles do not meet; the minimal distance between them is obtained for 
1 0x �  at the moment t � �  and is equal to /2a . 

The particle 1P  can be a man (master) and the particle 2P  his dog. 

2.1.3 General theorems in the relative motion 
Let be a free particle P  of mass m , the position of which is specified by the vector 
�r  with respect to an inertial (fixed) frame of reference 1 2 3O x x x� � � �  and by the vector r  

with respect to a non-inertial (movable) frame 1 2 3Ox x x ; starting from the relation 

O� �� �r r r , where O�r  is the position vector of the pole of the non-inertial frame with 
respect to the inertial one, and using the relations in Chap. 5, Sec. 3.1, we find the 
relation rO� �� � � 3v v v r7 , where 7  is the angular velocity vector (the rotation 
vector) of the movable frame. We obtain thus the relation between the momenta with 
respect to the two frames in the form 

Om m� �� � � 3H H v r7 ,                                       (10.2.10) 

with rm�H v . Using the relation (A.2.37) between the absolute and the relative 
derivatives of a vector, we can write 

d ( ) ( )
d r rOm m m m
t t
� ( �� � 3 � � 3 � 3 � 3

(
�H H v a r v r7 7 7 7 , 

wherefrom, taking into account (6.1.45) and (10.2.1'), (10.2.2), it results 
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r t Ct
(

� � � � �
(

� HH F F F F .                                  (10.2.11) 

However, this result was to be expected, taking into account (10.2.2'); we may state 
Theorem 10.2.3 (theorem of momentum). The derivative with respect to time of the 
momentum of a free particle, in a non-inertial frame of reference, is equal to the 
relative force which acts upon the particle in that frame. 

Analogously, we obtain 

( ) ( )O
r tO O Ct t

( (
� � 3 � 3 � � 3 �

( (
� K

K r H r F M r F F ,              (10.2.12) 

where, taking into account (10.2.1'), we notice that 

2( ) ( )( )t Om r �3 � � � � � � 3$ %& '� �r F r r a r r7 7 7 7 ;                   (10.2.13) 

thus, we state 
Theorem 10.2.4 (theorem of moment of momentum). The derivative with respect to time 
of the moment of momentum of a free particle, in a non-inertial frame of reference, with 
respect to its pole, is equal to the moment of the relative force which acts upon the 
particle in that frame (the sum of the moment of the resultant of the given forces which 
act upon the particle and the moment of the complementary forces), with respect to the 
same pole. 

The Theorems 10.2.3 and 10.2.4 lead to the relation 

( )
( ) ( ) ( ) ( ) ( )O

r tO O O O O Ct
(=

= � � = � = � = � =
(

�
H

H F F F F ,              (10.2.14) 

obtaining thus 
Theorem 10.2.5 (theorem of torsor). The derivative with respect to time of the torsor of 
the momentum of a free particle, in a non-inertial frame of reference, with respect to its 
pole, is equal to the torsor of the relative force which acts upon the particle in that 
frame (the sum of the torsor of the resultant of the given forces which act upon the 
particle and the torsor of the complementary forces), with respect to the same pole. 

It results, as well, 

� �2d d d d d d d d
2 r tr r tF F
mT v W W W� � � � � � � � � �F r F r F r       (10.2.15) 

because, taking into account (10.2.1'), we have d d 0
CF CW � � �F r ; we may thus 

state 
Theorem 10.2.6 (theorem of kinetic energy). The differential of the kinetic energy of a 
free particle with respect to a non-inertial frame of reference is equal to the elementary 
work of the relative force which acts upon it in this frame (the sum of the elementary 
work of the resultant of the given forces which act upon the particle and the work of the 
transportation force). 
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Dividing the relation (10.2.15) by dt , we get 

r r r rt
TT P P
t

(
� � � � � � �

(
� F v F v                                    (10.2.16) 

so that we may state 
Theorem 10.2.6' (theorem of kinetic energy; second form). The derivative with respect 
to time of the kinetic energy of a free particle in a non-inertial frame of reference is 
equal to the power of the relative force which acts upon it in this frame (the sum of the 
power of the resultant of the given forces which act upon the particle and the power of 
the transportation force). 

In case of a particle subjected to bilateral constraints, we apply the axiom of 
liberation of constraints and introduce the constraint force R ; the formulae (10.2.11), 
(10.2.12), (10.2.14) - (10.2.16) take the form 

r t Ct
(

� � � � � � �
(

� HH F R F F F R ,                             (10.2.11') 

(
� � 3 � � � 3 � �

(
K

K r F R M r F F M( ) ( )O
Or tO O Ct

� ,               (10.2.12') 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )O

r tO O O O O O C Ot
(=

= � � = � = � = � = � = � =
(

�
H

H F R F F F R , 

     (10.2.14') 
 

d d d d d d d dr t rF R F RT W W W W W� � � � � � � � �F r R r  
d d dt� � � � � �F r F r R r ,                                      (10.2.15') 

r r r r rt
TT P
t

(
� � � � � � � � � �

(
� F v R v F v R v ,                    (10.2.16') 

so that we can state corresponding theorems. In case of holonomic and scleronomic 
constraints we have d d 0RW � � �R r , hence 0r� �R v . 

Starting from the above results, we can find, in certain conditions, first integrals and 
may state conservation theorems with respect to a non-inertial frame of reference. Thus, 
using the theorems of Chap. 6, Subsec. 1.2.5, we obtain, for a free particle: 
Theorem 10.2.7 (conservation theorem of momentum). The momentum (and the 
velocity) of a free particle with respect to a non-inertial frame of reference is conserved 
in time if and only if the relative force which acts upon the particle in this frame (the 
sum of the resultant of the given forces which act upon the particle and the 
complementary forces) vanishes. 
Theorem 10.2.8 (conservation theorem of moment of momentum). The moment of 
momentum of a free particle with respect to the pole of a non-inertial frame of 
reference is conserved in time if and only if the moment of the relative force which acts 
upon it in this frame (the sum of the moment of the resultant of the given forces which 
act upon the particle and the moment of the complementary forces), with respect to the 
same pole, vanishes. 
Theorem 10.2.9 (conservation theorem of torsor). The torsor of the momentum of a 
free particle with respect to the pole of a non-inertial frame of reference is conserved in 
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time if and only if the torsor of the relative force which acts upon it in this frame (the 
sum of the resultant of the given forces which act upon the particle and the 
complementary forces), with respect to the same pole, vanishes. 
Theorem 10.2.10 (conservation theorem of the mechanical energy). The mechanical 
energy of a free particle with respect to a non-inertial frame of reference is conserved 
in time if and only if the sum of the given forces which act upon the particle and the 
transportation force is conservative. 

The conditions in the latter theorem (in which the mechanical energy contains also 
an energy due to the transportation force) are not so easy to fulfil. If the resultant F  of 
the given forces is a conservative one, which derives from a simple or from a 
generalized potential, then we can write 

d d( ) dtE T V� � � �F r .                                      (10.2.17) 

In particular, if O� �a 0  (hence constO� �
������

v ) and const�
������

7 , hence if the 
transportation motion is a finite motion of rototranslation of constant velocities of 
translation and rotation (the movable frame has a motion of rotation with a constant 
angular velocity around an axis which passes through its pole, that one having a 
rectilinear and uniform motion with respect to the fixed frame), we can write 

d d ( ) d ( , , d ) ( , , d )t tm m m m� � � � � � 3 3 � � � 3 � 3F r a r r r r r r r7 7 7 7 7 7  
2( ) ( d ) d ( )

2
mm $ %� 3 � 3 � 3

& '
r r r7 7 7  

we obtain thus a first integral (called, sometimes, the generalized first integral of the 
energy, because it is reduced to the first integral of the energy if � 07 ) of the form 

2( )
2
mE T V h� � � 3 �r7 ,   consth � .                          (10.2.17') 

In case of a particle subjected to constraints we get results analogous to those in 
Chap. 6, Subsec. 2.1.3. If the constraints are holonomic and scleronomic, then the 
relations (10.2.17), (10.2.17') maintain their form. 

2.1.4 Inertial frames of reference. Galileo-Newton group 
Starting from the equation (10.2.2), (10.2.2'), we will search the movable frames 

(specified by the acceleration O�a  of the pole of the frame and by its angular velocity 
7 ) for which a free particle P  is moving after the law 

rm �a F ,                                                    (10.2.18) 

hence after the same law as in the case of the fixed (inertial) frame. We notice that, in 
this case, the sum of the complementary forces must vanish; hence, we must have 

" #( ) ( ) 2 rt C Om m �� � � � � 3 � 3 3 � 3 ��a a a r r v 07 7 7 7           (10.2.19) 
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for any point at which the particle may be (for any r ) and for any relative velocity rv  
of it. 

We assume that, starting from the same position vector r , the particle P  can have 
the relative velocity r�v  in one case of motion and the relative velocity r��v  in another 
case of motion. Imposing the condition (10.2.19) in both cases and subtracting a 
relation from the other, we find ( )r r� ��3 � �v v 07  for any r�v  and r��v ; it results that 
we must have � 07  (hence, �� 07  too). Returning to the above condition, it follows 
that O� �a 0 . 

From the latter condition we see that one passes from the fixed frame to the movable 
one by a transformation of space co-ordinates (to which a time transformation may be 
added) of the form (6.1.42''), which forms a group with seven parameters. The 
condition �7 0  shows that the movable frame can have only a finite geometric 
rotation of the form (6.1.43), concerning its relative position with respect to the fixed 
frame, so that the most general transformation which corresponds to the passing from a 
frame to another one, modelling the motion of a particle in the form (10.2.18), is given 
by (6.1.44) and forms the Galileo-Newton group with ten parameters, studied in Chap. 
6, Subsec. 1.2.3. One can thus apply the Theorem 6.1.6 (of relativity) of Galileo, the 
movable frame being – in this case – an inertial frame too, with respect to which the law 
of motion maintains its form (acting only the given force and, eventually, the constraint 
one). If we write the relation of transformation (6.1.44) for two particles 1P  and 2P , 
then we have 

0 01 1 t� � � �4r r v r ,   0 02 2 t� � � �4r r v r ,   0t t t� � � , 

the tensor 4  corresponding to a finite rotation of the movable frame; we obtain thus 
2 1 2 1( )� �� � �4r r r r , wherefrom 

" # " # " # " #22
2 1 2 1 2 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( )� �� � � � � � � � � � �4 4 4 44r r r r r r r r r r r r  

" # 2
2 1 2 1 2 1( ) ( ) ( )� � � � � �B r r r r r r , 

B  being Kronecker’s tensor. Hence, the distance between two particles remains 
invariant in a transformation of the Galileo-Newton group; the forces which depend 
only on distances (e.g., the forces of Newtonian attraction) have the same property of 
invariance. In this case, taking into account the invariance of the acceleration, it results 
that the mass of the particle is invariant too (constant, property iii) of the mass; see also 
Chap. 1, Subsec. 1.1.6). 

If, in a non-inertial system of reference, we determine experimentally the sum 
t C�F F  of the complementary forces, then one calculate the quantities O�a  and 7  

which specify the motion of the frame (neglecting a rectilinear and uniform motion of 
translation, which cannot be put in evidence by mechanical experiments). As a matter 
of fact, by no experiment of physical (not only mechanical) nature a preferential inertial 
(e.g., “fixed”) frame cannot be put in evidence, all inertial systems being thus 
equivalent. 
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2.1.5 Principle of equivalence 
Let us suppose that the particle P  is subjected to the action of a uniform 

gravitational field (the terrestrial gravitational field) m�F g  and let us consider the 
motion with respect to a non-inertial frame of reference in rectilinear and uniform 
accelerated motion of translation (hence, for which O� �a g , �7 0 ); in this case, 

t m� �F g  and C �F 0 , so that r �F 0 , the equation of motion (10.2.2') leading thus 
to r �a 0 . We notice that an observer, situated in an elevator which is moving in the 
direction of the gravitation and is acted upon by a force equal to mg , cannot perceive 
the gravitational field (particularly, if he could not be in contact with the universe of the 
exterior of the elevator); it is the case of imponderability, considered in Subsec. 2.1.2. 

The mass plays two different rôles in the identity Om m� �a g ; in the left member is 
put in evidence the aspect of inertial mass (which leads to the inertial transportation 
force), while in the right member appears the aspect of gravity mass (called heavy mass 
too) (see also Chap. 1, Subsecs 1.1.6 and 1.2.1). This observation led A. Einstein to 
state the principle of equivalence between the gravity mass and the inertial one in the 
general relativistic model of mechanics; thus, the two properties of the mass represent 
two different aspects of the same material quantity. This result has been confirmed by 
the experiments performed by Eötvös and Zeeman, by Southern and Zeeman etc. 

2.1.6 Relative equilibrium 
The location 0�r r  is called position of relative equilibrium of a free particle P  

(which is in relative rest with respect to a non-inertial frame of reference) if the 
equation of motion (10.2.2), (10.2.2') with the initial conditions 0 0( )t �r r , 

0( )r t �v 0  admits as solution 0( )t �r r , 0t t� � ; in this case, we have ( )r t �v 0 , 
( )t �a 0 , 0t t� � . It results C �F 0 , so that 

r t� � �F F F 0 ,                                              (10.2.20) 

and we can state (the condition (10.2.20) is sufficient too, because C �F 0  leads to 
r �v 0 , the rectilinear and uniform motion with respect to the movable frame being 

thus excluded) 
Theorem 10.2.11 (theorem of relative equilibrium). A free particle is in relative 
equilibrium (with respect to a non-inertial frame of reference) if and only if the sum of 
the resultant of the given forces which act upon that particle and the transportation 
force vanishes. 

If O� �a 0 , ��7 0  (the non-inertial frame has a finite motion of rototranslation with 
constant velocities of translation and rotation), then the transportation force 

( )t m� � 3 37 7F r                                            (10.2.21) 

is a centrifugal one. 
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In case of a particle subjected to bilateral constraints, the necessary and sufficient 
condition of relative equilibrium (with respect to a non-inertial frame of reference) 
reads 

r t� � � � �F R F F R 0 ,                                     (10.2.20') 

where R  is the constraint force. 

Figure 10.6.  Heavy particle constrained to move on a circle in uniform rotation  
about a vertical diameter of it. 

Let us consider the case of a heavy particle P  of mass m , constrained to move on a 
circle in uniform rotation about a vertical diameter of it, with the angular velocity 7  
(along one of the axes of the inertial frame of pole O ); for instance, let us suppose that 
the particle P  is a small heavy sphere, situated at the end of a perfect inextensible 
thread of length l  (Fig.10.6). We choose the non-inertial frame with the pole at O  too, 
the axis of which coincides with the rotation axis of the movable frame. The particle is 
acted upon by the gravity force mg , by the centrifugal force ( )tF m� 3 3 r7 7  

2 sinml� ��  and by the constraint force T  (the tension in the thread). Projecting the 
equation of equilibrium ( tm � � �g F T 0 ) on the normal to the force T  and along 
the direction of it, we get 

cos sintF mg� �� ,   sin costT F mg� �� � . 

The positions of relative equilibrium are given by 

sin 0� � ,   2cos g
l

�
�

� ,   g
l

�� � ;                               (10.2.22) 

hence, excepting the point 0P  (which corresponds to 0� � ), we obtain two symmetric 
positions of relative equilibrium P  and P . For 0P  it results the tension T mg� , 
while for P  and P  the tension is 2T ml�� . 

Let be an ideal liquid in rest with respect to a vessel in uniform accelerated 
translation with respect to an inertial frame of pole O � ; the non-inertial frame is linked 
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to the vessel, the velocity of the pole O  being constO� �
������

a  with respect to the pole O � . 
If O� �a 0 , then the free surface of the liquid (in rest with respect to the fixed frame) is 
a horizontal plane. A particle P , of mass m , of the free surface of the fluid 
(Fig.10.7,a) is in equilibrium under the action of the gravity force mg , of the 
transportation force t Om �� �F a  and of the constraint force N  (normal to the 
separation surface). If the liquid is in relative equilibrium with respect to the vessel in 
motion of translation, then the free surface is a plane inclined with respect to the 
horizontal one by an angle �  given by tan /Oa g� �� , while the constraint force is 

2 2
ON m a g�� � . 

 
Figure 10.7.  Relative equilibrium of a liquid with respect to a vessel in uniform accelerated 

translation (a) or in uniform motion of rotation about a vertical axis of symmetry (b). 

If the vessel has a uniform motion of rotation about a vertical axis of symmetry, 
linked to the fixed frame, the movable frame being connected to the vessel, then a 
particle P , of mass m , of the separation surface of the fluid is acted upon by the 
gravity force mg , by the centrifugal force ( )t m� � 3 37 7F r , of magnitude 

2
1tF m x�� , and by the constraint force N  (Fig.10.7,b). Projecting the equation of 

relative equilibrium ( tm � � �g F N 0 ) on the tangent at P  to the meridian curve of 
the free surface, we get 2

1 cos sinm x mg� � �� ; observing that 3 1tan d /dx x� � , it 
results 2

3 1 1d /d /x x x g�� , the meridian curve being a parabola of equation 

� �2 2 0
3 1 3/2x g x x�� � . Hence, the free surface is an axial-symmetrical paraboloid of 

equation 

� �
2

2 2 0
3 1 2 32
x x x x

g
�

� � � .                                       (10.2.23) 

As well, the constraint force is given by / cosN mg �� . 
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2.2 Elements of terrestrial mechanics 
After a study of the influence of the transportation force (inclusive of the centrifugal 

force) and of Coriolis’ force on the motion of a particle on Earth’s surface (using a 
geocentric or a heliocentric frame), some phenomena due to non-inertial frames on the 
Earth surface are considered. Thus, the phenomenon of tides is explained, the terrestrial 
acceleration is calculated, the deviation of the plummet from the local vertical, the 
deviation towards the east in free falling and Baer’s law are determined and the idea of 
imponderability is explained; as well, Foucault’s pendulum, very important for the 
knowledge of terrestrial motions, is presented. In particular, one obtains the case of 
relative equilibrium. 

2.2.1 Geocentric and heliocentric frames 
In the study of motion of a particle on the Earth surface, we considered till now that 

the local frame of reference is inertial (absolute); we obtained thus the motion of the 
particle with respect to this frame, where the motion of the Earth was not taken into 
consideration (an approximation of the physical reality). Assuming that the Earth is 
spherical, we choose the orthonormal frame with the pole at a  point O  on  the  boreal  

 
Figure 10.8.  Motion of a particle with respect to a geocentric (inertial) frame of reference. 

hemisphere; the 1Ox -axis is tangent to the parallel of the point O , being directed 
towards the east point, the 2Ox -axis is tangent to the local meridian, being directed 
towards the north, while the 3Ox -axis is directed towards the ascendent local vertical 

(the same direction as O O�
�����

, O �  being the centre of the Earth (Fig.10.8). If a heavy 
particle falls free from the height h  (sufficient great, without other influences) and if 
we assume that the considered frame of reference is inertial, then the equations of the 
rectilinear trajectory are 1 2 0x x� � , 2

3 /2x h gt� � ; but, experimentally, it is seen 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

 

630 

that a deviation towards the east point, along the parallel ( 1 0x � ) takes place. This 
deviation is, obviously, due to Earth’s motion of rotation (the local frame of reference is 
non-inertial). The most simple frame which can be chosen as an inertial one is the 
geocentric frame of reference (Ptolemy’s frame), assuming that the pole is at the centre 
O �  of the Earth; usually, the equatorial plane is taken as principal plane, the 1O x� � -axis 
being directed towards the vernal equinoctial point (on the celestial sphere of radius 
equal to unity, at the intersection of the equatorial plane with the ecliptic plane, which 
contains the orbit of the Earth), while the 3O x� � -axis is normal to that plane (hence, it is 
the rotation axis of the Earth) (Fig.10.8). Practically, a system of stars considered 
“fixed”, which allows to specify the axes of the considered frame, is used. 

The local frame of reference is rigidly linked to the Earth, hence it has a motion of 
rotation defined by the vector 7 , directed along the axis of the poles, from the south to 
the north. We notice that a complete rotation of the Earth about its axis takes place in a 
sidereal day, which is smaller than a mean solar day by 3 min 56 s ; hence, a sidereal 
day has 24 60 60 (3 60 56) 86164  s� � � � � �  (seconds of mean solar time), so that 
the magnitude of the vector is given by 

52 7.292 10  rad/ s
86164

�� �� 1 � ,                                  (10.2.24) 

the unit of time being the second. In the non-inertial frame of unit vectors ji , 
1,2, 3j � , the rotation vector is given by 

2 1cos sin� � � �� �7 i i ,                                       (10.2.25) 

where � , " #0, /2� ��  in the boreal hemisphere and " #/2,0� �� �  in the austral 
hemisphere, is the local latitude. The unit vectors of the axes of the two frames are 
linked by the relations 

                                         1 1 2sin cos� �� �� � �i i i ,   

2 1 2 3sin cos sin sin cos� � � � �� � �� � � �i i i i ,                         (10.2.26) 
                          3 1 2 3cos cos cos sin sin� � � � �� � �� � �i i i i , 

where � , [0,2 )� �� , is the local longitude. Taking into account (A.2.36) and the fact 
that the pole of the movable frame has a circular motion along the parallel of radius 

cosR � , where R  is Earth’s radius, we get 

1 0� � ,   2 cos� � �� � ,   3 sin� � �� � ;                           (10.2.25') 

observing that � �� � , the formulae (10.2.25') correspond to the expression (10.2.25) 
previously obtained for the rotation vector, what was to be expected, taking into 
account the results in Chap. 5, Subsec. 2.2.2. 
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But there are some phenomena for which the use of a geocentric frame of reference 
leads to results which are not in concordance with the physical reality; in this case, one 
must choose another frame as inertial one, i.e. a heliocentric frame (Copernicus’ frame), 
with the pole O ��  at the centre of mass of the Sun (very close to the centre of mass of 
the solar system, which – as it will be shown in Chap. 11, Subsec. 1.2.5 – has a 
rectilinear and uniform motion). The heliocentric frame may be ecliptic or equatorial, as 
it has been shown in Chap. 1, Subsec. 1.1.4, its axes 1O x�� �� , 2O x�� �� , 3O x�� ��  being 
specified correspondingly. The geocentric frame previously considered is, in this case, a 
non-inertial one, its axes having fixed directions (the corresponding rotation vector �7  
is equal to zero); indeed, corresponding to Kepler’s first law, the Earth has also a 
motion of revolution which is – in fact – a motion of translation. 

If neither the heliocentric frame of reference cannot be considered to be inertial, then 
one can choose a galactocentric frame a.s.o. 

2.2.2 Motion of a particle at the Earth surface. Relative equilibrium 
Let us consider, first of all, the case of a heliocentric frame (an inertial frame), the 

geocentric one being non-inertial. The equation of motion (10.2.2') with respect to the 
latter frame of reference is written in the form (neglecting the effect of the centrifugal 
force due to the motion of revolution of the Earth; Coriolis’ force vanishes, because the 
motion is plane) 

r Om m �� � ��� �a F a ,                                             (10.2.27) 

where O O O��� �� ��
������

r , while �F  is the force which acts upon the particle P  of mass m . 
Let ( fC  is, in fact, an acceleration) 

3( ) Q
Q

m m
m Q f CQ

CQ
� �

����
f C
C                                        (10.2.28) 

be the force of universal attraction by which a celestial body C  of centre C  and mass 
mC  acts upon a particle Q  of mass Qm . With respect to the heliocentric frame, the 
equation of motion of an element of mass d ( )dEm Q V��  of the Earth, situated at 
the point of position vector Qr , reads 

( ) d ( ) ( )d
jQ

j
Q V Q Q V� ��� � a fC , 

where we have put into evidence the action of the celestial bodies jC , 1,2,...j � , 
upon that element; but (V  is the volume of the Earth) 

� �
2 2

2 2
d d( ) d ( ) d
d dQ Q E Q E QV V

Q V Q V m m
t t

� ��� �� �� ��� � �� �a r r a , 

where we took into account the formula (3.1.3), which gives the position of the centre 
of mass O �  of the Earth, so that we get 



www.manaraa.com

 MECHANICAL SYSTEMS, CLASSICAL MODELS 

 

632 

( ) ( )d
jE O V j

m Q Q V���� � �a fC ,   ( )dE V
m Q V�� � . 

Finally, the equation of motion (10.2.27) becomes 

                       " #( ) ( ) ( )
jr E M P

j
m m P P m P� � � � � a F f f f  

( ) ( ) ( ) ( ) d
jS M PVE j

m
Q Q Q Q V

m
�

$ %
� � �* +

& '
� f f f ,                   (10.2.29) 

where F  is the resultant of the other forces which act upon the particle P  (forces of 
resistance of the medium, forces of friction, forces of electromagnetic nature etc.) and 
where we have put into evidence the action of the Sun, of the Moon and of the other 
planets jP , 1,2,...j � . Neglecting the action of the planets in comparison with the 
action of the Sun and of the Moon, because of the great distances from these planets to 
the Earth, and applying a mean value theorem, we can write, with a good 
approximation, 

" #( ) ( ) ( )dE S MO V
m O O Q V���� � �� � �a f f , 

so that 

3 3( ) ( ) S M
S M MO

M

m m
O O f O O f O O

O O O O
��� � � �� � �� � � � �

�� � �

������ �������
a f f ,             (10.2.28') 

where MO  is the centre of the Moon. The equations (10.2.29) become 

" # " #( ) ( ) ( ) ( ) ( )r E S S M Mm m P m P O m P O� � �� � � � � �a F f f f f f .     (10.2.29') 

Observing that 

2( ) E
E

m
P f

R
�f ,   2( ) S

S
m

O f
O O

� �
�� �

f ,   2( ) M
M

M

m
O f

O O
� �

�
f , 

we may write 

� �2 4( )
6.040 10

( )
S S

E E

O m R
P m O O

��
� 1 �

�� �
f
f

, 

2
6( )

3.379 10
( )

M M

E E M

O m R
P m O O

�� � �
� 1 �	 
�� �

f
f

, 

where we took into account the relations 53.330 10S Em m� � , 81.301E Mm m1 , 
42.348 10O O R�� � 1 � , 60.336MO O R� 1  (in fact, the distance O O�� �  put into 
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evidence is the distance from the centre O ��  of the Sun to the centre of mass of the 
mechanical system formed by the Earth and the Moon; but this latter centre is inside the 
terrestrial surface, at approximative /2R O O�� ��  from the centre O � , so that it may 
be identified, with a good approximation, with O � ). Hence, the influence of the forces 
of attraction of the Sun and of the Moon can be neglected with respect to the force of 
attraction of the Earth. Let us consider the forces ( )S Pf  and ( )M Pf  too. We will have 

1min( ) ( )S SP P�f f , 2max( ) ( )S SP P�f f  (Fig.10.9), as well as 

Figure 10.9.  The influence of the forces of attraction of the Sun and of the Moon  
with respect to the force of attraction of the Earth. 

1 2( ) ( ) ( )
( ) ( ) ( )

S S S

E E E

P P O
P P P

�
1 1

f f f
f f f

; 

analogously, 1min( ) ( )M MP P�f f  and 2max( ) ( )M MP P�f f , so that 

( 1 61.336MO P R1 , 2 59.336MO P R1 ) 

2
1 6

1

( )
3.269 10

( )
M M

E E M

P m R
P m O P

�� �� 1 �	 

� �

f
f

, 

2
2 6

2

( )
3.494 10

( )
M M

E E M

P m R
P m O P

�� �� 1 �	 

� �

f
f

. 

In fact, we are interested in the differences (components along 1versO P��
�����

u ) 

1 2 2
1

( ) ( ) M M
M M

M M

m m
P O f f

O P O O
�� � � � �

�
f f

2

( ) 1 1M
M

RO
O O

�$ %� ��� � �* +	 
�� �* +& '
f  

( ) 1 1 ... 2 ( )M M
M M

R RO O
O O O O

$ � � %� �1 � � � 1	 
* +� �& � � '
f f  

2

2( ) ( ) ( ) 1 1M M M
M

RP O O
O O

�$ %� �� �� � � � �* +	 
�� �* +& '
f f f 2 ( )M

M

R
O

O O
�1 �

�
f ; 

in this case ( 2 1OP OP OP� � ) 
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3
7( ) ( )

2 1.120 10
( )

M M M

E E M

P O m R
P m O O

��� � �
� 1 �	 
�� �

f f
f

. 

Analogously, we get 

� �3 8( ) ( )
2 5.145 10

( )
S S S

E E

P O m R
P m O O

���
� 1 �

�� �
f f

f
. 

In conclusion, to study phenomena connected to an isolated particle, situated on the 
Earth surface, we can use – with a very good approximation – the equation 

( )r Em m P� � �a F f ,                                        (10.2.29'') 

written with respect to a geocentric frame of reference, which is non-inertial. 
Equating to zero the relative motion, we obtain the condition of relative equilibrium 

(with respect to the Earth) in the form 

( )Em P� �F f 0 .                                            (10.2.30) 

 
Figure 10.10.  Relative equilibrium of a particle with respect to the Earth. 

Let be a movable frame of reference 1 2 3Ox x x  (non-inertial), rigidly linked to the 
Earth, so that O O ��  and 3 3Ox O x� �� , its position being specified by the angle �  
(Fig.10.10); we may write the equations of motion with respect to the new frame in the 
form 

( ) ( ) 2r rEm m P m m m� � � 3 � 3 3 � 3�7 7 7 7a F f r r v ,             (10.2.31) 

where 7  is the rotation vector (� �� � ), while OP�
����

r . We notice that 3� ��7 i , 
where �  is given by (10.2.24); using Rivals’ formula (5.2.6''') and neglecting �7  (the 
angular velocity 7  is, with a good approximation, constant, the variation in time of the 
poles’ axis being negligible), we may write 
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2 0( ) 2r rEm m P m m�� � � � 37a F f r v ,                          (10.2.31') 

where 0 P P��
�����

r  (Fig.10.10). The condition of relative equilibrium (with respect to the 
movable frame) is given by 

2 0( )Em P m�� � �F f r 0 .                                     (10.2.32) 

If we choose the movable frame rigidly linked to the Earth, with the pole at a point 
O  on the Earth surface (Fig.10.8) (because the particle is in motion in the vicinity of 
this pole), the equation of motion with respect to a local frame (non-inertial) becomes 

2 0( ) ( ) 2r rEm m P m m�� � � � 3 3 � 3$ %& '7 7 7a F f R r v ;             (10.2.33) 

we notice that the acceleration O�a  with respect to the frame 1 2 3O x x x� � � � , considered to be 

fixed, is given by 2 0
O �� � �a R , with 0 0O O �

�����
R  (the pole O  has a uniform motion 

along a parallel of the Earth, of radius 0R ). In components, we may write (we assume 
that the force ( )E Pf  is applied in the vicinity of the pole O , along the descendent 
vertical of that pole, the gravitational field being uniform) 

2
1 1 3 2 12 ( cos sin )mx F m x x m x� � � �� � � ��� � � , 

" #2
2 2 1 3 22 sin sin ( )cos sinmx F m x m x R x� � � � � �� � � � ��� � ,     (10.2.33') 

3 3 1( ) 2 cosEmx F m P m x� �� � ��� �f  
" #2

3 2cos ( )cos sinm x R x� � � �� � � .     

In general, this system of equations cannot be exactly integrated; we must use 
approximate methods of calculation, e.g. the method of the small parameter (after 
Poincaré), developing the solution in a power series after that parameter (from (10.2.24) 
it results that T� �� , where T  is a time specific to the considered mechanical 
phenomenon, �  being a non-dimensional small parameter) 

2
0 1 2 ...� �� � � �r r r r .                                     (10.2.34) 

If we replace in (10.2.33') and identify the powers of the same order as � , we can write 
successively 

(0)
11mx F��� ,   (0)

22mx F��� ,   (0)
33 ( )Emx F m P� ��� f ,                 (10.2.35)   

� �(1) (0) (0)
1 3 22 cos sinx x x� �� � ��� � �� ,   (1) (0)

2 12 sinx x �� ��� � ,    
(1) (0)
3 12 cosx x ���� � ,… 

 
(10.2.35') 

The approximation of nth order is obtained by quadratures, starting from the 
approximation of (n-1)th order; obviously, the convergence of the solution must be also 
verified. The approximation of order zero (10.2.35) corresponds to the neglect of the 
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motion of rotation of the Earth. For instance, in case of initial conditions of the form 
0(0) �r r , 0(0) �v v , we have 

0
0 (0) �r r ,   0

0 (0) �v v ,                                        (10.2.36) 
   1 (0) �r 0 ,   1 (0) �v 0 ,…                                      (10.2.36') 

a.s.o. If the initial conditions depend on � , then one uses systematically expansions in 
power series with respect to the small parameter �  and to each approximation are put 
initial conditions which multiply the same power of � . 

The condition of relative equilibrium with respect to the local frame 1 2 3Ox x x  is 
written in the form 

2 0( ) ( )Em P m �� � � 3 3 �$ %& 'F f R r 07 7 .                          (10.2.37) 

We put in evidence, in what follows, the influence of each term which appears in this 
equation. 

2.2.3 Acceleration of the centre of the Earth. Tide 

The translation acceleration O ���a  of the centre O �  of the Earth with respect to the 
heliocentric frame 1 2 3O x x x�� �� �� ��  is due, as we have seen, to the forces of attraction of the 
Sun, of the Moon and of other planets (the latter ones may be neglected because of the 
great distances from those planets to the Earth). The magnitude Oa ���  of the acceleration 
(due to the Sun and to the Moon) is given by ( ) ( )O O Oa a S a M� � ��� �� ��� � , where 

2( ) S
O

m
a S f

O O
��� �

�� �
,   

2

2( ) ( )M M
O O

S MM

m m O Oa M f a S
m O OO O

� �
�� �� ��� ��� � 	 
�� � �

; 

taking 8 3 26.673 10  cm /g sf �� � � , 331.989 10  gSm � � , 257.347 10  gMm � � , 
131.496 10  cmO O�� � � � , 103.844 10  cmMO O � � � , we obtain ( )Oa S���

15.931 10�� �  
2cm/s  (which leads to a force of 0.5931  dyne per 1 g  mass) and ( )Oa M���  

20.00559 ( ) 0.0033 cm/sOa S���� �  (corresponding 0.0033  dyne per 1 g  mass). 
For a better approximation of the influence of that acceleration, let us return to the 

equation (10.2.29'); we evaluate thus the magnitude of the force 

" # 3 3( ) ( ) S S
S S

mm mm
m P O f O P f O O

O P O O
� �� �� �� � � �

�� �� �

����� ������
f f .                   (10.2.38) 

Assuming that the Sun is at an infinite distance, hence that O P O O�� �� �
����� ������

� , the 

component of this force along the unit vector versO O�� ��
������

u  (Fig.10.9) is given by 
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" #
� �2 2( ) ( )

cos
S S

S S u
mm mm

m P O f f
O O R O O�

�� � � �
�� � �� ��

f f  

� � 2

2 1 1 cosSmm Rf
O OO O

�
�$ %� � �* +�� �& '�� �

� �2 1 1 2 cos ...Smm Rf
O OO O

�$ %� � � �* +& '�� ��� �
, 

wherefrom 

" # 3( ) ( ) 2 cos 2 ( ) cosS
S S Su

mm R
m P O f R m O

O OO O
� �� �� 1 �

�� ��� �
f f f ,      (10.2.39) 

with � �1 ,O P O P� � ��
����� �����

� . But O P O O O P�� �� � �� �
����� ������ �����

, so that the force (10.2.38) reads 

" # 3 3 3
1 1 1( ) ( )S S Sm P O fmm O O O P

O O O P O P

$� � %� �� � �� � � �	 
* +&� � '�� � �� ��

������ �����
f f ; 

but 2 2 2 2 cosO P O O R O O R ��� �� � �� �� � � , so that 

� �
3 3/22

1 2 cosO O R R
O P O O O O

�
��� �� � $ %� � �	 
 * +�� �� � �� �& '� �

 

� � � �2231 3 cos 5 cos 1 ...
2

R R
O O O O

� �� � � � �
�� � �� �

. 

Projecting on the unit vector u  and neglecting the terms in � �2/R O O�� �  with respect to 

/R O O�� � , we find again the component (10.2.39); the projection on the unit vector v  
(normal to u , Fig.10.9) is given by 

" # 3( ) ( ) sin ( ) sinS
S S Sv

mm R
m P O f R m O

O OO O
� �� �� 1 � �

�� ��� �
f f f ,      (10.2.39') 

the corresponding component being directed towards the diameter 2 1P P . 
Hence, the particle P  is acted upon, besides the gravity force ( )Em Pf , by a force 

due to the attraction of the Sun. We have seen, at the preceding subsection, that this 
force can be neglected; but, in case of a continuous mechanical system of great 
dimensions, the contribution of the terms due to this force of attraction is added and 
becomes noticeable, so that it must be taken into consideration. If such a mechanical 
system is rigidly connected to the Earth, e.g. its solid crust, then the effect of the force 
of attraction is not observed, but if this system is not rigidly linked to the Earth (the case 
of seas and oceans or of fluid masses in the interior of the terrestrial sphere), then 
appears the phenomenon called tide. The component along u  has extreme values for 

0� �  (the face opposite to the Sun, for which the water is repulsed) and for � ��  
(the face towards the Sun, when the water is attracted) and we have (Fig.10.9) 
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" #
extr

( ) ( ) 2 ( )S S Su
R

m P O m O
O O

� �� 1 2
�� �

f f f ,                       (10.2.40) 

the component along v  vanishing in this case. The component along u  is equal to zero 
for /2� �� 2 , while the component along v  has extreme values 

" #
extr

( ) ( ) ( )S S Sv
R

m P O m O
O O

� �� 1
�� �

�f f f .                        (10.2.40') 

In this zone, the particles of fluid are attracted by a greater force towards the Earth. At a 
point on the Earth surface, the force of attraction is varying in time, because the angle 
�  varies together with the rotation of the Earth. The extreme values of the magnitude 
of this force (hence, the phenomenon of tide, the flood and the ebb, respectively) appear 
twice in 24 hours (once when the Sun passes at the local meridian and once when it 
passes at the opposite one). It is obvious that the level of the tides is greater at the 
equatorial zone and tends to zero near the polar circle. 

One can study the influence of the Moon too, obtaining analogous formulae; thus 

" #
extr

( ) ( ) 2 ( )M M Mu
M

Rm P O m O
O O

� �� 1 2
�

f f f ,                     (10.2.41) 

" #
extr

( ) ( ) ( )M M Mv
M

R
m P O m O

O O
� �� 1

�
�f f f .                      (10.2.41') 

Introducing the numerical data mentioned above, we notice that 

" #
" #

" #
" #

extr extr

extr extr

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

M M M Mu v

S S S Su v

m P O m P O
m P O m P O

� �� �
�

� �� �

f f f f
f f f f

 

3( )
2.177

( )
M M

S SM M

O mO O O O
O mO O O O

� �� � �� �� �
� � �	 
� � �� �

f
f

; 

it results that the effect of the attraction force of the Moon on the tides is approximative 
twice greater than that of the Sun, although the mass of the Moon is smaller than that of 
the Sun, because it is closer to the Earth than the Sun. 

2.2.4 State of imponderability 
Let us consider the translation motion of a spatial vehicle, the mass centre O  of 

which describes an ellipse around the Earth. With respect to a non-inertial frame of 
reference with the pole at O , we can write the equation of motion of a particle P  of 
mass m , situated in the vehicle, in the form 

" # 3 3( ) ( ) E E
r E E

m m
m m P O m f O P f O O

O P O O

$ %� �� � � � � � �* +& '� �

����� �����
a F f f F ,  (10.2.42) 
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where O �  is the centre of mass of the Earth, the chosen fixed geocentric frame being 
considered inertial; we have neglected the force of attraction of the spatial vehicle, as 
well as the attraction forces of the Sun, of the Moon and of other planets, the equation 
(10.2.42) being similar to the equation (10.2.28'). 

Observing that O P O O OP� �� �
����� ����� ����

, we may also write 

3 3 3
1 1 1

r Em fmm O O OP
O O O P O P

$� � %�� � � �	 
* +&� � '� � �

����� ����
a F . 

If � �,O O OP� ��
����� ����

� , then we have 

1/22

1 2 cos 1 cos ...
O P OP OP OP
O O O O O O O O

� �
$ %� � �� � � � � �* +	 
� � � �� �& '

, 

so that O P O O� �1 ; on the other hand OP O P�� . The equation of motion is thus 
reduced to rm �a F . Assuming that the particle P  is not in contact with the walls of 
the cabin and that upon it there are not acting resistent forces of the medium, of an 
electromagnetic or of another nature, due to certain facilities existing in the vehicle, it 
results that �F 0 , hence r �a 0  too; thus, the state of imponderability in the interior 
of the spatial vehicle may be justified. 

2.2.5 Centrifugal force 
We have seen that the transportation force, in a motion with respect to the geocentric 

frame of reference, contains – besides the force due to the acceleration of the Earth 
centre and the force due to the angular acceleration vector �7 , which can be neglected, 
as we have mentioned before – also the centrifugal force (corresponding to the 
centripetal acceleration) 

2 0( )c m m� � 3 3 �F r r7 7 7 ,                                  (10.2.43) 

in conformity to the results in Subsec. 2.2.2; this force is normal to the rotation vector 
7 , having the direction towards the exterior of the Earth. But, for particles at the Earth 
surface, it is more convenient to use a local frame 1 2 3Ox x x  (Fig.10.8), so that we 
obtain the centrifugal force 

2 0 ( )c m �� � 3 3$ %& 'F R r7 7 ,                                   (10.2.44) 

of components 

2
1 1cF m x�� , 
" #2

2 3 2sin ( )cos sincF m x R x� � � �� � � � ,                (10.2.44') 
" #2

3 3 2cos ( )cos sincF m x R x� � � �� � � . 
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For the sake of simplicity, we assume that the particle is situated at the origin of the 
local frame (P O� ); it results ( 2 coscF mR� �� ) 

1 0cF � ,   2
2

1 sin 2
2cF m R� �� � ,   2 2

3 coscF m R� �� ,           (10.2.44'') 

where �  is the local latitude (Fig.10.11). 
As it can be noticed, the vector component 2cF  (which vanishes at the equator and at 

the poles, having an extreme value of 1.693  dyne per 1 g  mass at the latitude of 450 , 
both in the boreal and in the austral hemispheres) is tangent to the meridian circle, being 
directed towards the south in the boreal hemisphere and towards the north in the austral 
one; hence, at any point on the Earth surface, this component has the tendency to 
deviate the vertical direction (of the plummet) towards the equator. The vector 
component 3cF  (which vanishes at the poles and has, at the equator, a maximal value of 
3.386  dyne per 1 g  mass, which represents 3.386/980.6 0.0034531 , hence 
approximate 0.35%  from the weight of a mass of 1 g ) is along the local vertical 
(along the radius of the Earth, considered to be spherical), being directed towards the 
exterior of the Earth; this component has the tendency to decrease the effect of 
attraction exerted by the Earth upon the considered particle. 

 
Figure 10.11.  Action of the centrifugal force on the Earth surface. 

The ratio of the centrifugal force due to the motion of revolution of the Earth to the 
centrifugal force due to its motion of rotation is given approximately by 

� �21
0.176

365.25
O O
R
�� �

1 ; 

the equation (10.2.27) and then the equation (10.2.33) are thus justified. 

2.2.6 Deviation of the plummet from the local vertical 
For a systematic study of the influence of the centrifugal force at the Earth surface, 

we consider a particle P , hanged up by a thread at the fixed point Q , rigidly connected 
to the Earth (a plummet). The particle P  of gravity mass gm  is acted upon by the 
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terrestrial force of attraction ( )g gEm P m ��f g , where �g  is the gravity acceleration 
(the theoretical acceleration) and by the tension T  in the thread. If the Earth would be 
immovable, perfect spheric and with a distribution of mass with spherical symmetry, 
then the particle P  would be on the line QO � , and the theoretical acceleration would 
be the practical one (which is determined experimentally); but, due to the rotation of 
the Earth, appears the centrifugal force cF  too, so that the equation of relative 
equilibrium (10.2.37) reads 

g cm � � � �g T F 0 .                                            (10.2.45) 

 
Figure 10.12.  Deviation of the plummet from the local vertical. 

Denoting g c gm m� � �g F g , where g  is the terrestrial acceleration (the practical 
acceleration), we obtain (Fig.10.12) 

gm � �g T 0 .                                               (10.2.45') 

The theoretical vertical PO �  is thus replaced by the practical vertical QP  (the local 
latitude being thus the astronomical latitude � , instead of the geographical latitude 
� � ). In fact, a deviation of angle �  (the angle between the theoretical vertical and the 
practical one) of the plumb line is put into evidence. 

Projecting the relation (10.2.45) on a direction normal to the practical vertical, we 
get ( 2 cosc im R� � ��F , where im  is the inertial mass) 

2sin cos sin( ) 0g im g m R� � � � �� � �� � � � , 

wherefrom ( / gik m m� ) 

2

2 2
sin costan

cos
kR
g kR

� � ��
� �

� �
�

� ��
.                                    (10.2.46) 

The denominator of this expression is always positive, because the term 2 2coskR� � �  
2 23.386 cos  cm/sk � ��  is, in any case, less than 2981 cm/sg g� 1 1 ; hence, 

tan 0� � , so that 0� � , as 0 /2� ��� �  or /2 0� � �� � � . In conclusion, the 
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plummet is deviated from the theoretical local vertical towards the equator, as it was 
shown in the preceding subsection. Differentiating the function (10.2.46), one can show 
that max�  is obtained for 

2

2cos2
2
kR
g kR

��
�

� �
� �

. 

Taking into account the numerical data mentioned above, it results, with a very good 
approximation, cos2 0� � 1 , hence 45� � 1 0 ; in this case 

2

max max 2(tan )
2
kR
g kR

�� �
�

1 1
� �

.                            (10.2.47) 

If we notice that � �2 2 2 2cos 2g kR g kR� � �� � � �� , then we can also write 

2
2cos 1 cosRk

g
�� � �1 �
�

,   
2

sin sin2
2
Rk
g
�� � �1
�

,                  (10.2.46') 

the signs which are chosen corresponding to both hemispheres; the second of those 
formulae played a particularly important rôle in the theory of mechanical systems, being 
used to state experimentally the equality between the gravitational mass and the inertial 
one. To this scope, Eötvös and Zeeman used a balance of torsion (Eötvös’s balance), 
stating that, at any point of the Earth surface (and for all points having the same 
latitude), one obtains the same angle �  for particles of different masses (an 
approximation of 810�  with respect to unity). On the basis of the mentioned formula, it 
results constk � . Hence, the gravity mass differs from the inertial one by a constant 
factor k , which can be taken equal to unity ( 1k � ). Recent experiments of Dicke have 
put in evidence this result with an approximation of 1010�  with respect to unity. As 
well, they have been extended to the intimate structure of the atom. 

If we take 1k �  in (10.2.47) and put 2980.6 cm/sg g� 1 1 , we find 
max 0.001730 rad� 1  or max 5 56.92� � ��1 , hence the deviation of the plummet with 

respect to the local theoretical vertical is at the most of six minutes, so that it can be 
neglected. 

2.2.7 Calculation of the terrestrial acceleration 
From (10.2.45) and (10.2.45'), it results (we take 1k � ) 

2 cos vers cR� �� �� �g g F ,                                   (10.2.48) 

so that 

2 2 2 2 2 4 22 cos cosg g g R R� � � �� � � �� � � .                     (10.2.48') 

Developing into series, we may write 
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2 2 4
2 2

2
11 cos sin 2 ...
8

g R R
g g g

� �� �� �� � � �
� � �

,                   (10.2.49) 

obtaining thus the terrestrial acceleration g  (the practical acceleration), as a function of 
the gravity acceleration g �  (the theoretical acceleration), at any latitude on the Earth 
surface; replacing R  by R h� , we get g  as function of the altitude h  from the sea 

level too. The terms which contain � �22 /R g� �  can be, in general, neglected. Thus, we 
obtain, with a good approximation, the relation which links the terrestrial acceleration 
to the gravity one 

2
21 cos

Rg g
g
� �� �� �� �	 
�� �

.                                     (10.2.50) 

At the poles ( /2� �� � 2 ) we have g g �� ; in reality, this equality is approximate, 
because the Earth is not a sphere, but a spheroid and the distribution of masses is only 
approximately with spherical symmetry. At the equator ( 0� � � ), at the sea level, we 
get 

2
1e
Rg g
g
�� ��� �	 
�� �

;                                          (10.2.50') 

we notice that this result is an exact one, corresponding also to the formula (10.2.48'). 
Besides, the maximal difference g g ��  is obtained at the equator. Numerically, we 
have 2 3 2/ 3.4636 10 1/288.717 1/289 (1/17)R g� �� 1 � 1 1 � , where we have 
considered the Earth as a sphere of radius 86.371 10  cmR � �  and we have assumed 
that 2978.1 cm/sg g� 1 1 . Hence, if the Earth would be rotating about its axis with 
an angular velocity of 317 1.240 10  rad/s� �1 � , the particles situated at the equator 
would be weightless. 

In reality, the formulae obtained above have a certain degree of approximation, due 
to the model of sphere assumed for the Earth. If one takes into account that the Earth is 
a spheroid (e.g., in the classical theory of Clairaut), then one obtains the possibility to 
determine the gravity acceleration g �  corresponding to a parallel on the Earth surface; 
the theoretical acceleration g  may be thus calculated. As a matter of fact, even using 
the formulae (10.2.48)-(10.2.50) one cannot obtain g  without knowing g � ; but one can 
state that the difference 0g g� � �  is sufficiently small. 

Using a model closer to the physical reality, one can establish the formula 

980.60509 2.5028 cos2 0.0003g h�� � � ,                         (10.2.51) 

which gives the terrestrial acceleration in 2cm/s , as a function of the geographical 
latitude �  (the practical latitude) and of the height h  in cm , over the sea level. We 
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find thus, at the sea level ( 0h � ), 2978.1 cm/seg �  at the equator (result used 
before) and 2983.1 cm/spg �  at the poles. At the latitude 45� � 0  (which 
corresponds with a good approximation for Bucharest too) one obtains 

2
45 980.6 cm/sg 0 �  which represents the mean of the extreme values of the terrestrial 

acceleration. We notice that � � 45/ 0.0050989p eg g g 0� � , so that the theoretical 
acceleration has a variation of maximum 0.5% . 

Projecting the relation (10.2.45) on the practical vertical QP  (Fig.10.12), we get 

2cos cos cos( )g g im g m g m R� � � � �� � �� � � ; 

if we put g im m� , neglect the angle �  with respect to � � , and take cos 1� 1 , then 
we find again the formula (10.2.50) for 0h � . 

Observing that cosgg �� �� �g g , the formula (10.2.48) leads to 

2 2 2 4 22 cos cosg g gg R� � �� � �� � � ; 

taking into account (10.2.48'), we find 

2
2cos 1 cosg R

g g
�� �

� � ��� �	 
�� �
,                                   (10.2.52) 

relation which puts into evidence the degree of approximation of the formula (10.2.50) 
(approximation cos 1� 1 ). We may then also calculate (we take further into 
consideration the relation (10.2.48')) 

2 2
sin sin2 sin2

2 2
R g R
g g g
� �� � �

�
� �� �

�
;                            (10.2.52') 

as a matter of fact, this relation could be obtained as projection of the relation (10.2.45) 
on a normal to the theoretical vertical PO �  (Fig.10.12). The relations (10.2.52), 
(10.2.52') are exact, in comparison with the relations (10.2.46') and correspond to the 
relation (10.2.46) (for 1k � ). As well, the calculation of the angle max�  for 45� � � 0  
is justified too. 

The formula (10.2.52) is an exact one in the frame of the spherical model used for 
the Earth. Eliminating 2R�  between (10.2.52) and (10.2.52'), we find the relation 

sin
sin( )

g g �
� �

�
��

� �
,                                            (10.2.53) 

which is exact too. As a matter of fact, this result may be obtained by projecting the 
relation (10.2.45) on a normal to the centrifugal force cF  (Fig.10.12). 
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2.2.8 Deviation towards the east in the free falling of a heavy particle 
Let us return to the equations of motion of a heavy particle at the Earth surface 

(10.2.33'), where we take �F 0 , and let us put ( )E P g g�� 1f , corresponding to 
the results of the preceding subsection. The first approximation (10.2.35) with the 
initial conditions (10.2.36) leads to 

(0) 0 0
1 11x v t x� � ,   (0) 0 0

2 22x v t x� � ,   (0) 2 0 0
3 33

1
2

x gt v t x� � � � .         (10.2.54) 

Assuming that the particle is falling from a height h  with the velocity 0v  from a point 
of the local vertical (in what follows, by local vertical we mean only the theoretical 
vertical, directed towards the centre of the Earth, considered to be spheric), we take 

0 0
1 2 0x x� � , 0

3x h� ; in case of a free falling ( 0 �v 0 ), the motion takes place as 
the Earth would be fixed (in a first approximation the motion of rotation of the Earth is 
neglected). 

In a second approximation, the equations (10.2.35') with the initial conditions 
(10.2.36') allow to write 

� �(1) 3 0 0 2
2 31

1 cos sin cos
3

x gt v v t� � �� � � , (1) 0 2
12 sinx v t �� � ,  (1) 0 2

13 cosx v t �� . 

Remaining at this approximation (hence, neglecting 2�  as well as higher powers of 
� ), we get the solution 

� �3 0 0 2 0 0
1 2 3 1 1

1( ) cos sin cos
3

x t gt v v t v t x� � � � �� � � � � , 
0 2 0 0

2 1 2 2( ) sinx t v t v t x� �� � � � ,                          (10.2.54') 

� �0 2 0 0
3 1 3 3

1( ) cos
2

x t v g t v t x� �� � � � , 

which contains also the influence of the motion of rotation of the Earth (in a first 
approximation). 

In case of a free falling of a heavy particle along the local vertical ( 0 �v 0 ) from the 
height h , we get 

3
1

1 cos
3

x gt� �� ,   2 0x � ,   2
3

1
2

x gt h� � � ;                       (10.2.55) 

the results in Subsec. 2.2.1 are thus completed with a component in the positive 
direction of the 1Ox -axis. Hence, the heavy particle in free falling does not describe the 
descendent vertical, but an arc of semicubic parabola 

2
2 3 2
1 3

8 ( ) cos
9

x h x
g
� �� � ,                                   (10.2.55') 
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and reaches the Earth after an interval of time 2 /t h g�  with a deviation towards the 
east (corresponding to 1 0x � , Fig.10.8) equal to 

3/2
1max

2 2
cos

3
x h

g
�
 �� � .                              (10.2.55'') 

Considering the mean value 2980.6 cm/sg �  and taking into account (10.2.24), we 
obtain 

6 3/22.195 10 cosh
 ��� � ,                                    (10.2.55''') 

where h  is taken in cm , the deviation being obtained in the same units. The 
experimental verifications have put in evidence a good concordance with the theoretical 
results. Thus, in 1831, Reich has made experiments in the mines of Freiburg (to avoid 
the influence of the wind and of the other influences at the Earth surface), at a latitude 

51� � 0  and a falling height 41.585 10  cmh � � ; the average value exp 2.83 cm
 �  
of 106 experiments has been in good correspondence with the theoretical result 

2.76 cm
 � . We notice that for a height 410  cmh �  one has 2.195 cos
 �� , and 
the deviation is obtained in cm; e.g., at Bucharest ( 45� � 0 ) one has 1.55 cm
 � . At 
the poles ( /2� �� 2 ) we get 0
 � . The maximal deviation takes place at the equator 

( 0� � , 2978.1 cm/sg � ) and is given by 6 3/22.198 10 h
 �� �  ( 
  and h  in cm ); 
hence, max 2.20 cm
 1  in free falling from 410  cm 100 mh � � . 

If we launch a heavy particle along the ascendent local vertical ( 0 �r 0 , 
0 0
1 2 0v v� � , 0

3 0v � ), we get 

3 0 2
1 3

1 cos cos
3

x gt v t� � � �� � ,   2 0x � ,   2 0
3 3

1
2

x gt v t� � � ;         (10.2.56) 

the component 0
3 3v gt v� � �  of the velocity along the vertical vanishes at the moment 

0
3 /t v g� � , for which we get 

� �20
3 3

1
( )

2
x t v

g
� � ,   � �30

1 32
2( ) cos 0
3

x t v
g
� �� � � � , 

� �20
1 3( ) cos 0v t v

g
� �� � � � . 

The rotation of the Earth about its axis leads thus to a deviation towards the west of the 
particle. Taking the position and the velocity at the moment t �  as initial conditions and 
studying further the motion of the particle, we find that it takes place also in a plane 
normal to the local meridian; the particle returns on the Earth at the moment 

0
32 2 /t t v g�� �� �  at the point of co-ordinates 1 ( )x t �� � � �2(4/3) /g�� � �30

3 cosv �  
12 ( )x t �� 0� , 3 ( ) 0x t �� � , tangent at the vertical of this location ( 1 ( ) 0v t �� � , 



www.manaraa.com

Other considerations on particle dynamics 

 

647 

0
3 3( )v t v�� � � ); it results further a deviation towards the west, equal to that obtained in 

case of the ascendent motion (unlike the case of the free falling, the influence of the 
velocity 1 ( ) 0v t � �  takes place).  

In case of an approximation of higher order, when terms in 2�  intervene too, it is 
necessary to take into account the variation of g  with the height, as well as the force of 
attraction of the Moon. 

2.2.9 Coriolis’ force. Baer’s law 
The deviation along a tangent to the local parallel, considered in the preceding 

subsection, is due to the action of Coriolis’ force 2 rC m� � 3F v7 . The equations of 
motion of the heavy particle (10.2.33') read (with respect to the local frame of 
reference, Fig.10.8) 

1 2 32 ( sin cos )x x x� � �� ��� � � ,   2 12 sinx x� �� ��� � , 
    3 12 cosx g x� �� � ��� � , 

 
(10.2.57) 

in the absence of the centrifugal force; integrating, with the initial conditions 
0(0) �r r , 0(0) �v v , we can write 

� � � �" #0 0 0
1 2 2 3 3 12 sin cosx x x x x v� � �� � � � �� , 

� �0 0
2 1 1 22 sinx x x v� �� � � �� ,                             (10.2.57') 

� �0 0
3 1 1 32 cosx gt x x v� �� � � � �� . 

This system of linear differential equations can be easily integrated; as a matter of fact, 
eliminating 2x  and 3x  between the first equation (10.2.57) and the last two equations 
(10.2.57'), we get 

� �2 2 0 0 0
1 1 1 2 34 4 2 cos 2 sin cosx x x gt v v� � � � � � �� � � � ��� .           (10.2.57'') 

By integration, it results 

� � � �0 0 0
1 3 2 1

1 cos( ) cos sin (1 cos2 ) sin2
2 2

gx t v v t v t�� � � �
� �
$ %� � � � � �* +& '

 

0
1

cos
2
g t x�

�
� � . 

 
 
 

(10.2.58) 

Replacing in the last two equations (10.2.57') and integrating, we obtain also the 
solutions 

� � � �0 0 0
2 3 2 1

sin cos( ) cos sin sin2 (1 cos2 )
2 2

gx t v v t v t� �� � � �
� �

$ %� � � � � �* +& '
 

� �2 0 0 0
2 3 2

sin 2 cos cos sin
4

g t v v t x� � � �� � � � . 

 
 

 
 
(10.2.58') 
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� � � �0 0 0
3 3 2 1

cos cos
( ) cos sin sin2 (1 cos2 )

2 2
g

x t v v t v t
� �� � � �
� �

$ %� � � � �* +& '
 

� �
2

2 0 0 0
2 3 3

sin sin cos sin
2

g t v v t x� � � �� � � � . 

 
 

(10.2.58'') 

With the aid of the series expansions 3 3sin2 2 (2 ) /6 ...t t t� � �� � � , 
2 2cos2 1 (2 ) /2 ...t t� �� � �  and neglecting the terms in 2�  or of higher degree, we 

find again the solution (10.2.54'), obtained in the preceding subsection; as a matter of 
fact, in the following considerations we will use this solution, which puts in evidence 
(from a qualitative point of view), in a simpler way, various mechanical phenomena. 

If we assume that the heavy particle is launched in a meridian plane ( 1 0x � ), then 
we take 0 �r 0  and 0

1 0v � ; we obtain 

� �3 0 0 2
1 2 3

1( ) cos sin cos
3

x t gt v v t� � � � �� � � ,                     (10.2.59) 

so that the particle is deviated from the initial plane. As well, if the particle is launched 
in a plane normal to the local meridian ( 0 �r 0  and 0

2 0v � ), it results 

0 2
2 1( ) sinx t v t� �� � ,                                        (10.2.59') 

hence a tendency of deviation from this plane. 
Let us consider the motion in a plane tangent to the Earth sphere ( 3 0x � ) at the 

considered location (we take 0 �r 0  and 0
3 0v � ); we can write (with respect to the 

local frame of reference, Fig.10.8) 

3 0 2 0
1 2 1

1( ) cos sin
3

x t gt v t v t� � � �� � � , 
0 2 0

2 1 2( ) sinx t v t v t� �� � � ,                                 (10.2.60) 

� �0 2
3 1

1( ) cos
2

x t v g t� �� � . 

We notice that 0
12 cosg v � ��  (taking into account (10.2.24), we have 

0
12 cosg v � �� , even if the component 0

1v  of the initial velocity is equal to the second 
cosmic velocity); it results 3 ( ) 0x t � . Hence, the particle remains on the Earth surface 
and we may assume that the motion (in the vicinity of the initial position with respect to 
the Earth sphere) takes place in the tangent plane 3 0x � . A constraint force N  
(normal to the tangent plane, hence along the local vertical), which impedes the particle 
to leave the plane 3 0x �  is also acting in this case. The theorem of kinetic energy 
(10.2.16') allows to write 
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� �2d 1 0
d 2 r r rmv m
t

� � � � �g v N v , 

so that 0 constrv v� �  (result which can be accepted with a good approximation). 
We can thus express the components of the velocity in the form 01 ( ) cosv t v �� , 

02 ( ) sinv t v �� , where ( )t� ��  is the angle made by the velocity rv  with the 1Ox -
axis. Replacing in one of the first two equations (10.2.57) (where we make 3 0x �� ), 
we find, after identification, 2 sin� � �� �� ; hence, 

0( ) 2 sint t� � � �� � .                                        (10.2.61) 

Thus, we get 
Theorem 10.2.12 (Baer’s law). In the boreal hemisphere, the angle �  decreases, 
corresponding to a deviation towards the right of the heavy particle, while in the 
austral hemisphere the angle �  increases, corresponding to a deviation towards the 
left of it. 

 
Figure 10.13.  Action of the Coriolis force upon a particle on the Earth surface: launching along 

the tangent to the meridian (a); launching in the boreal hemisphere  
along the tangent to the parallel towards the east (b). 

Taking into account (10.2.61), one can show, by integration, that 

0
01 ( ) sin( 2 sin )

2 sin
v

x t t� � �
� �

� � � , 

0
02 ( ) cos( 2 sin )

2 sin
v

x t t� � �
� �

� � , 

so that the trajectory of the particle is circular; the radius of the circle is 0 /2 sinv � �  
and is very great (we take into account (10.2.24)) and we can approximate it by its 
tangent at the initial moment. 
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We notice that, with respect to the gravity force, we have 
52 / 2 / 1.487 10r r rm mg v g v� �3 � 1 �v7 , where rv  is expressed in m/s ; it 

results that Coriolis’ force may be, in general, neglected in case of a particle subjected 
to relative small velocities. 

Let us consider, in particular, the case in which the particle P  is launched in the 
boreal hemisphere, along the tangent to the meridian, e.g., towards the north 
(Fig.10.13,a); in this case, Coriolis’ force will be directed towards the east, tangent to 
the parallel which passes through P , having the magnitude 2 sinrCF m v� �� . From 
(10.2.59) we obtain a deviation towards the east given by 

3 0 2
1 2

1( ) cos sin 0
3

x t gt v t� � � �� � � . 

If the particle P  would be moving along the meridian towards the south point, then the 
Coriolis’ force would be directed towards the west. In both cases corresponds a 
deviation towards the right, in conformity to Baer’s law. In the austral hemisphere, the 
phenomenon is symmetric to that of the boreal hemisphere, with respect to the 
equatorial plane; thus, if the relative velocity is directed towards the north point, then 
Coriolis’ force will be directed towards the west. Coriolis’ force vanishes at the equator 
and is maximal at the poles ( max 2 rCF m v�� ); starting from one of the poles, the 
deviation will always take place towards the west. Thus, after a time t , the distance vt  
will be travelled through, corresponding a linear deviation 2

rv t�  and an angular 
deviation equal to 2 /r rv t v t t� �� , hence equal to the angle by which the Earth is 
rotating in that interval of time. Hence, a projectile launched from a pole has a 
rectilinear trajectory; its apparent deviation is due to the fact that the Earth is rotating. 
Thus, after 1 min 30 s one obtains an angular deviation of 0.0065628  rad, hence of 
approximative 22 34� �� , which cannot be neglected. 

The effect of Baer’s law is considerable in case of great continuous mechanical 
systems. For instance, the right bank of the rivers which run from the south towards the 
north or from the north towards the south, in the boreal hemisphere, is caving more then 
the left bank; we mention thus the rivers at the north of Asia (which run from the south 
to the north), which have the tendency of displacement towards the east. Due to the 
Coriolis force too, at the railway lines which are directed approximately along a 
meridian, being travelled through in a unique direction, the rail at the right is subjected 
to a greater wear (the east rail if the direction of circulation is from the south to the 
north or the west one in case of a circulation in the opposite direction). As well, the 
trade winds are directed towards the equator; the colder air (hence, heavier) tends to 
replace the warmer one (hence, lighter) in the boreal hemisphere from the north towards 
the south, while in the austral hemisphere from the south towards the north. Indeed, the 
wind is a mass of air in motion; in the absence of the Coriolis force, the direction of the 
motion corresponds to the gradient of the atmosphere pressure (from a high pressure to 
a low one, normal to the isobar lines). The intervention of the Coriolis force leads to a 
deviation towards the west (Fig.10.14,a) for the boreal hemisphere. In the state of 
equilibrium, the configuration of the wind is stationary; Coriolis’ force is in equilibrium 
with the forces due to the pressure, so that the wind becomes parallel to the isobar lines. 
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A zone of low pressure surrounded by isobar lines forms a cyclone. Due to Coriolis’ 
force, the wind is circulating around the cyclone, counterclockwise in the boreal 
hemisphere (Fig.10.14,b) and clockwise in the austral one. 

Figure 10.14.  Formation of trade winds (a) and of cyclones (b) in the boreal hemisphere. 

Let us study now the case in which the particle P  is launched, in the boreal 
hemisphere, along the tangent to the parallel, e.g., towards the east (Fig.10.13,b); in this 
case, the Coriolis’s force is contained in the meridian plane and is normal to the poles’ 
line, being directed towards the exterior of the Earth (the same direction as the 
centrifugal force) and having the magnitude 2 rCF m v�� . We decompose the force 

CF  in two components: the force 3CF  along the ascendent local vertical, which has the 
tendency to make smaller the weight of the particle, and the force 2CF , tangent to the 
meridian and directed towards the south, which has the tendency to deviate the particle 
in that direction (in conformity to the formula (10.2.59')); if the particle P  is launched 
in the austral hemisphere, towards the east too, then to the component 2CF  of Coriolis’ 
force corresponds a deviation towards the north (hence, in both cases, towards the 
equator). In the case in which the particle is launched towards the west, in any of the 
two hemispheres, Coriolis’ force and its components have an opposite direction; thus, 
the component 3CF  has the tendency to augment the weight of the particle, while the 
component 2CF  leads to a deviation towards the poles (towards the north in the boreal 
hemisphere and towards the south in the austral one). 

The effects of the Coriolis’ force can be put into evidence at the atomic level too. 
Thus, the polyatomic molecules have an aggregate motion of rotation, while the atoms 
oscillate around their positions of equilibrium; hence, the atoms are in relative motion 
with respect to a frame rigidly linked to the molecule. The Coriolis’ forces are non-
zero, leading to a displacement of the atoms in a direction normal to that of the original 
oscillations. 

2.2.10 Foucault’s pendulum 
Let us consider the motion of a heavy particle on a fixed sphere at the Earth surface 

in the boreal hemisphere; the spherical pendulum thus obtained is called the Foucault 
pendulum, after Léon Foucault, who made a famous experiment with such a pendulum 
in 1815, at the Pantheon, in Paris. We assume that the particle P  (in fact a spheric 
ball), of mass m , is hanged up at the end of a flexible and inextensible thread, of length 
l , fixed at the pole O  of the local (non-inertial) frame of reference. The equation of 
motion is written in the form 
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2r rm m m� � 3 �a g v T7 ,                                 (10.2.62) 

where T  is the tension in the thread (the constraint force arises because the particle is 
constrained to stay on the sphere of centre O  and radius l ) and where the influence of 
the centrifugal force has been neglected with the respect to Coriolis’s force ( 2�  has 
been neglected with respect to � ). In components, we obtain (Fig.10.15) 

Figure 10.15.  The Foucault pendulum. 

� � 1
1 2 32 sin cos

x
mx m x x T

l
� � �� � ��� � � , 

2
2 12 sin

x
mx m x T

l
� �� � ��� � ,                              (10.2.62') 

3
3 12 cos

x
mx mg m x T

l
� �� � � ��� � ; 

the relation of holonomic and scleronomic constraint 

2 2 2 2
1 2 3 0x x x l� � � �                                     (10.2.62'') 

is added to these equations. The elementary work of the constraint force is, in this case, 
equal to zero, so that the theorem of kinetic energy (10.2.15') leads to 

� �2
3

1d d d
2 rmv m mg x� � � �g r ,                               (10.2.63) 

wherefrom we get the first integral of energy 



www.manaraa.com

Other considerations on particle dynamics 

 

653 

2
32 ( )rv g x h� � � ,   3 (0)h x� � ,   (0) 0rv � .                        (10.2.63') 

From (10.2.62'') it results (one introduces the sign minus, taking into account the 
zone in which is the particle, Fig.10.15) 

� � � �
1/2

2 2 2 2
3 1 2 1 22 2

1 11 1 ...
2

x l x x l x x
l l

$ % $ %� � � � � � � � �* + * +& ' & '
. 

We assume that the length l  is very large and that the mass m  is sufficiently great. 
The pendulum has a small displacement from its position of equilibrium � , oscillating 
without initial velocity with respect to the Earth; in this case, it effects small oscillations 
around the position of equilibrium, which is a stable one. We can thus state that the 
ratios 1 /x l  and 2 /x l  are very small (we say, generally, that they are of order of 
magnitude 0� � , that is 1 / ( )x l �� O , 2 / ( )x l �� O ); it results 

� �2
3 1x l �� � �$ %& 'O , � �21h l �� � �$ %& 'O  and � �2

3h x �� � O . From (10.2.62''), 
(10.2.63'), we can write 

� � �1 1 2 2 3 3 0x x x x x x� � � ,   2 2 2
1 2 3 32 ( ) ( )x x x g h x �� � � � � �� � � O , 

so that 1 ( )x ��� O , 2 ( )x ��� O , 3 ( )x ��� O , � �2
3 3 1 1 2 2/ / /x x l x x l x x l �� � � �� � � O  

and then � �2
3x ��� O . The tension T  being of the order of unity, the first two 

equations (10.2.62') show that we have at least 1 ( )x ���� O , 2 ( )x ���� O . 
Differentiating the relation (10.2.62'') once more with respect to time, we can write 

� � � �2 2 2 2
3 3 1 2 3 1 1 2 2( / ) / ( / ) ( / )x l x x x x l x l x x l x �� � � � � � ��� � � � �� �� O , so that 3x��  

2( )�� O . Using the previous evaluations and observing that, in this case, 3x l1 � , the 
third equation (10.2.62') leads to 

T mg1 ,                                                    (10.2.64) 

the tension in the thread being approximately equal to that corresponding to the position 
of equilibrium. 

Returning to the first two equations (10.2.62'), we find the equations of motion in the 
plane 3x l� � , tangent to the position of equilibrium �  (which corresponds to small 
oscillations around this stable position of equilibrium), in the form (we consider the 
axes 1x�  and 2x�  parallel to the axes 1Ox  and 2Ox , respectively; for the sake of 
simplicity, we use the same notations for the co-ordinates) 

1 1 22 singx x x
l

� �� � ��� � ,   2 2 12 singx x x
l

� �� � ��� � ;                (10.2.65) 

in a vector form, we get 

32g
l

� � � 3�� �@ @ 7 @ ,                                         (10.2.65') 
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where 3 3 3 3sin� � �� �i i7  is the vector component of the rotation vector 7  along 
the local vertical, while @  is the position vector in the tangent plane. A vector product 
by @  leads to (we have 3 0� �@ 7 ) 

� � � �2
3 3 3

d d2 ( ) 2( )
d dt t

�3 � 3 � � 3 3 � � � � ��� � � �@ @ @ @ @ 7 @ @ @ 7 7 , 

wherefrom 

2
3�3 � �� C@ @ 7 ,   const�

������
C ,                                 (10.2.66) 

corresponding to a first integral of moment of momentum; scalarly, we have 

� �2 2
1 2 2 1 1 2 sinx x x x x x C� �� � � �� � ,   constC � .                   (10.2.66') 

In polar co-ordinates ,� � , we may express the first integrals (10.2.63'), (10.2.66') in the 
form 

� �2 2 2 2 ( )g g l h
l

� � �� � � ��� ,   2 2 sin C� � � � �� �� ,                  (10.2.67) 

characterizing thus the motion in the plane 1 2x x� . 
We introduce a system of axes 1 2�� � , movable with respect to the system 1 2x x� , 

which is rotating about the local vertical 3Ox  with the angular velocity 

3 3sin� �� � � i7  (in the sense north-east-south-west, hence clockwise). Taking into 
account (10.2.1), (10.2.1') and starting from the equation (10.2.65'), we can write the 
equation of motion of the particle P  with respect to this last movable frame in the form 

" #
2

3 3 3 3 32 2 ( ) ( ) ( ) 2( )g
l tt

( (
� � � 3 � � 3 � � 3 � 3 � � 3

((
� �@ @

@ 7 @ 7 @ 7 7 @ 7 , 

where / t( (@  and 2 2/ t( (@  are the relative velocity and acceleration, respectively. We 
notice that 3 �� 07  and 3d /d / ( )t t� � ( ( � � 3�@ @ @ 7 @ , so that (we have 

3 0� �@ 7 ) 

2
2

2 ( )g
lt

�(
� � � 3 3 � �

(
@

@ 7 7 @ @ ,   2 2 22
3 sing g

l l
� � � �� � � � .     (10.2.68) 

This is the equation of motion of a particle P  of mass m , attracted by the centre �  
with an elastic force 

� �2 22 singm m
l

� � �� � � �@ @ ;                                   (10.2.68') 
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hence, the trajectory is an ellipse or a segment of a line (degenerate ellipse), fixed with 
respect to the frame 1 2�� �  (Fig.10.16). This ellipse is rotating with respect to the frame 

1 2x x� , linked to the Earth, about the local vertical, with the angular velocity 

3 sin� � �� , in the sense east-south-west-north (clockwise); hence, if the particle 
pendulates in the plane 03x P� , then this plane is rotating with the angular velocity 3�  
in the sense indicated above. 

Figure 10.16.  The Foucault pendulum. Elliptic trajectory in the tangent plane with  
respect to the non-inertial frame of reference 1 2�� � . 

If we change the variable 3t� � �� �  and notice that (because ( / )t3 ( (@ @  
2

3� �� � i , Fig.10.16) 

� � � � � �2 2
2 2 2 2 2

3 3 3 3
d ( ) 2 , , 2
dt t t

� � � � � �( (
� � 3 � � � �

( (
��@ @ @

@ 7 7 @ , 

then we can express the first integrals (10.2.67) with respect to the frame 1 2�� �  in the 
form 

� �2 2 2 2 2 2sin 2 ( )g g l h
l

� � � � � �� � � � ��� ,   2 C� � �� ;             (10.2.67') 

we took into account that 

� �2 2 2 2 8 7sin 1 sin 1 10 ...10
g g l g
l l g l

� � � � � �� �� � � � �$ %	 
 & '� �
O , 

in the first integral, as it will be seen further. As a matter of fact, by calculation it has 
been obtained the term � �2 2 2/ 2 sing l � � �� ; but by the mentioned approximation 
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one has obtained a result corresponding to the elastic force (10.2.68'). Considering the 
elastic force of the form ( / )m g l� @@ , we write the first integral 

2 2 2 2 2 ( )g g l h
l

� � � �� � � ��� ,                                  (10.2.67'') 

correspondingly. We have thus put into evidence the first integral of energy (the 
potential energy corresponds to the conservative elastic force (10.2.68')) and the first 
integral of areas. 

The particle is launched from a position of rest 0P , of position vector 0@ (situated on 
the 1x� -axis, because for 0t �  we have � �� ), with a zero initial velocity with 
respect to the frame 1 2x x�  linked to the Earth ( d /dt � 0@ , hence d /d 0t� �  for 

0t � ); in case of a change of variable of the form 3t� � � �� � � , const� � , we 
start from an initial position 0P  non-situated on the 1x� -axis. If 0 1P x�� , then we 
get 3(0)� ��� , so that the constant of areas is given by 2 2

0 03 sinC � � � � �� � . The 
initial velocity is 0 0 03( / )t� ( ( � 3v @ 7 @ , normal to 0@  and of magnitude 

� �0 0 03 0sinv � � � � � ��� � � �  (Fig.10.16); it results, as well, (0) 0� �� . 

Analogously, one obtains the energy constant 2 2 2
0 0 3/2 /h l l g� � �� � � . The first 

integrals (10.2.67') become thus 

� � � �2 2 2 2 2 2 2 2
0 03 3

g
l

� � � � � � � �� � � � ��� ,   2 2
0 3� � � ��� .              (10.2.67''') 

We notice also that the initial position is one of the extremities of the major axis of the 
elliptic trajectory. The ellipse is travelled through by the particle in an opposite 
direction to that of the rotation of the frame 1 2�� �  with respect to the frame 1 2x x�  
(counterclockwise). 

In contradistinction to Foucault’s pendulum, in case of the spherical pendulum, (see 
Chap. 7, Subsec. 1.3.7), in the hypothesis of small oscillations, the elliptic trajectory is 
fixed; but, in general, the particle oscillates between two parallel circles, while the first 
integral of areas shows that the meridian plane of the pendulum is rotating about the 
vertical in the direction indicated by the initial velocity, which is the same with that in 
which the movable ellipse, which approximates the projection of the particle on the 
tangent plane 3x l� �  is travelled through. This result is obtained because the spheric 
pendulum is considered with respect to a local (inertial) frame; but Foucault’s 
pendulum is studied with respect to a local frame, considered to be non-inertial, taking 
thus into account the influence of the Coriolis force. 

In case of Foucault’s pendulum, the semiaxes of the ellipse are 

0a �� ,   0 03 3
0 32

3/
lb
gg l

� � � � � �
� �

� � 1
�

;                      (10.2.69) 

the ratio 
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3
32

3/
b l
a gg l

� �
�

� 1
�

                                      (10.2.69') 

is, in general, very small, and the eccentricity 

� �
1/22 2

2 8 7
321 1 1 ... 1 10 ...10

2
b l l

e
g ga

��
�

� �� �� � � � � � � � �	 

� �

O      (10.2.69'') 

is smaller than the unity, but very close to it. 
The ellipse is travelled through in a period 

2
3

2 2 2
/

l
gg l

� �� �
� �

� � 1
�

                                  (10.2.70) 

and effects a complete rotation north-east-south-west (clockwise) in an interval of time 
equal to 

3

2 2
sin

T � �
� � �

� � .                                            (10.2.70') 

From (10.2.69')-(10.2.70') it results 

b
a T

�
�                                                        (10.2.71) 

and we can state 
Theorem 10.2.13 (Chevilliet). In the motion of Foucault’s pendulum, the ratio of the 
two semiaxes (minor and major) of the ellipse of projection is equal to the ratio of the 
period in which the ellipse is travelled through to the period of complete rotation of it. 

Figure 10.17.  The Foucault pendulum. The trajectory with respect to the inertial frame of 
reference 1 2Ox x  if 0� ��  (a) and if 0� ��  (b), for 0� �� . 

At the points for which 0� �� , the velocities are normal to the corresponding radii 
vectors, the trajectory being normal to those radii and tangent to the circles with �  as 
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centre, having as radii the above mentioned ones; if we make 0� ��  in (10.2.67''') and 
eliminate �� , then we find again the semiaxes a  and b  given by (10.2.69). Indeed, in 
its rotation, the ellipse is contained between the circles  aC  and 

 bC  of radii a  and b , 
respectively. One observes that the semi-major axis a  does not depend neither on the 
location on the Earth surface, nor on the initial conditions; but the semi-minor axis b  
depends on the latitude � , as well as on the initial conditions (radius 0� ). Moreover, 
the initial conditions play an important rôle, specifying the nature of the trajectory of 
the particle with respect to the frame 1 2�� �  (segment of a line or ellipse) and with 
respect to the frame 1 2x x� . Thus, for 0� ��  we obtain 3� ��� , hence 0� �� , while 

0 3 /� � � ��  leads to � �22
3 3 3/ / /g l� � � � �� � �� , wherefrom 3/g l� ��� . The 

trajectory of the particle with respect to the frame 1 2x x�  can be represented as in 
Fig.10.17,a; the points of tangency to the circle a� �  are cuspidal points ( 0� �� ), 
while at the points for which min� ��  the trajectory is tangent to the circle b� �  
( 0� �� ). If 0� �� , then 0C �  and the trajectory is a segment of a line, with respect 
to the frame 1 2�� � ; hence, we get 3� �� �� , the trajectory with respect to the frame 

1 2x x�  having the form of a multifolium (in particular, quadrifolium) (Fig.10.17,b). In 
case of other initial conditions (if d /d 0t� �  for 0t � ) one obtains trajectories as in 
Figs 10.18,a,b. 

Figure 10.18.  The Foucault pendulum. Trajectories with respect to the inertial  
frame of reference 1 2Ox x  for 0� �� . 

The numerical data in Foucault’s experiment have been 42.8 10  gm � �  and 
36.7 10  cml � � , Paris’ latitude being 48 50� �� 0  to which corresponds 

2 29.809 10  cm/sg � � ; from the formulae (10.2.70), (10.2.70') it results 16.42 s� � , 
114458 s 31 hours 47  min 38 s 32 hoursT � � 1 . These theoretical data have 

been in very good concordance with the experiment; at the same time, the quantitative 
evaluations previously made are justified. A thorough study can be found in the 
dissertation of H. Kamerlingh Onnes (Groningen, 1879). In Cologne, at the latitude 
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50 50 30� � ��� 0 , Garthe has obtained (with 35 10  cml � � , 41.7 10  gm � � and 
2

0 3 10  cmr � � ) a rotation of 11 38 51� ��0 , the rotation observed experimentally being 
of 11 37 40.8� ��0  (hence, a very good concordance). In Bucharest, at the latitude 

45� � 0 , one obtains 121854 sT 1  33 hours 50 min 54 s�  34 hours1 . 
In the austral hemisphere, the ellipse is rotating in the sense east-north-west-south 

(counterclockwise). 
Because the theoretical results obtained starting from the hypothesis of rotation of 

the Earth about the poles’ axis are in good concordance with the experimental ones, we 
can state that the Earth is indeed rotating about this axis; moreover, the universal 
attraction law which has been put in evidence – at the beginning – for cosmic bodies, 
extends its validity for the phenomena at the Earth surface too. We mention that an 
observer localized in an inertial frame (e.g., a heliocentric frame) would see the 
pendulum oscillating only in the same plane (assuming that the trajectory of the particle 
with respect to the frame 1 2�� �  is a segment of a line), the Earth being in rotation with 
respect to this plane. 

These conclusions have a particular importance for the knowledge of our planet and 
put in evidence the interest presented by Foucault’s experiment. We must mention also 
that the motion of rotation of the Earth has been stated by astronomical observations, 
before this famous experiment; but Foucault’s study puts theoretically in evidence the 
motion of the Earth, astronomical observations being no more necessary (which cannot 
be made if, for instance, the Earth would be covered by a thick stratum of clouds, as 
Venus, the only planet which is rotating about its axis from west to east). 

3. Dynamics of the particle of variable mass 
There exist bodies the mass of which is variable in time; it can decrease (e.g., the 

mass of a rocket, which is acted upon by a propulsive force due to the ejection of an 
explosive material – fine particles, gas, internal liquid – emission phenomenon) or 
increase (e.g., a planet on which fine cosmic particles of a nebula encountered in its 
way are falling – capture phenomenon). We may consider also other examples, as: an 
aerostat which lifts by throwing down the ballast over the border, the splinting of a 
device processed at the lathe etc. In the case in which such a body can be modelled as a 
particles arises the problem to obtain the equation governing this motion and to 
integrate it in various particular cases. 

3.1 Mathematical model of the motion. General theorems 

To can set up a mathematical model of motion of a particle of variable mass, hence 
to find a law of motion which may be reduced to Newton’s equation in case of a 
constant mass, we start from a classical mathematical model, corresponding to a 
discrete mechanical system, the general theorems (especially, the theorem of 
momentum) allowing then to establish the equation of motion which is governing the 
considered mechanical phenomenon. We may then state the corresponding general 
theorems, which extend those of the particle of constant mass. 
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3.1.1 Meshcherski�’s model. Levi-Civita’s equations 

We assume, in what follows, that the motion of a free particle P  of variable mass 
( )m m t�  takes place by the detachment (emission) of some parts of it (it corresponds 

the decrease of the mass); this phenomenon puts in evidence the apparition of internal 
forces, which are called reactive forces. We assume thus that, at the moment of 
detachment of some parts of the particle (in fact, the particle P  is a mechanical system 

Figure 10.19.  Meshcherski�’s mathematical model of a particle of variable mass. 

which is emitting particles, e.g., a rocket which is emitting particles of gas, Fig.10.19), 
takes place a phenomenon analogous to that of collision. We consider the motion of the 
particle with respect to an inertial (fixed, absolute) frame of reference, so that – at the 
moment t  – it has the velocity ( )tv  and the momentum ( ) ( )t m t�H v . In the 
interval of time t) , a part of mass m�) , 0m) � , is detached from the particle, with 
the absolute velocity u  and with a relative velocity w  with respect to a non-inertial 
frame of reference, attached to the particle in motion; on the basis of the principle of 
action and reaction, appears a reactive force R  (corresponding to a collision force in 
the mentioned analogy). The momentum of the system formed by the particle without 
the detached part (after emission) and the detached (emitted) part (see Chap. 11, 
Subsec. 1.1.1) is given by " #( ) ( ) ( )t t m m m�� ) � � �) � ) � )H v v u , where �) v  
represents the variation of the velocity of the particle P  of variable mass, in the 
interval of time t) , due to the process of emission of a part of it. The considered 
mechanical system is a closed one, so that we can apply the conservation theorem of 
momentum (see Chap. 11, Subsec. 1.2.5), hence ( )( )m m m m�� ) � ) � ) �v v u v . 
Neglecting the terms of higher order, we obtain ( / )( )m m�) � ) �v u v , determining 
thus the variation of the velocity of the particle of variable mass m , due to the emission 
of mass m�) . Introducing the influence of the given forces of resultant F  too, 
Newton’s equation gives ( / )m t��) � )v F . Finally, on the basis of parallelogram’s 
principle, we may write � ��) � ) � )v v v , so that, dividing by t)  and passing to the 
limit for 0t) � , it results I.V. Meshcherski�’s equation (we assume that, in the 
interval of time t) , the velocity v  of the particle P  has a continuous variation and is 
not influenced by the collision effect due to the emission of mass, taking into account 
the inertia of the mass of the particle and that, before the emission, the emitted mass had 
the same velocity as the particle P ) 

( )m m� � �� �v F u v ,   0m �� ,                                    (10.3.1) 

obtained by him in 1897; it was found again in 1898 by K.E. Tsiolkovski� and applied 
to the study of the rockets with several steps. We can write this equation also in the 
form 
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d ( )
d
m m
t

� � �� �v H F u ,   0m �� .                               (10.3.1') 

Observing that the relative velocity of the emitted part with respect to a non-inertial 
frame of reference, attached to the particle in motion, is given by � �w u v , we can 
introduce the reactive force 

( )m m� � �� �R u v w ,   0m �� ,                                  (10.3.2) 

so that Meshcherski�’s equation takes the form 

m � ��v F R ,   0m �� ;                                        (10.3.1'') 

we state thus (with respect to an inertial frame of reference) 
Theorem 10.3.1 (Meshcherski�). The product of the mass of a free particle of variable 
mass by its acceleration is equal to the sum of the resultant of the given forces and the 
reactive force which acts upon the particle. 

In the case in which the mass of the particle P  is increasing, due to a phenomenon 
of capture of a mass m) , 0m) � , we can make an analogous study. Maintaining the 
previous notations, we may write ( )t m m� � )H v u , corresponding to the system 
formed by the particle P  and the mass m)  which is captured; as well, we have 

( ) ( )( )t t m m �� ) � � ) � )H v v . Using once more the conservation theorem of 
momentum and the principle of the parallelogram and passing to the limit, it results 

m� �� �H F u ,   0m �� ,                                          (10.3.3) 

as well as 

m m� � � �� �v F w F R ,   0m �� ,                                  (10.3.3') 

the Theorem 10.3.1 remaining still valid. 
In the study of capture of meteorites by a planet, T. Levi-Civita assumed that the 

absolute velocity u  of the captured masses vanishes (the absolute quadratic mean 
velocity of the captured cloud of particles is negligible with respect to the velocity of 
the planet); the equation (10.3.3) becomes 

d ( )
d
m
t

� ��v H F ,   0m �� ,                                        (10.3.4) 

obtaining thus Levi-Civita’s equation. We may state 
Theorem 10.3.2 (Levi-Civita). If the absolute velocity of the masses captured by a free 
particle of variable mass vanishes, then we can express the theorem of momentum as in 
the case of a particle of constant mass. 

The theorem is valid also in the case of emission of mass. 
Analogously, if the relative velocity w  of the emitted masses vanishes (uniform 

emission of particles in all directions, from a celestial body), then the equation (10.3.1'') 
becomes 
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m ��v F ,   0m �� ,                                               (10.3.5) 

and we can state 
Theorem 10.3.3 (Levi-Civita). If the masses emitted by a free particle of variable mass 
have a vanishing relative velocity with respect to it, then Newton’s equation of motion 
maintains its form. 

Projecting Meshcherski�’s equation on the co-ordinate axes, we get 

i i imx F R� ��� ,   1,2, 3i � .                                      (10.3.1''') 

In particular,  if the relative velocity of the masses emitted by the particle P  of 
variable mass is directed along the tangent of unit vector =  to its trajectory, the 
magnitude of the velocity of the particle being constant in time, we can write (the 
velocity w  is opposite to the velocity v ) 

wm mw m
v

� � � �� � �v F F v= ,   0m �� .                               (10.3.6) 

Often, by a convenient change of variable, we may obtain remarkable forms for the 
above equations. Let us suppose, for instance, that the absolute velocity u  of the 
masses emitted by a particle of variable mass vanishes. Meshcherski�’s equation 
(10.3.1) takes the form 

m m� �� �v F v ,                                                (10.3.4') 

corresponding to Levi-Civita’s equation (10.3.4). By the change of variable 

dd
( )
t

m t
� � ,                                                 (10.3.7) 

we get, successively, 

d 1 d
d dt m �

� �
r rv ,   

2

2 2 2
d 1 d
d d

m
m m� �

� � �
� r ra ; 

replacing in the equation (10.3.3'), we can write, finally, 

2

2
d( )
d

M t
�

�
r F ,   1( )

( )
M t

m t
� ,                              (10.3.7') 

obtaining thus an equation of motion, which has a form analogous to that of the 
classical Newton equation. 

3.1.2 Meshcherski�’s generalized equation 

In some cases, the motion of the free particle P  of variable mass takes place with 
simultaneous emission and capture of mass. We mention thus the turbo-jet airplanes 
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(the captured particles of air are evacuated together with the products of the combustion 
in the motor), the jet-propelled ships, the captive balloons (the ballast is thrown and the 
connecting cable is lengthened) etc., which can be modelled as particles of variable 
mass. Assuming that, in the interval of time t) , the particle P  loses (emits) a mass 
m��) , which has the absolute velocity �u , and captures a mass m�) , which has an 

absolute velocity �u , using the results previously obtained and the principle of the 
parallelogram, we can develop a unitary theory, writing the Meshcherski� generalized 
equation in the form (Fig.10.20) 

Figure 10.20.  Mathematical model for Meshcherski�’s generalized equation. 

( ) ( )m m m� �
� �� � � � �� � �v F u v u v ,   0m� �� ,   0m� �� .           (10.3.8) 

Introducing the reactive force (in general, it accelerates the motion of the particle, 
especially if its direction is close to that of the velocity v ) 

( )m m� �
� � �� � �� �R u v w ,   0m� �� ,                             (10.3.9) 

due to the process of emission, and the braking force (in general, it brakes the motion of 
the particle, especially if its direction is close to the direction of the velocity v ) 

( )m m� �
� � �� � �� �R u v w ,   0m� �� ,                            (10.3.9') 

due to the process of capture, we may write the equation (10.3.8) in the form 

m � �� � ��v F R R .                                            (10.3.8') 

We notice that, in general, the processes of emission and capture are independent one of 
the other and independent of the mass ( )m t  of the particle P . In the case in which the 
particle is not free, being subjected to constraints, the corresponding constraint forces 
must intervene. 

In particular, if only a process of emission takes place, then we obtain 

m �� ��v F R ,                                                (10.3.10) 
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while in case of only a process of capture, we have 

m �� ��v F R ;                                               (10.3.10') 

in both equations intervenes an instantaneous variation of mass, which can be 
independent of the mass ( )m t . If the instantaneous variation of the captured mass is 
equal to the instantaneous variation of the emitted mass ( m m� �� � ), it results 

( )m m�
� �� � �� �v F u u ,                                      (10.3.10'') 

where the difference of velocities between the parentheses corresponds, in fact, to a 
relative velocity. We notice that the mass m  of the particle at the moment t  is given 
by 

0m m m m� �� � � ,   0m� �� ,   0m� �� ;                          (10.3.11) 

in case of a process of emission, we have 0m� � , so that 0m m m�� �  and 
m m��� � , 0m �� , while in case of a process of capture 0m� � , hence 

0m m m�� � , m m��� � , 0m �� . Thus, we can write the equation (10.3.10'') in the 
form 

( )m m � �� � �� �v F u u ,                                    (10.3.10''') 

obtaining an equation of the form (10.3.1). 
The equations of motion established above, in the frame of the Newtonian model of 

mechanics, can be used if a law of variation of mass as function of time is given, in 
general of the form 

0 ( )m m f t� ,   (0) 1f � ,                                    (10.3.11') 

0m  being the initial mass at the moment 0t �  (considered to be the beginning of the 
process of mass variation). We mention – especially – the case in which ( )f t  is a 
linear function and the reactive force is constant 

( ) 1f t t�� � ,   0R mw m w�� � �� ,   const� � ,                   (10.3.12) 

and the case in which ( )f t  is an exponential function, the relative acceleration being 
constant and the reactive force variable 

( ) e tf t ��� ,   1 mR w w
m m

�� � �
� ,   0 e tR m w �� �� ,   const� � .      (10.3.12') 

Reciprocally, if the relative acceleration /R m  is constant, then the law of variation of 
mass is exponential and if, instead the sign – we take the sign + in the formulae 
(10.3.12), (10.3.12'), then one obtains the results corresponding to the phenomenon of 
capture. 
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3.1.3 Inverse problem of dynamics of the particle of variable mass 

In the direct problem (the first fundamental problem) of a free particle of variable 
mass, the given and the reactive force, as well as the braking force (hence, the law of 
mass variation) which act upon the particle are given, and one must determine its 
trajectory. In the inverse problem (the second fundamental problem), the motion of the 
particle is known and the law of mass variation is given and one must determine the 
forces which act upon the particle, or the forces which act upon the particle are given 
and the law of mass variation must be determined. Obviously, one can imagine various 
types of mixed problems. 

Let us consider, e.g., the motion of a heavy particle of variable mass along the local 
vertical, in a resistent medium; choosing the ascendent vertical as axis, we can write 
Meshcherski�’s equation in the form 

0 ( )mv mg m g v mw�� � � �� � , 

where 0 ( )m g v�  is the resistance of the medium. Taking into account (10.3.11'), we get 

fv gf g fw�� � � � �� . 

Assuming now that the motion of the particle is known, being given by ( )x x t� , we 
can calculate ( )v v t�  and than ( ( )) ( )v t t� �� ; observing that ( )w w t�  and 
denoting 

( )
( )

v t g
p t

w
�

�
�

,   
( )

( )
g t

q t
w
�

� ,                                  (10.3.13) 

it results the linear differential equation of first order 

( ) ( ) ( ) ( ) 0f t p t f t q t� � �� ,                                      (10.3.13') 

which, by integration, reads 

( )d ( )d( ) e ( )e dp t t p t tf t C q t t� � �$ %� �& '� ,                          (10.3.13'') 

the law of mass variation being thus determined. First of all, let us suppose that the 
motion is in vacuum ( ( ) 0v� � ). If 0 constv v� � , then it results 

( ) / constp t g w� �  and ( ) 0q t � , while ( ) e ptf t C �� ; taking into account 
(10.3.11'), we find an exponential law for the mass variation 

0e
g t
wm m �� .                                                  (10.3.14) 

If 0 0v a t v� � , 0v a�� , then we get, analogously, 
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0

0e
a g

t
wm m
�

�� ,                                              (10.3.14') 

result which is a generalization of the previous one. Let us suppose now that the motion 
takes place in a resistent medium, for which ( )v kv�� � , const� � . If 

0 constv v� � , then we obtain 0( ) constt kv�� � �  and ( ) / constp t g w� � , 

0( ) / constq t kgv w�� � ; it results, finally, 

� � � �0 0 00 0 0e 1 1 e 1 e
g g gt t t
w w wm m kv m kv m kv� � �� �$ %� � � � � �* +& '

.        (10.3.14'') 

If 0 0v a t v� � , 0v a�� , we get � �0 0( )t k a t v �� � �  and 

 
0 0

0 0( ) e ( ) e d
a g a g

t t
w w

kg
f t C a t v t

w
�

� �
� $ %� � �* +& '� ; 

for 1� �  (resistance proportional to the velocity) we may write 

� �, - 
0 0 00

0 0 0
0 0

e 1 1 e e
a g a g a g

t t t
w w w

a wkgm m v a t
a g a g

� � �
� $� � %� � � � �	 
* +� �&� � '

 

 
00 0 0

0 0 0 0
0 0 0 0

1 e
a g

t
w

a w m kg a wkgm v v a t
a g a g a g a g

�
�$ � � % � �� � � � � �	 
 	 
* +� � � �& � � ' � �

. 

    (10.3.14''') 

3.1.4 Motion of a particle of variable mass in absence of given forces. 
Tsiolkovski�’s first problem 

In absence of given forces, the equation of motion of a free particle P  of variable 
mass becomes 

m m� �� �v w R .                                             (10.3.15) 

In Tsiolkovski�’s first problem, the relative velocity w , of constant magnitude, is along 
the tangent to the trajectory and opposite to the velocity v ; we can thus write 

wm m
v

� �� �v v .                                            (10.3.15') 

Let us suppose that the motion is rectilinear, along the Ox -axis; in a scalar form, we 
have 

mv mw� �� � .                                            (10.3.15'') 

Taking into account (10.3.11') and integrating with respect to time, we get 
lnv w f C� � � , constC � ; we obtain Tsiolkovski�’s formula 

0
0 ln

m
v v w

m
� � ,                                        (10.3.16) 
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with the initial condition 0(0)v v� . Let us take a zero initial condition ( 0 0v � ) and 
let 0m m�  be the total mass emitted till the moment t ; introducing Tsiolkovski�’s 
number 0( )/Z m m m� � , we may write the velocity at a given moment in the form 

ln(1 ) 2.3 log(1 )v w Z w Z� � 1 � .                               (10.3.16') 

This formula allows to obtain some conclusions particularly important in practice. 
Thus, the velocity of the particle of variable mass at the end of the active segment (the 
end of the process of emission, hence of the combustion in a rocket) is as greater as the 
relative velocity of emission is greater; this velocity increases logarithmically with 
Tsiolkovski�’s number (in fact, with the ratio of the mass at the initial moment to the 
mass at the final moment) and does not depend on the variation law of mass (it does not 
depend on the régime of work of rocket’s motor). Hence, to obtain velocities as great as 
possible of the particle of variable mass at the end of the process of emission, it is more 
advantageous to increase the relative velocity of the evacuated masses than to increase 
Z  (the reserve of fuel). The motor of the rocket must be improved and the fuel must be 
conveniently chosen. 

If the relative velocity (of emission) changes of direction, remaining constant in 
modulus (reactive braking), when the particle P  reaches the velocity 1v , then is put the 
problem to determine the supplementary reserve of mass, necessary to equate to zero its 
velocity 2v  (for the landing of the rocket). Let us suppose that at the velocity 

01 1ln( / )v w m m�  the mass of the particle is 1m ; we can write 

1
2 1

2
ln 0
m

v v w
m

� � � , 

where 2m  is the mass of the particle which corresponds to 2 0v � . It results 

0 1 1 2/ /m m m m�  or � �20 2 1 2/ /m m m m� . If 1 2 2( )/Z m m m� � �  is 
Tsiolkovski�’s number which defines the total reserve of mass, then we can write 

21 (1 )Z Z �� � � , wherefrom 

( 2)Z Z Z� �� � ;                                               (10.3.17) 

we obtain thus the total reserve of mass necessary to landing as function of 
Tsiolkovski�’s number at the end of the driving line segment. 

Observing that d /dv x t� , starting from (10.3.16), and taking into account 
(10.3.11'), we can write 

0 0 0
ln ( )d
t

x x v t w f � �� � � � .                                   (10.3.18) 

In the particular case in which the relative velocity of emission vanishes ( 0w � ), it 
results a uniform motion ( 0 0x x v t� � ). If the mass has a linear variation of the form 
(10.3.12), then we get 
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" #0 0 (1 )ln(1 )wx x v t t t t� � �
�

� � � � � � ,                        (10.3.18') 

while if the mass has an exponential variation of the form (10.3.12'), then we obtain 

2
0 0

1
2

x x v t w t�� � � ;                                       (10.3.18'') 

the parameter �  is called unit mass of consumption and characterizes the consumption 
of mass with respect to the initial mass. In the first case, the reactive force is constant 
and is given by (10.3.12), while in the second case the relative acceleration of emission 
is constant and the reactive force has an exponential variation, being given by 
(10.3.12'). 

3.1.5 Theorem of momentum 

Starting from Meshcherski�’s equation (10.3.1), we can extend the general theorems 
of mechanics to the dynamics of the free particle of variable mass; we mention that the 
generalized Meshcherski� equation does no more lead to interesting results. 

The equation of motion (10.3.1) leads to the formula (10.3.1') or to the formula 
(10.3.3) and we may state (with respect to an inertial frame of reference) 
Theorem 10.3.4 (theorem of momentum). The derivative with respect to time of the 
momentum of a free particle of variable mass ( )m m t�  is equal to the sum of the 
resultant of the given forces which act upon the particle and the product of the 
derivative with respect to time m�  of the mass of the particle, which characterizes its 
variation, by the absolute velocity of the emitted or captured mass ( 0m ��  corresponds 
to the phenomenon of emission, while 0m ��  corresponds to the phenomenon of 
capture). 

We notice that the product m� u  is of the nature of a force (different from the reactive 
force definite by the relation (10.3.2)). 

By integration with respect to time, for " #1 2,t t t� , we obtain 

2 2

1 1
2 1 2 2 1 1( ) ( ) ( )d ( ) ( )d

t t

t t
t t m m t t m t t t) � � � � � �� � �H H H v v F u  

2 2

1 1
( )d ( )d ( )

t m

t m
t t t m t� �� �F u                                (10.3.19) 

and may thus state 
Theorem 10.3.5 (theorem of variation of momentum). The variation of the momentum 
of a free particle of variable mass in a given interval of time is equal to the sum of the 
impulse of the resultant of the given forces which act upon it and the impulse of the 
mass emitted or captured in the same interval of time. 

If the absolute velocity of the emitted or captured masses vanishes ( �u 0 ), then we 
find again the Theorem 10.3.2, and the formula (10.3.19) is reduced to the formula 
(6.1.45''). 

If the absolute velocity u  is constant in time ( 0�u u ), then we get 
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2

1
2 2 1 1 ( )d

t

t
m m t t� � ��w w F ,   01 1� �w u v ,   02 2� �w u v ,       (10.3.19') 

where we have introduced the relative velocities w  at the initial and at the final 
moment, respectively. 

If the relative velocity w  vanishes ( �u v ), then we may write 

2 2

1 1
2 2 1 1 ( )d ( )d ( )

t m

t m
m m t t t m t) � � � �� �H v v F v .                   (10.3.19'') 

In the case in which the resultant of the given forces vanishes ( �F 0 ) the formula 
(6.1.45'') leads to a conservation theorem of momentum ( 1 1 2 2m m�v v ); assuming that 
the initial moment is 1 0t � , while the final moment is t , we may write 

0
0 0

1( )
( )

m
t

m f t
� �v v v                                         (10.3.20) 

too, the velocity being of constant direction. In general, we can write a scalar first 
integral if the projection (component) of the sum m� �F u  along a fixed direction 
vanishes; if 

m� ��F u 0 ,                                               (10.3.21) 

then we obtain a conservation theorem of momentum. Let us express the given force in 
the form �F a , where a  is a vector component of the acceleration �v ; the above 
condition takes the form m m� ��a u 0 . Hence, taking into account (10.3.11''), we can 
state 
Theorem 10.3.6 (conservation theorem of momentum). The momentum of a free 
particle of variable mass is conserved in time if and only if the masses emitted or 
captured are moving after a law given by the relation 

( )t��u a ,   1( )
(d/d )ln

t
t f

� � � .                               (10.3.21') 

In fact, integrating once more, we get a new vector first integral, corresponding to 
the motion law of the particle. 

From the formula (6.1.45''), we obtain 

02 1 2 1( )m m t t� � �v v F                                        (10.3.22) 

if 0 const� �
������

F F . 

3.1.6 Theorem of moment of momentum. Theorem of areas 

Starting from the relation (10.3.1') or from the relation (10.3.3) and by means of a 
vector product at left by r , we get 
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" #d ( ) ( )
d O Om m
t

3 � � � 3� �r v K M r u ,   O � 3M r F                 (10.3.23) 

and we state 
Theorem 10.3.7 (theorem of moment of momentum). The derivative with respect to 
time of the moment of momentum of a free particle of variable mass, with respect to a 
given pole, is equal to the sum of the moment of the resultant of the given forces which 
act upon it and the moment of the product of the derivative with respect to time of the 
mass of the particle, which characterizes its variation, by the absolute velocity of the 
mass emitted or captured, with respect to the same pole. 

By integration with respect to time, for " #1 2,t t t� , we get 

2 1 2 2 2 1 1 1( ) ( ) ( ) ( )O O Ot t m m) � � � 3 � 3K K K r v r v  
2 2

1 1
( )d ( ) ( )d ( )

t m
Ot m
t t t t m t� � 3� �M r u .                        (10.3.24) 

If the absolute velocity of the masses emitted or captured vanishes ( �u 0 ), then this 
formula is reduced to the formula (6.1.46'') and we can state 
Theorem 10.3.8. If the absolute velocity of the emitted or captured masses by a free 
particle of variable mass vanishes, then we may express the theorem of moment of 
momentum as in the case of a particle of constant mass. 

If the moment of the resultant of given forces vanishes ( O �M 0 ) too, then we 
obtain a conservation theorem of the moment of momentum ( 2 2 2 1 1 1m m3 � 3r v r v ). 
Assuming that the initial moment is 1 0t � , while the final one is t , and introducing 
the areal velocity given by (5.1.16), we may also write 

0
0 0

1( )
( )

m
t

m f t
� �I I I ;                                       (10.3.25) 

hence, the areal velocity is of constant direction. In general, we obtain a scalar first 
integral if the projection (component) of the sum ( )O m� 3 �M r u  on a fixed direction 
vanishes. If ( )m3 � ��r F u 0 , then we obtain a conservation theorem of moment of 
momentum. We notice that, if a relation of the form (10.3.21) takes place, then we can 
write not only a conservation theorem of momentum, but a conservation theorem of 
moment of momentum ( constO � �

������
K C ) too. As in the case of the particle of 

constant mass, the trajectory of the particle P  of variable mass is plane and it results 

1
2m

� CI .                                                  (10.3.26) 

Because ( )m m t� , we can no more write a theorem of areas. We may state 
Theorem 10.3.9. To conserve the moment of momentum of a free particle of variable 
mass, it is sufficient that the emitted or captured masses move after a law given by the 
relation (10.3.21'). 
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The relation (10.3.23) may be written also in the form 

d( ) ( ) 2 ( )
d

m m m m
t

3 � 3 � � 3 � 3�� �r v r v r F r wI .                 (10.3.26') 

We have 

const ( ) ( )m� � 3 � 3 � 3 � �
������

�r F r w r F R 0I ; 

hence, we can state 
Theorem 10.3.10 (conservation theorem of areal velocity). In case of a free particle of 
variable mass, the areal velocity with respect to a given pole is conserved only and only 
if the sum of the moment of the resultant of the given forces which act upon the particle 
and the moment of the product of the derivative with respect to time of the particle 
mass, which characterizes its variation by the relative velocity (with respect to the 
particle) of the emitted or captured mass, with respect to the same pole, vanishes. 

We can mention some particular cases in which a conservation theorem of areal 
velocity takes place, hence a theorem of areas too. Thus, if the resultant F  of the given 
forces is a central one, passing through the pole O , and if the support of the relative 
velocity � �w u v  passes through the same pole, then it results const�

������
I ; in 

particular, we can have �w 0  (hence, �u v ) or �F 0 . One obtains the same result 
if the resultant F  of the given forces equilibrates the reactive force R . 

In the case in which the absolute velocity u  of the emitted and captured masses is 
collinear with the velocity v  of the particle P  of variable mass ( ��u v ), ( )t� �� , 
the force F  being a central one, we may write the theorem of moment of momentum in 
the form 

d ( ) ( )
d

m m
t

�3 � 3 �r v r v ; 

introducing the areal velocity, we find 

( 1)m
m

�� �
��I I . 

Because I  and dI  are collinear vectors, it results that ( )tI  and ( d )t t�I  are 
collinear vectors at any moment t , the areal velocity I  being thus a vector of constant 
direction; hence, the trajectory of the particle P  is a curve contained in a plane which 
passes through the fixed pole O . A scalar product of the relation obtained above by I  
leads to (we notice that ��� � ��I I ) 

( 1)m
m

� � �� �
�� ; 

denoting �� uI , vers�u I , we can write � �� ��� �u uI , wherefrom, taking into 
account the above relations, we get ��u 0  or const�

������
u , hence the same conclusion as 

above. Integrating and using polar co-ordinates in the plane of motion, we have 
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d( 1)22 e
m
mr C �� � ��� �� .                                      (10.3.27) 

If const� � , then it results 

2 12 r Cm�� � �� �� ;                                         (10.3.27') 

for 1� �  we find again the previous result, in which the areal velocity is conserved. 
This case is encountered in the external ballistics of the particle of variable mass. 

As in the particular case of constant mass, the Theorems 10.3.4 and 10.3.7 allow us 
to write 

( ) ( ) ( )O O O m= � = � =� �H F u                                       (10.3.28) 

and to state 
Theorem 10.3.11 (theorem of torsor). The derivative with respect to time of the torsor 
of a free particle of variable mass, with respect to a given pole, is equal to the sum of 
the torsor of the resultant of the given forces which act upon it and the torsor of the 
product of the derivative with respect to time of the particle mass, which characterizes 
its variation, by the absolute velocity of the emitted or captured mass, with respect to 
the same pole. 

Obviously, the condition (10.3.21) leads to a conservation theorem of torsor. 
Starting from (10.3.1'') and (10.3.26'), we may write 

( ) ( ) ( )O O Om= � = � =�v F R ,                                    (10.3.28') 

where R  is the reactive force. 

3.1.7 Theorem of kinetic energy 
Starting from Meshcherski�’s relation (10.3.1) or (10.3.3') and with the aid of a scalar 

product by d dt�r v , we can write 

2d d d dm v m m� � � � � �v v F r u v ; 

introducing the kinetic energy 2 /2T mv�  and the elementary work of the given 
forces d dW � �F r , it results 

21d d d d
2

T v m W m� � � �� u r ,                             (10.3.29) 

so that we may state 
Theorem 10.3.12 (theorem of kinetic energy). The sum of the differential of the kinetic 
energy and the semiproduct of the differential of mass by the square of the velocity of a 
free particle of variable mass is equal to the sum of the elementary work of the resultant 
of the given forces which act upon the particle and the elementary work of the product 
of the derivative with respect to time of the particle mass, which characterizes its 
variation, by the absolute velocity of the emitted or captured mass. 
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We notice that one may write the relation (10.3.29) also in the form 

dd d ( )mT W T
m

� � � �H u ;                                  (10.3.29') 

introducing the relative velocity � �w u v  and the reactive force m� �R w , it results 

2
d d d

2 R
vm W W� � � �	 


� �
,                                     (10.3.29'') 

too, where d dRW � �R r  is the elementary work of the reactive force. Thus, we state 
Theorem 10.3.12' (theorem of kinetic energy; second form). The product of the mass of 
a particle of variable mass by the differential of its kinetic energy, assuming that it has 
a mass equal to unity, is equal to the sum of the elementary work of the resultant of the 
given forces which act upon the particle and the elementary work of the reactive force. 

Dividing by dt , we may also write 

2d
d 2 R
v

m P P
t
� � � �	 

� �

,                                      (10.3.29''') 

so that we can state 
Theorem 10.3.12'' (theorem of kinetic energy; third form). The product of the mass of 
a free particle of variable mass by the derivative of its kinetic energy with respect to 
time, assuming a mass equal to unity, is equal to the sum of the power of the resultant 
of the given forces which act upon the particle and the power of the reactive force. 

In the case in which the absolute velocity of the masses emitted or captured is equal 
to zero ( �u 0 ), we obtain 

21d d d
2

T v m W� �                                           (10.3.30) 

or 

1 d( ) dmT W
m

� ;                                           (10.3.30') 

if the relative velocity of these masses vanishes ( �w 0 , hence �u v ), then it results 

21d d d
2

T v m W� � ,                                      (10.3.31) 

as well as 

2
d d

2
v

m W� � �	 

� �

                                         (10.3.31') 

or 
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2d
d 2
vm P

t
� � �	 

� �

.                                      (10.3.31'') 

One can thus state corresponding theorems for the two problems of Levi-Civita. 
If the absolute velocity u  of the emitted or captured masses is normal to the velocity 

v  of the particle ( 0� �u v ), then we get the same results as in the case �u 0 . 

3.2 Motion of a particle of variable mass in a gravitational field 

We present, in what follows, the motion of a particle of variable mass in a 
gravitational field; we mention, especially, the motion along a vertical, in vacuum or in 
a resistent medium, in case of a linear or exponential variation of mass. As well, we 
consider the motion of a particle in a fixed plane (the external ballistics problem). 

3.2.1 Tsiolkovski�’s second problem 

Let be a free particle P  of variable mass, which is moving along the local vertical; 
in Tsiolkovski�’s second problem one assumes that the particle, of weight mg , is 
launched up with an initial velocity 0v , at the moment 0t � , the relative velocity 

const�
������

w  of the emitted masses being descendent (in this case, the reactive force is 
directed towards up, because 0m �� , Fig.10.21). Taking the Ox -axis along the 
ascendent vertical, we may write Meshcherski�’s equation (10.3.1'') in the form 
(neglecting the air friction) 

Figure 10.21.  Tsiolkovski�’s second problem. 

mv mg mw� � �� �  

or in the form 

d ln ( )
d

v g w f t
t

� � �� ; 
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taking into account the conditions at the initial moment 0t �  ( 0m m� , 0�v v ), it 
results the velocity 

0
0( ) ln

m
v t v gt w

m
� � � ,                                  (10.3.32) 

the position of the particle P  being given by ( (0) 0x � ) 

2
0 0

1( ) ln ( )d
2

t
x t gt v t w f � �� � � � � .                        (10.3.32') 

In case of a linear variation of mass, given by (10.3.12), we obtain 

" #2
0

1( ) (1 )ln(1 )
2

wx t gt v t t t t� � �
�

� � � � � � � ,                   (10.3.33) 

while in case of an exponential variation of mass of the form (10.3.12'), we have 

2 2
0

1 1( )
2 2

x t gt v t wt�� � � � .                                   (10.3.33') 

The particle reaches a height for which ( ) 0v t � ; in case of the motion given by the 
law (10.3.33'), we get 0 /( )t v g w�� � , so that 

2
0( )

2( )
v

h x t
g w�

� �
�

.                                        (10.3.34) 

If /g w� � , then one observes that 0v v� , the motion being uniform (relative 
equilibrium), while if /g w� � , then the reactive force is greater than the weight. 
From the expression of the time t  it results /g w� � , so that the particle is moving in 
a field of acceleration 0g w�� � ; one observes thus that the formula (10.3.34) 
corresponds to Torricelli’s formula (7.1.17). 

3.2.2 Motion of a particle of variable mass along a vertical, in a field of Newtonian 
attraction 

As above, we consider the motion in vacuum of a particle P  of variable mass along 
the local vertical, with an initial velocity 0v , directed towards up, assuming an 
exponential variation of mass, of the form (10.3.12'); we suppose that the particle is 
acted upon by a Newtonian force of attraction, in inverse proportion to the square of the 
distance between the particle and the centre O  of the Earth. Meshcherski�’s equation of 
motion (10.3.1'') reads 

2
0

2
g R

mv m mw
x

� � �� � , 
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where 0g  is the gravity acceleration at the Earth surface (at the sea level), for x R� , 
the Ox -axis being along the ascendent vertical. Taking into account the variation of 
mass, we obtain ( d /dv x t� ) 

2
0

2
d
d

g Rvv w
x x

�� �  

and, integrating with respect to x , with the condition 0v v�  for x R� , the velocity 
is given by 

� �02 2
0 2( )

g R
v v x R w

x
�� � � � .                               (10.3.35) 

By a change of variable (1 )x R z� � , we can write 

� �2 31 1
1

R z z z
x z

� � � � �
�

O , 

where we neglect 3z  and higher powers for heights x  relative small. The relation 
(10.3.35) becomes 

� �2 2 3
0 0

0
2 1wv v g Rz z z

g
�� �� � � � �	 


� �
O , 

wherefrom (we notice that d /dv R z t� ) 

2

d
d

z
t

z z
�

� �
�

� �
,   

2
0

02
v
g R

� � ,   
0

1w
g
�� � � ,   02g

R
� � .      (10.3.36) 

If we take x R� , hence 0z �  for 0t � , and if we assume that 0 0v � , hence 
0� � , then we get, by integration, 2(1 cosh )/2 sinh ( /2)z t� � � �� � � ; the 

height x x R Rz� � �  with respect to the Earth surface is given by 

0 02 2

0
sinh sinh

2 2
w g gtx R R t
g R

��� �
� � .                        (10.3.36') 

Denoting by 1t  the time in which the active line segment is travelled through, its 
length results in the form 

0 02
1

0
sinh

2
w g g

h R t
g R

� �
� ,                                    (10.3.37) 

the velocity at its end being given by 
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� �02
1 2

g R
v h w

R h
�� �

�
.                                       (10.3.37') 

The motion of the particle P  along the passive segment of a line is governed by the 
equation (with 1 1( )m m t� ) 

2
0

1 1 12
d
d

g Rvm v m v m
x x

� � �� , 

which leads to (with the condition 1v v�  for x R h� � , at the end of the active 
segment of a line) 

� �2 2 2
01

1 12v v g R
x R h

� � �
�

; 

for 0v �  we obtain the total height H x R� � , given by 

2
1

2
0

1
1

2

H R
v

R h g R

� �
�

�

.                                 (10.3.37'') 

In case of an instantaneous combustion ( 0h � ), we have 

2
1

2
1

02

v
H

v
g

R

�
�

;                                            (10.3.37''') 

if 01 2v g R� , then we find again Torricelli’s formula, corresponding to the case of 
the particle of constant mass. 

The study may be performed for an arbitrary x  too. 
Let us consider now for the mass of the particle P  a linear variation of the form 

0 0
1

(1 ) 1 tm m t m
t

� �� �� � � �	 

� �

, 

where 0 01( )/m m m� � � , 1m  being the mass at the end of the active segment (at the 
end of the combustion, 1t t� ) while 0 1m m�  is the consumed mass. The equation of 
motion reads 

1

1
1

w
t

v gt
t

�

�
� �

�
� , 
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where 2 2
0 /g g R x�  is the gravity acceleration, 0g g�  taking place for x R�  (at 

the Earth surface – sea level). Assuming, at the beginning, that 0 constg g� � , we 
obtain 

0
1

ln 1 tv w g t
t

�� �� � � �	 

� �

; 

at the end of the active segment, we may write ( 1 1( )v t v� ) 

01 1ln(1 )v w g t�� � � � ,                                   (10.3.38) 

this formula being used in external ballistics. 
If we take into account the variation of g  with the altitude, then we have to integrate 

the equation 

2
1

0 2

1

0
1

w
tR

x g tx
t

�

�
� � �

�
�� , 

observing that we can consider 0 0( ) ( )m m f t m f x� � , it results (we have 
d /dx v v x��� ) 

2
2

01
1

d2 2
( )

R h

R

R xv g R w
R h t f x

� �� �� � �	 
�� � � ,                         (10.3.39) 

where 1v v�  and x R h� �  for 1t t� . Integrating, analogously, the equation of 
motion for which one takes, with approximation, 0g g� , we read 

2
01

1

d
2 2

( )
R h

R

x
v g h w

t f x
� �

� � � � ;                                (10.3.39') 

subtracting one formula from the other, it results, finally, 

" #
2 2

22 2
0 0 01 1 12 ln(1 ) 2h hv v g w g t g
R h R h

�� � � � � �
� �

,            (10.3.38') 

where we took into account (10.3.38). We get thus the velocity at the end of the active 
segment, as a function of the altitude at the respective moment. We notice that in the 
formula (10.3.39') it has been taken the same function ( )x x t�  to express the mass 
variation 0 ( )m m f t�  as in the formula (10.3.39), which can be assumed only as a 
first approximation. 

The acceleration at the end of the combustion (for 1t t�  we have 1g g� ) reads 
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1
11
w g
t

��
�

� �
�

.                                           (10.3.40) 

3.2.3 Rectilinear motion of a particle of variable mass in a resistent medium 

Let us, further, consider the motion of a particle P  of variable mass along the local 
vertical, with an initial velocity 0v , directed towards up in a resistent medium; we 
assume that the mass is varying in time after the linear law (10.3.12). Meshcherski�’s 
equation of motion (10.3.1'') is written in the form (the resistance Q  and the relative 
velocity w  are directed opposite to the motion, Fig.10.22) 

 
Figure 10.22.  Rectilinear motion of a particle of variable mass in a resistent medium. 

( )mv Q v mw� � �� � .                                        (10.3.41) 

If the magnitude of the resistance is proportional to the velocity ( 0Q m kv� , 
constk � ) and if we take, in general, 0 ( )m m f t� , we obtain 

0k fv v w
f f

� � �
�

� , 

wherefrom 

d d
( ) ( )

( )
( ) e e d

( )

t tk k
f t f t

f t
v t C w t

f t
� $ %� �� �* +

& '
�
�

,   constC � .              (10.3.42) 

Observing that ( ) 1f t t�� �  and by the initial condition 0(0)v v� , we get 

� � /
0( ) (1 )kw wv t v t

k k
�� ��� � � � ;                          (10.3.42') 

integrating once more and taking (0) 0x � , we obtain 
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� � ( )/
0

1( ) 1 (1 ) kw wx t t v t
k k k

� �� � �
�

�$ %� � � � �& '�
.                (10.3.42'') 

If the magnitude of the resistance is proportional to the square of the velocity 
( 2

0Q m kv� ), then one integrates the equation 

2(1 )t v w kv� �� � �� , 

by separating the variables; we put the initial condition (0) 0v �  and get 

2 /

2 /

1 (1 )

1 (1 )

kw

kw

twv
k t

�

�

��
�

� �
�

� �
.                                 (10.3.42''') 

For /kw �  sufficiently great, we can take, with a good approximation, /v w k�1 . 
In aerodynamics one obtains 0 /2m k b A�� , where b  is the aerodynamical 
coefficient, �  is the air density, while A  is a characteristic area of the body, modelled 
as a particle; one obtains thus an approximative expression of the velocity in the form 

0

0

2 G w
v

b g A
�
�

� ,                                                (10.3.43) 

where 0G  and 0g  are the weight of the particle and the gravity acceleration at the 
initial moment 0t � , respectively. 

Let us consider now the projection on a horizontal line of the motion of a particle of 
variable mass in a resistent medium (we take the Ox -axis in the horizontal plane). We 
assume that 2

QQ k v�  and 2
PP k v� , where P  is the lift (the ascensional force); if 

Qk  and Pk  are proportional to the air density, then the ratio /P Qk k��  is 
independent on this density. It must be, permanently, an equilibrium between the 
weight of the particle and the lift (mg P� ), so that the equation of motion (10.3.41) 
reads 

1
g wv

t
�
�

� � �
�

�
�

,  

where we considered a linear variation of the mass too. In the case in which constx � , 
we get, by integration (with the initial condition 0(0)v v� ), 

0( ) ln(1 )gv t v t w t�� � � �
�

;                                 (10.3.44) 

integrating once more (with (0) 0x � ), it results 

2
0( ) ( ) (1 )ln(1 )

2
g wx t v w t t t t� �

�
� � � � � �

�
,                    (10.3.44') 
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hence the equation of motion of the particle on the active segment of a line. These 
results allow to solve also some interesting problems of optimum. 

3.2.4 The balloon problem 

A problem in the frame of those studied above is that of a balloon of weight mg , 
which rises along the vertical by a continuous throwing of the ballast over the border. 
We assume that the balloon is acted upon by an ascensional force A , corresponding to 
Archimedes’ theorem (hence, a force equal to the weight of a volume of air 
corresponding to that of the balloon), and by the resistance of the air, the magnitude of 
which is in direct proportion to the square of the velocity ( 2( )Q v kv� , constk � ). 
The equation of motion along the ascendent vertical reads 

2mx mg A kx mw� � � � ��� � � ,                                 (10.3.45) 

hence it is a differential equation of the first order of Riccati’s type in ( )x t , which may 
be integrated by two quadratures if a particular integral is known. 

If, e.g., the condition that the motion of the balloon be uniform is put 
( 0x v�� , 0 constv � ), then we get an equation with separate variables, which leads to 
(with constw �  and the initial condition 0(0)m m� ) 

� �
2
0 / /

0( ) 1 e egt w gt wQ kv
m t m

g
� ��

� � � .                       (10.3.45') 

If the ballast ( )M t  is thrown in a sufficiently long time, so that the factor /e gt w�  be 
practically zero for ( ) 0M t �  together with t � � , then we have 

� �2
0 0 0 /m M Q kv g� � � , 0 (0)M M� , and the relation (10.3.45') leads to 

/
0( ) e gt wM t M �� ;                                       (10.3.45'') 

hence, if the mass of the ballast varies after an exponential law, then the ascensional 
motion of the balloon is uniform. 

3.2.5 External ballistic problem 

Let us consider a more general case of motion of a heavy particle P  of variable 
mass in the air, at the Earth surface. We assume that the trajectory is a plane curve (see 
Subsec. 3.1.6 too), the particle being acted upon by the weight mg , by the reactive 
force R m� � �R w= , 0m ��  ( =  is the unit vector of the tangent to the trajectory in 
the direction of the motion) and by the resistance Q� �Q = , with 

2
0 0( /2) ( / )Q b Av� � ��  (Fig.10.23), where b  is the aerodynamical coefficient, �  

and 0�  represent the density of the air at a given height and at the Earth surface, 
respectively, while A  is a characteristic area of the body modelled as a particle. We 
notice that we can take, in general, 3( ) ( )b v x� �� , so that 
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3( ) ( )Q Kh x f v� ,  0
1
2

K A�� ,  3 3
0

( ) ( )h x x
� �
�

� ,  2( ) ( )f v v v�� .    (10.3.46) 

Denoting by �  the angle made by the tangent to the trajectory with the 1Ox -axis, we 
have 1cos /x v� � � , 3sin /x v� � �  so that we may write the equations of motion along 
the considered axes in the form 

1
1 3( ) ( )

xK m
x h x f v w

m m v
$ %� � �* +& '

���� ,   3
3 3( ) ( )

xK m
x g h x f v w

m m v
$ %� � � �* +& '

���� . 

 (10.3.47) 

In Frenet’s frame of reference, of unit vectors ,= J , it results 

 
Figure 10.23.  The external ballistic problem. 

3sin ( ) ( ) 0K mv g h x f v w
m m

�� � � �
�� ,  

2
cos cos 0v g v g

R
� � �� � � � �� , (10.3.47') 

where we took into account the definition relation of the curvature radius 
1/ d /d /R s v� �� � � � � . These equations are used in the external ballistics of the 
projectiles of variable mass. 

3.3 Mathematical pendulum. Motion of a particle of variable mass in 
a field of central forces 

The classical problems of the dynamics of a particle can be taken again in the case of 
a particle of variable mass. In the following, we consider the mathematical pendulum of 
variable mass and the motion of a particle of variable mass in a field of central forces. 

3.3.1 Mathematical pendulum of variable mass 

Let be a particle P  of variable mass and weight mg , constrained to move on a 
circle of radius l and centre O , situated in a vertical plane (Fig.7.9). We assume that 
the motion takes place in vacuum, the absolute value of the emitted masses vanishing 
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( �u 0 ). Observing that v l�� � , where ( )t� ��  is the generalized co-ordinate which 
specifies the location of the particle, the theorem of kinetic energy, written in the form 
(10.3.30), leads to 

� �2 2 2 21 1d d sin d
2 2
ml l m mgl� � � �� � �� � ; 

if we exclude the case of equilibrium ( 0� �� ), then it results 

2 sin 0m
m

� � � �� � �
��� � ,   2 g

l
� � ,                              (10.3.48) 

obtaining an equation which generalizes the classical equation (7.1.38') of the 
mathematical pendulum. 

Writing the equation of motion 

m � � ��v F R R ,   m� � �R v ,                                 (10.3.49) 

in projection on the principal normal, we obtain the magnitude of the constraint force 
R  in the form (with the direction towards the pole O ) 

22 2
cos cos cosv vR m mg mg mg

l gl
�� � �
�

$ %� �� �� � � � � �* +	 
 	 

� � � �* +& '

�
.       (10.3.49') 

If the variation of mass is after an exponential law of the form 0e tm m �� , 
const� � , then the equation (10.3.48) becomes 

2 sin 0� �� � �� � ��� � ;                                      (10.3.48') 

it has thus the same form as the equation of the pendulum of constant mass in a resistent 
medium, for which the resistance is proportional to the velocity (see Chap. 7, Subsec. 
1.3.3). 

In case of small oscillations around a stable position of equilibrium ( 0� � ) we can 
take sin � �1 , and the equation (10.3.48) becomes linear 

2 0m
m

� � � �� � �
��� � .                                       (10.3.48'') 

Meshcherski� considered the case of a mass with linear variation. Thus, if the mass 
has a variation of the form 0 (1 )m m t�� � , 0� � , the equation (10.3.48) reads 

2 0
1 t
�� � � �
�

� � �
�

�� � .                                    (10.3.50) 

By a change of variable (1 ) /t� � � �� � , one obtains Bessel’s equation 
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2

2
d 1 d 0

dd
� � �

� ��
� � � ,                                      (10.3.50') 

the solution of which is written by means of Bessel’s function of the first species and of 
order zero in the form 

2

0 2 2
0

( ) ( ) ( 1)
2 ( !)

n
n

n
n

CJ
n

�� � �
�

�
� � � ;                           (10.3.50'') 

we get 

� �
0

0
0

(1 )
( )

J t
t

J

� ��� � �
�

$ %�& '� ,                                     (10.3.50''') 

with the initial condition 0( / )� � � ��  for 0t � . 

 
Figure 10.24.  Mathematical pendulum of variable mass. 

If the mass has a variation after the law 0 (1 )m m t�� � , 0� � , then one obtains 
the equation 

2 0
1 t
�� � � �
�

� � �
�

�� � ;                                        (10.3.51) 

in fact, Meshcherski� has considered the equation ( 0� � ) 

2 0
1 t
�� � � �
�

� � �
�

�� � ,                                       (10.3.51') 

which has a somewhat more general character. By a change of variable 
(1 ) /t� � � �� �  and of function ( )/2(1 )t � � �� � � �� � , we obtain Bessel’s 

equation 
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2 2

2 2
d 1 d 1 0

dd
n� �

� �� �
� �� � � �	 

� �

,   
2

n � �
�
�

� ,                       (10.3.51'') 

which can be integrated with the aid of Bessel’s functions nJ2 , as n  is an integer or a 
fraction; in particular, if � �� , then we find again the preceding result (changing the 
sign, from ��  to � ). 

In the general case in which �u 0 , the theorem of kinetic energy, written in the 
form (10.3.29) leads to 

2 sin sin( )m m u
m ml

� � � � � �� � � �
� ��� � .                              (10.3.52) 

where �  is the angle made by the absolute velocity u  with the Ox -axis (Fig.10.24). 
Analogously, one can study the motion of the mathematical pendulum in a resistent 

medium. 

3.3.2 Motion of a particle of variable mass in a field of central forces 

We consider the motion of a particle of variable mass ( )m m t� , 0m �� , acted 
upon by a central force, for which the relative velocity of the emitted masses vanishes 
( �w 0 ). It is assumed that the central force is of attraction, its magnitude being in 
inverse proportion to the square of the distance to the fixed point and in direct 
proportion to the square of the mass; the equation of motion corresponding to the 
Theorem 10.3.3 is written in the form 

3
m
r

� ���r r ;                                                  (10.3.53) 

this situation may occur, for instance, in the study of the motion of a particle of variable 
mass with respect to another particle having the same mass, both particles being acted 
upon by forces of Newtonian attraction with a gravity constant equal to unity ( 1f � ). 
In conformity to the results in Subsec. 3.1.6, the trajectory is a plane curve. 

Projecting on the co-ordinate axes kOx , 1,2k � , the equations of motion read 

3 0k k
m

x x
r

� ��� ,   1,2k � ,   2 2 2
1 2r x x� � ;                          (10.3.53') 

by a change of function and of variable 
p

k kx m �� ,   1,2k � ,   d dqm t� � ,                               (10.3.54) 

where ,p q � �  must be determined, these equations become 

2
2 1 2 2

2
d d

(2 ) ( 1)
dd

k kp q p q p
km p q m m p p m m

� �
�

��
� � � �� � � �� �  

1 2 1
3 0kp p

kpm m m
�

�
�

� � �� � ��� ,   1,2k � ,   2 2 2
1 2� � �� � . 
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For the sake of simplicity, we put 2 0p q� � , 2 2 1p q p� � � � , obtaining 1p � � , 
2q � ; the above equations take the form 

� �2 2

2 3 3 2
d 1 1 d 1 0
d d
k

kmm t
�

�
� �

$ %� � �* +& '
,   1,2k � .                    (10.3.54') 

We suppose, after A.S. Lapin, that 2 2d (1/ )/d 0m t � , hence that the law of mass 
variation is of the form 

0

1
m

m
t�

�
�

,   0� � ;                                         (10.3.55) 

the equations of motion read 

2

2 3
d

0
d
k k� �

� �
� � ,   1,2k � ,                                    (10.3.55') 

in this case. If, after MacMillan, we put 2 2 2 3 4
0d (1/ )/d /4m t m m�� � , const� � , 

the equations of motion become 

2 2

2 3 4
0

d 1 0
d 4
k

km
� � �
� �

� �� � �	 

� �

,   1,2k � ,                          (10.3.56) 

corresponding a law of mass variation of the form 

0

1
m

m
t�

�
�

,   0� � .                                       (10.3.56') 

Let us consider now the case of two particles P  and P �  of masses ( )m m t�  and 
constm � � , respectively, acted upon by Newtonian forces of attraction, with a gravity 

constant equal to unity ( 1f � ). Assuming that the absolute velocity of the emitted 
masses vanishes ( �u 0 ) and using the law of mass variation (10.3.55), we can write 
the vector equation of motion of the particle P  with respect to the particle P �  (chosen 
as origin) in the form 

3
mm

m m
r

�
� � �� �v r v ;                                         (10.3.57) 

the corresponding scalar equations read 

3 0
1k k k

m
x x x

tr
�
�

�
� � �

�
�� � ,   1,2k � ,   2 2 2

1 2r x x� � .               (10.3.57') 

By a change of function and variable 
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2(1 )k kx t� �� � ,   1,2k � ,   3d (1 ) dt t� �� � ,                  (10.3.58) 

we are led to the equations 

2

2 3
d

0
d
k

k
m�

�
� �

�
� � ,   1,2k � ,   2 2 2

1 2� � �� �                    (10.3.58') 

if we notice that 

2
3 3

2
d dd(1 ) (1 )

d d d
k kt t

t t
� �

� �
�

$ %� � �* +& '
; 

we see that the equations (10.3.58') are of the same form as the equations (10.3.53'). 
Consequently, we can replace the study of the particle P  of variable mass ( )m m t� , 
in the plane 1 2Ox x , by the study of a particle �  of constant mass constm � �  in the 
plane 1 2O� � ; the particle �  is the image of the particle P . Multiplying the equation 
(10.3.58') by d /dk� � , summing with respect to k  and integrating, we get the first 
integral of energy for the image particle 

2 2
1 2d d

2 2
d d

m h
� �
� � �

�� � � �� � �	 
 	 

� � � �

,                              (10.3.59) 

where h  is an integration constant (the energy constant). 
We can make also a direct study of the system of equations (10.3.57'). Taking into 

account (10.3.58), we may write the first integral (10.3.59) in the form 

� �2 2 2 2 2
1 2 1 1 2 2(1 ) 4 (1 )( ) 4t x x t x x x x r� � � �� � � � � �� � � �  

22 (1 )
2

m t
h

r
�� �

� � .                                    (10.3.60) 

Multiplying the equation (10.3.57') by jx , making successively 1k � , 2j �  and 
2k � , 1j � , and subtracting, it results 

1 2 1 2 1 2 1 2
d(1 ) ( ) ( )
d

t x x x x x x x x
t

� �� � � � �� � � � , 

wherefrom (we choose conveniently the integration constant) 

1 2 1 2 (1 )Cx x x x t
m

�� � �� � ,   constC � ;                       (10.3.60') 

we obtain this result also if we make 0� �  in the relation (10.3.27') and express the 
areal velocity in Cartesian co-ordinates (if �u 0 , then the condition ��u v , �v 0 , 
leads to 0� � ). We obtain thus two first integrals, which make easier the integration 
of the system of equations (10.3.57'). 
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Integrating the third relation (10.3.58) and using the condition 0� �  for 0t �  (the 
same origin on the time-axis both for the particle and its image), we get 

2/ /1 (1 ) 1 2t� � �� � �$ %& ' , wherefrom ( 1/2, )� � � � , corresponding ( ( ,1/ )t �� �� ) 

� �1 11
1 2

t
� ��

� �
�

.                                      (10.3.61) 

From (10.3.58), it results that, at the initial moment, the particle P  coincides with its 
image � ; at a certain moment �  (to which corresponds t  by the relation (10.3.61)), 
the straight line which connects the particle P  to its image �  passes through the 
centre of attraction O . As well, we notice that 

2(1 )
1 2

r t
�� �
��

� � �
�

.                                  (10.3.61') 

 
Figure 10.25.  Motion of a particle P  of variable mass in a field of central forces.  

Elliptical (a) and parabolical (b) trajectory of the image II. 

Using the results obtained in Chap. 9, Subsec. 2.1.2, we can state that the image �  
describes an ellipse, a parabola or a hyperbola as 0h � , 0h �  or 0h � , respectively. 
Let us assume that the trajectory of the image �  is an ellipse, travelled through, 
beginning from the point 0 0P� �  (at the moment 0t� � � ), in a period equal to T ; 
at the moment � , the image of the particle is at � , while the particle is at P ,  with  
r ��   (Fig.10.25,a).  After  a  period T ,  the image  of  the  particle  will coincide   
with  0� ,  while   the   particle   reaches  the  location  1P   of  radius  vector 

2
01 1(1 )r r t�� � 0 /(1 )r T�� � , 00 0r OP �� � , at the moment 

� �1 1 1/ 1 2 /t T� �� � � . Further, in its motion along the elliptical trajectory, the 
particle starts from the position 1nP �  and reaches the position nP  in an interval of time 

1
1 1 1

1 21 2( 1)
n nt t

n Tn T� ���
$ %

� � �* +�� �& '
,                     (10.3.62) 
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and the distance 1 nnP P�  is given by 

" #
0

1 1
2

(1 2 ) 1 2( 1)n nn n
Tr

P P r r
n T n T

�
� �� �� � �

� � �
.                 (10.3.62') 

It is easy to see that the particle P  approaches the centre of attraction O  along a spiral, 
the motion being periodical and asymptotically damped towards this centre; the 
distance between two successive turns becomes smaller in an interval of time which 
becomes smaller too. 

If the trajectory of the image �  is an arc of parabola, then the motion starts from the 
point 0 0P ��  for which 0 0r ��  and, while the image �  describes the arc of 
parabola till the point ��  ( � � �  and 1/ 0t �� � ), the particle P  reaches the 
centre O , the tangent to the trajectory passing through ��  (Fig.10.25,b). For 

1/2 0� �� � �  we have t � �� ; the image �  will tend to the position lim� , 
while the particle P  tends to P�  along a curve which meets the straight line limO�  at 
the very same point. In fact, we can assume that the motion starts at P  and tends to O ; 
thus, the motion of the particle is aperiodic and strongly damped. 

The case in which the image �  of the particle describes a branch of hyperbola leads 
to an analogous result. 

3.4 Applications of Meshcherski�’s generalized equation 

In some important problems for technics, in which the variation of mass takes place 
both by emission and capture, one must use Meshcherski�’s generalized equation in the 
form (10.3.8')-(10.3.9'); in what follows, we consider the motion of the aircraft with jet 
propulsion as well as the motion of a propelled ship. 

3.4.1 Motion of an aircraft with jet propulsion 

The displacement of an aircraft with jet propulsion takes place by capture of the air 
and then by eliminating it. To study the motion of such an aircraft modelled as a 
particle of variable mass, we assume that: i) the change of location of the mass centre of 
the aircraft with respect to its case, due to the fuel consumption, is negligible; ii) one 
neglects the motion of the air masses in the interior of the aircraft; iii) the relative 
velocities of the captured and emitted masses are considered to be collinear with the 
velocity of the mass centre of the aircraft. In this case, the motion is rectilinear, along 
the Ox -axis, and the equation (10.3.8) reads 

mv F m w m v� �
�� � �� � � ,   0m� �� ,   0m� �� ,                      (10.3.63) 

assuming that the relative velocity of the emitted masses is constant ( const� �
������

w ) and 
is directed opposite to the motion, and that the absolute velocity of the captured masses 
vanishes ( � �u 0 ). In technics, it is considered that the rates of flow of capture and 
emission are constant, verifying the relation m m�� �� �� � , where 1� �  characterizes 
the variation of mass due to the combustion of the mixture fuel-air; the equation 
(10.3.63) becomes (we denote w w� � ) 
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2
0

v
mv m k v m w

�
� � �� � � �	 

� �

� � ,                                (10.3.63') 

where we assumed that the resistance of the air is proportional to the velocity, in a 
horizontal flight. Taking into account the above hypotheses, we may take 

0m m �� � �� , 0 /m m � �� �� , so that, taking into account (10.3.11) too, it results 

0 (1 )m m t�� � ,   1
1 0� �

�
� �� � �	 

� �

.                        (10.3.64) 

The equation of motion reads 

(1 )t v w v� � �� � �� ,   2k ��
�

� � ,                         (10.3.63'') 

wherefrom, with the initial condition 0(0)v v� , it results 

� � /
0( ) (1 )w wv t v t � �� � �

� �
� � � � ;                           (10.3.65) 

observing that / 1� � � , and 1 1t�� � , we obtain the limit velocity 

lim 2
wwv
k

���
� � �

� �
�

.                                       (10.3.65') 

Integrating with respect to time and using the initial condition (0) 0x � , we may 
write 

0 ( )/( ) (1 ) 1
( )
w vwx t t t � � �� �� �

� �� � �
��

$ %� � � �& '�
.                     (10.3.66) 

The length of the active segment of a line is thus determined. 

3.4.2 Motion of a propelled ship 

Analogously, we can study the motion of a propelled ship which has a displacement 
by absorption of water at its prow with the aid of a pump P  and by elimination of it 
with a great velocity at its poop (Fig.10.26). If we put the pump to work and if we 
neglect the mass of the consumed fuel, then we may assume that the mass of the ship 
remains practically equal to 0m , so that it can be modelled as a particle of variable 
mass, for which the instantaneous variation of the captured mass is equal to the 
instantaneous variation of the emitted mass. We consider that the pipe through which 
circulates the water is horizontal and that at the initial moment 0t �  the velocity of the 
ship is 0v w�� ; we study the motion of the ship in the interval of time in which its 
velocity increases from 0v  to w� . If the water is absorbed through a section of area 
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A�  and is eliminated through a section of area A� , then the flux is the same 
(w A w A� �

�� � ), wherefrom 

w w�� �� ,   A
A

�
�

�� ;                                          (10.3.67) 

the mass of water absorbed in a unit of time is thus equal to the mass of water 
eliminated in the same interval of time ( m A m A� �� �

�� � ). The equation (10.3.10'') 
leads to 

2
0 0 ( )m v m kv w A w w� �

� � �� � � �� , 

wherefrom (we denote w w� � ) 

2 2v kv qw� � �� ,   
0

q A
m
� �� ;                               (10.3.68) 

the resistance of the air is considered to be proportional to the square of the velocity. 
The velocity of the ship does not decrease ( 0v �� ) if 0q � , hence if 1� �  (the area 
of the absorption section must be greater than the area of the exit section). 

 
Figure 10.26.  Motion of a propelled ship. 

By integration, we get 

2

2

1 e
1 e

qkwt

qkwt

q Cv w
k C

�

�

�
�

�
,   0

0

qw kv
C

qw kv
�

�
�

,                      (10.3.68') 

with the initial condition 0(0)v v� ; if 0 0v � , then we have ( 1C � ) 

� �
2

2

1 e tanh
1 e

qkwt

qkwt

q qv w w qkwt
k k

�

�

�
� �

�
.                      (10.3.69) 

In this case, the necessary time for the velocity v  of the ship be equal to w  is given by 

1 ln
2

q kT
qkw q k

�
�

�
.                                    (10.3.69') 
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APPENDIX 

The appendix contains elements of vector calculus, as well as notions on the field 
theory and on the theory of distributions. These results are presented without 
demonstration or with a concise one, representing a review of known results or 
complements of such results. 

1. Elements of vector calculus 
In the following, we deal with vector analysis and with exterior differential calculus; 

the notions of vector calculus can be found in several chapters of the work and are 
linked – especially – to the systems of forces. For a better understanding of the 
principal properties of the vectors and taking into account that we apply techniques of 
vector calculus to the study of mechanical systems in an Euclidean three-dimensional 
space 3E , we consider the vectors in the vector three-dimensional space 3L , introduced 
in Chap. 1, Subsec. 1.1.2, using oriented segments of line as geometric representations 
of them; their tensor properties have been emphasized in Chap. 3, Subsecs 1.2.2 and 
1.2.3. However, some results which will be given hold in a n-dimensional vector space 
nL  too. 

1.1 Vector analysis 

A free, bound or sliding vector is a function of the independent variable " #0 1,t t t�  
if the parameters which determine it are functions of this variable. In general, we 
suppose that we have to do with free vectors; however, the results obtained are valid 
also for the other types of vectors, excepting special cases. Let be the vector 

( )t�V V ,   ( )i iV V t� ,   1,2, 3i � ,                               (A.1.1) 

with respect to an orthonormed frame of reference; thus, various operations which will 
be defined in connection with the vector V  correspond to operations effected on its 
components in a system of orthogonal Cartesian co-ordinates or – eventually – in 
another system of co-ordinates. In the following, we deal with functions or vector 
mappings ( )t t� V , in the mentioned case, in which a single variable is involved, as 
well as in the case in which they depend on several variables. Without many details, the 
results known for scalar functions may be adapted for vector ones. 

 
 
 

 693
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1.1.1 Limits. Continuity 

We say that the vector ( )tV  tends to a limit 0V  for 0t t� , " #0
0 1,t T t t� � , and 

we have 

0

0lim ( )
t t

t
�

�V V ,                                                 (A.1.2) 

if we may write 

0

0lim ( )i i
t t
V t V

�
� ,   1,2, 3i � ,                                      (A.1.2') 

for its components; analogously, we may define the limits at the right and at the left. 
We say that the vector V  is a continuous function (of class 0C ) if its components 

are continuous functions. Obviously, the domain of definition of the vector function is 
specified by the domain (eventually, domains) of definition of its components; in 
general, we assume that all its components have the same domain of definition. Similar 
properties may be obtained, in the same way, in the case of vectors depending on 
several independent variables. 

1.1.2 Differentiation of vectors 

We say that the vector function ( )t t� V  is differentiable in t T�  if the limit 

0

( ) ( )
lim ( ) ( )
h

t h t
t t

h�

� �
�� � �V V

V V                                (A.1.3) 

exists; the notation by a “point” for the derivative is used in the case in which the 
independent variable t  is the time, as it will be assumed in what follows. The 
differential of the vector ( )tV  is 

d ( ) ( )dt t t� �V V ,                                             (A.1.4) 

so that its derivative may be written in the form 

d ( )
( )

d
t

t
t

�� V
V                                                (A.1.3') 

too. If the vector is given in the form ( ) ( )j jt V t�V i , we obtain 

( ) ( )j jt V t� ��V i ,                                             (A.1.5) 

which may be a definition relation of the derivative. The derivatives of higher order 
( )t��V , ( )t���V ,…, ( ) ( )n tV  can be analogously defined. We say that the vector ( )tV  is 

of class ( )nC T  if its components in a system of co-ordinate axes (in particular, in a 
system of orthogonal Cartesian co-ordinates) are of class ( )nC T  (the derivative of nth 
order exists and is differentiable; n  finite or infinite). 
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The modulus of the derivative �V  is given by 

i iVV� � ��V ,                                                   (A.1.6) 

while the modulus of the differential dV  reads 

d d di iV V�V .                                             (A.1.6') 

Following formulae of differentiation 

1 2 1 2
d ( )
dt

� � �� �V V V V ,                                         (A.1.7) 

d ( )
dt

� � �� �� �V V V ,   ( )t� ��   scalar,                            (A.1.7') 

1 2 1 2 1 2
d ( )
dt

� � � � �� �V V V V V V ,                                    (A.1.8) 

1 2 1 2 1 2
d ( )
dt

3 � 3 � 3� �V V V V V V ,                                 (A.1.8') 

1 2 3 1 2 3 1 2 3 1 2 3
d ( , , ) ( , , ) ( , , ) ( , , )
dt

� � �� � �V V V V V V V V V V V V ,             (A.1.8'') 

" #d d d( )
d d d u

uu t u
t u t

�� � �VV V ,   ( )u t  scalar,                            (A.1.9) 

are easily obtained. From the relation 2 2( ) ( )t V t�V  one has d dV V� �V V , so that 
we may write 

d d�V V .                                                 (A.1.10) 

The equality takes place in the case of a vector of constant direction ( ( )V t�V u , 

const�
������

u ). In the case of a vector ( )tV  of constant modulus ( 2 constV � ) we have 
0� ��V V ; hence, the derivative of a vector of constant modulus is a vector normal to 

that one. As well, 

const d� � �
������

V V 0 .                                          (A.1.11) 

If two vectors ( )t�V V  and ( )t�W W  have the same direction, hence the same 
unit vector ( )t�u u , we may write V�V u , W�W u , so that d�V W  

( d d )V W W� � �u u u ; using the previous results, we get 

d dV W� �V W .                                             (A.1.12) 

Let be the plane 1 2Ox x  and a point P , specified by the position vector ( )t�r r  
(Fig.A.1); let us also consider the unit vector ( ) vers ( )r t t�i r  and the angle ( )t�  
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formed by that vector with the 1Ox -axis. We have 1 2cos sinr � �� �i i i ; we introduce 
also the unit vector 1 2sin cos� � �� � �i i i , obtained by a positive rotation of right 
angle of the unit vector ri . 

We may write 1 2sin cosr �� ��� � �� � �i i i , wherefrom 

r ���� �i i ,                                                    (A.1.13) 

formula which allows to calculate the derivative of a unit vector, which is contained in 
a fixed plane (or is parallel to a fixed plane), passing through a fixed point. It is obvious 
that, using the same formula, we may write also 

r� �� �� �i i .                                                 (A.1.13') 

The unit vectors ri  and �i  define a system of orthogonal co-ordinates, the point P  
having the polar co-ordinates r  and � ; in this system, a vector V  is written in the 
form 

 
Figure A.1.  Polar co-ordinates. 

r rV V� �� �V i i .                                           (A.1.14) 

We have r r r rV V V V� � � �� � � �� � � ��V i i i i , wherefrom, taking into account (A.1.13), 
(A.1.13'), we get 

� � � �r r rV V V V� � �� �� � � �� � � ��V i i .                            (A.1.14') 

In particular, if 0V� � , constrV � , then we may write the derivative of a vector of 
constant modulus, the support of which passes through a fixed point, in the form 

rV ��� ��V i .                                                (A.1.14'') 

Let be an ordered system of several independent variables 1 2, ,..., sq q q ; if the point 

1 2( , ,..., )sq q q  describes a domain D  in the corresponding s-dimensional space, we can 
define the function or the vector mapping 1 2 1 2( , ,..., ) ( , ,..., )s sq q q q q q� �V V , 
which may be written also in the canonical form 
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1 2( , ,..., )sj jV q q q�V i .                                        (A.1.15) 

We define the partial derivatives of the first order by 

j
j

h h

V
q q

((
�

( (
V i ,   1,2,...,h s� ;                                     (A.1.15') 

as in the case of vector functions of a single variable, we obtain the differential 

1
d d d

s

h h
h hh
q q

q q�

( (
� �

( ( V VV ,                                     (A.1.15'') 

where we have introduced the summation convention of Einstein in the s-dimensional 
space. Analogously, partial derivatives as well as differentials of higher order may be 
defined. 

Considering the mappings ( )ht q t� , 1,2,...,h s� , and assuming that the vector 
V  may depend also explicitly on the variable t , we can write the total (or substantial) 
derivative of the vector function in the form 

dd
d d

h

h

q
t q t t

( (
� �
( (

V V V ,                                          (A.1.16) 

the total differential being 

d d dh
h
q t

q t
( (

� �
( (

V VV ;                                       (A.1.16') 

if 1 2, ,..., sq q q  are the co-ordinates of a point in the considered s-dimensional space, t  
being the time variable, then we say that 

d
d
h

h
h h

q
q

q t q
( (

�
( (

�V V                                            (A.1.16'') 

represents the space derivative of the vector function, while 

t
(

�
(

�V V                                                  (A.1.16''') 

represents the time derivative of this function (the partial derivative with respect to the 
time t ). 

We say that the vector V  is of class ( )nC D  with respect to a variable or with 
respect to a set of variables if its components are of class ( )nC D  with respect to that 
variable or with respect to all variables, respectively. The computation of the mixed 
derivative of order m n�  of a vector does not depend on the order of differentiation if 
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the components of the vector have this property and that one takes place if the vector is 
of class ( )nC D  with respect to all variables; in particular, we may write 

2 2

i j j iq q q q
( (

�
( ( ( (

V V ,   , 1,2,...,i j s� ,                                 (A.1.17) 

in this case (Schwarz’s theorem). 

1.1.3 Sequences and series of vectors 

Let be the sequence of vectors , -,n n � �V ; we say that this sequence tends to the 
vector V  for n � �  and we write 

lim n
n��

�V V                                                   (A.1.18) 

if 

lim ni in
V V

��
� ,   1,2, 3i � .                                       (A.1.18') 

As well, let be the series of general term 

n nj jV�V i ;                                                  (A.1.19) 

we say that this series is convergent if the series of general terms njV , 1,2, 3j � , are 
convergent. Analogously, we may introduce series of vector functions. 

Let be given the vector function ( )t t� V , t T� ; we may write a development in 
the neighbourhood of the moment t  in the form 

2
( )( ) ( ) ( ) ( ) ... ( )

1! 2! !

n
n

n
h h ht h t t t t

n
� � � � � � �� ��V V V V V R ,           (A.1.20) 

where the rest is given by 

1
( 1) ( )

( 1)!

n
n

n j jj
h V t
n

�
�

�� �
�

R i ,   (0, )j h� � ,   1,2, 3j � ;             (A.1.20') 

obviously, this development is equivalent to three developments for the three 
components of the vector ( )tV . If 

lim n
n��

�R 0 ,                                                (A.1.20'') 

then we obtain a development into a Taylor series. Obviously, we assume that ( )tV  is 
of class 1 ( )nC D�  or of class ( )C D� , respectively. In particular, for 0t � , assuming 
that this moment belongs to the interval of definition, we obtain a development into a 
Maclaurin series 
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2
( )( ) (0) (0) (0) ... (0) ...

1! 2! !

n
nh h hh

n
� � � � � �� ��V V V V V .              (A.1.21) 

In the case of a vector function of several variables one can write analogous 
developments. 

1.1.4 Integration of vectors 

Let be the vector function ( )t t� V , " #,t t t� ��� , and let be " #0 1,T t t�  
" #,t t� ��. ; we say that the function V  is integrable on T  if its components are 

integrable functions on T . We may write 

1 1

0 0
( )d ( )d

t t
j jt t

t t V t t�� �V i                                       (A.1.22) 

in this case. In what follows, we consider only Riemann integrals; obviously, one may 
take into consideration also other types of integrals of vector functions. Let now be the 
vector 

0
( ) ( )d

t

t
t � �� �W V ,   0 ,t t T� ;                                  (A.1.23) 

it results 

d
dt

�
W V .                                                  (A.1.23') 

The solution of this equation may be written in the form 

( ) ( )dt t t� ��W V C ,   const�
������

C ,                               (A.1.23'') 

where we have introduced the primitive of a vector function. We mention following 
properties: 

1 2 1

0 0 2
( )d ( )d ( )d

t t t

t t t
t t t t t t� �� � �V V V ,   2t T� ,                      (A.1.24) 

" #1 1 1

0 0 0
1 2 1 2( )d ( )d ( ) ( ) d

t t t

t t t
t t t t t t t� � �� � �V V V V ,                   (A.1.24') 

1 1

0 0
( )d ( )d

t t

t t
t t t t� ��� �V V ,   const� � ,                            (A.1.25) 

1 1

0 0
( )d ( )d

t t

t t
t t t t� ��� �C C ,   const�

������
C ,   ( )t�  scalar,                (A.1.25') 

1 1

0 0
( )d ( )d

t t

t t
t t t t� � �� �C V C V ,   const�

������
C ,                         (A.1.26) 

1 1

0 0
( )d ( )d

t t

t t
t t t t3 � 3� �C V C V ,   const�

������
C .                       (A.1.26') 
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Let be a point P  of position vector r ; the vector mapping ( )q q� r , 
" #,q Q q q� ��� � , of class 1 ( )C Q  determines a curve C , locus of the point P . Let us 

consider the curvilinear abscissa defined by the function ( )q s q� , and two points 0P  
and 1P  on the curve C , of curvilinear abscissae 0 0( )s s q�  and 1 1( )s s q� , 
respectively. We define a vector function ( )s s� V  in any point of the curve C  too 
(Fig.A.2). We introduce thus the curvilinear vector integral 


1 1

0 0 01
( )d ( )d ( ( )) ( )d

s q

P P s q
s s s s s q s q q�� �� � �V V V ,                     (A.1.27) 

equivalent to three scalar curvilinear integrals, corresponding to the components of the 
vector ( )sV . Noting that the position vector ( ) ( )j jq x q�r i  of the point P  has the 
derivative ( ) ( )j jq x q� ��r i , the latter vector has the same direction as the tangent to the 
curve C  at the point P , and the differential d dj jx�r i  has the same property. We 
introduce the curvilinear integral 

 
Figure A.2.  Curvilinear vector integral. 

  
1

0 1 0 0 01 1
( ) ( ) d d ( ) ( )d

q
j j j jP P P P P P q

W V x V q x q q�� � � �� � �V V r r ,           (A.1.28) 

which represents the work of the vector ( )�V V r  along the curve C , between the 
points 0P  and 1P ; obviously, the direction of travelling through that curve is from 0P  
to 1P . The work of a vector is a scalar quantity. We denote by 

d ( ) dW � �V r r                                               (A.1.28') 

the elementary work, which – in general – is not an exact differential. We notice that 
the work of the sum of n  vectors applied at the same point is equal to the sum of the 
works of those vectors; this result is obvious, taking into account the property of 
distributivity of the scalar product with respect to the addition of vectors. 

In the case of a closed curve C , we consider the curvilinear vector integral 

( )d ( ( )) ( )d
C C
s s s q s q q��� �� �V V                                     (A.1.29) 
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too, the direction of travelling through being that indicated (the counterclockwise). 
Analogously, we may also consider the work of the vector V  along the closed curve 
C , in the form 

( ) ( ) d dj jC C C
W V x� � �� �� �V V r r ;                               (A.1.29') 

this work is called the circulation of the vector V  on the closed curve C . We mention 
that the curvilinear vector integrals along a closed curve do not depend on the point 
from which the travelling through of the curve begins. 

Let be a surface � , which is represented in a parametric form by ( , )u v�r r , 
( , )u v D� , as well as the vector function ( , ) ( , )u v u v� V , defined at the point P , 
of position vector r . If S �.  and if the vector function ( , )u vV  is integrable on S , 
then we may introduce the surface vector integral in the form 

( )d ( )dj jS S
P S V P S��� ��V i ,                                   (A.1.30) 

where dS  is the element of area; obviously, the vector function ( , )u vV  is integrable 
on S  if its components have the same property. We may express the surface integral by 
means of the variables u  and v  too. As well, we can consider also the surface integrals 
for which S  is a closed surface. 

Let be a domain 3D . 
  and let be the vector mapping ( )�r V r , defined for 
P D� , where r  represents the position vector of the point P ; we say that the vector 
function ( )V r  is integrable if its components are integrable functions. In this case, we 
may introduce the volume vector integral 

( )d ( )dj jD D
V� ����� ���V r i r ,                                   (A.1.31) 

where 1 2 3d dx x x� �  is the volume element. 

1.1.5 Curvilinear co-ordinates 

Let us consider, in what follows, the vector mapping 1 2 3 1 2 3( , , ) ( , , )q q q q q q� V , 
3

1 2 3( , , )q q q D� . 
 , and the point P  of position vector r , defined by (Fig.A.3) 

1 2 3 1 2 3( , , ) ( , , )j jq q q x q q q�r i ;                                    (A.1.32) 

if the point 1 2 3( , , )q q q  describes the domain D , then the point P  describes a domain 
V . Through each point of the domain V  may pass three co-ordinate lines, that is the 
curves 2 3, constq q � , 3 1, constq q �  and 1 2, constq q � ; the co-ordinates on these 
co-ordinate lines are called curvilinear co-ordinates. The link between the Cartesian 
and the curvilinear co-ordinates will be expressed in the form 

1 2 3( , , )j jx x q q q� ,   1,2, 3j � ,                                   (A.1.33) 
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where 1 ( )jx C D� ; the transformation (A.1.33) is locally reversible only if the 
functional determinant J  does not vanish 

1 2 3

1 2 3

( , , )
det 0

( , , )
x x x

J
q q q

($ %� �* +(& '
.                                     (A.1.34) 

We assume that this transformation is one-to-one, that is to a curvilinear system of co-
ordinates 1 2 3( , , )q q q  corresponds a single point P  and reciprocally. 

 
Figure A.3.  Curvilinear co-ordinates. 

If we consider the mappings ( )it q t� , 1,2, 3i � , " #0 1,t t t� , then the point P  
describes a curve C , the tangent at that point being specified by 

d d i
i
q

q
(

�
(

rr ;                                                (A.1.35) 

the vectors 

i
iq

(
�
(

re ,   1,2, 3i � ,                                         (A.1.36) 

are tangent to the co-ordinate curves and form a local basis, because 

1 2 3( , , ) 0J� �e e e .                                          (A.1.34') 

The arc element d ds � r  on the curve C  is given by 

2 2d d d dij i js g q q� �r ,                                        (A.1.37) 

where 

ij ji i j
i j

g g
q q
( (

� � � � �
( (

r r e e ,   , 1,2, 3i j � ;                        (A.1.38) 
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the metrics of the considered Euclidean space is thus defined. The volume element, that 
is the volume of the curvilinear parallelepipedon built up with the vectors 1 1dqe , 

2 2dqe , 3 3dqe  is given by 

1 2 3 1 2 3 1 2 3d ( , , )d d d d d dV q q q J q q q� �e e e ,                         (A.1.39) 

assuming that we have to do with a positive basis. Using Gramm’s determinant 
(2.1.42'), we may write 

" # " # 2 2
1 2 3det det ( , , )ij i jg g J� � � � �e e e e e                    (A.1.34'') 

too, so that 

1 2 3d d d dV g q q q� .                                         (A.1.39') 

In the case of a system of orthogonal curvilinear co-ordinates we have 0ijg � , 
i j� , and 

2
2 2

11 1 1 2
1 1

1
g H

q h
(� �� � � �	 
(� �
re ,   

2
2 2

22 2 2 2
2 2

1
g H

q h
(� �� � � �	 
(� �
re , 

2
2 2

33 3 3 2
3 3

1
g H

q h
(� �� � � �	 
(� �
re , 

 
 

(A.1.40) 

1 2 3, ,H H H  being Lamé’s coefficients, while 1 2 3, ,h h h  are differential parameters of 
first order; it results 

2
11 22 33 1 2 3 2

1 2 3

1
( )

( )
g g g g H H H

h h h
� � � .                           (A.1.40') 

The element of arc is given by 

2 2 2 2 2 2 2
1 2 3 1 1 2 2 3 3d d d d ( d ) ( d ) ( d )s s s s H q H q H q� � � � � �  

2 2 2
1 2 3

1 2 3

d d dq q q
h h h

� � � � � �� � �	 
 	 
 	 

� � � � � �

. 

 
 

(A.1.40'') 

and the element of volume reads 

1 2 3
1 2 3 1 2 3

1 2 3

d d d
d d d d

q q q
V H H H q q q

h h h
� � .                           (A.1.40''') 

A system of spherical co-ordinates ( , , )r � �  is linked to the orthogonal Cartesian 
co-ordinates (see Fig.1.5,c) by the relations 
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1 sin cosx r � �� ,   2 sin sinx r � �� ,   3 cosx r �� ,   0r � ,   
0 � �� � ,   0 2� �� � ; 

 
(A.1.41) 

the element of arc is expressed in the form ( 1 1H � , 2H r� , 3 sinH r �� ) 

2 2 2 2 2 2 2 2 2 2d d d sin d d d ds r r r r s s��� � �� � � � � � ,                 (A.1.41') 

while the element of volume is given by ( 4 2sing r �� ) 

2d sin d d dV r r� � �� .                                        (A.1.41'') 

The functional determinant fulfils the condition 2 sin 0J r �� �  if 0r � , 
0 � �� � . 

The system of cylindrical co-ordinates ( , , )r z�  is linked to the orthogonal Cartesian 
co-ordinates (see Fig.1.5,b) by the relations 

1 cosx r �� ,   2 sinx r �� ,   3x z� ,   0r � ,   0 2� �� � ,   
z�� � � � ;  

 

(A.1.42) 

the element of arc is given by ( 1 3 1H H� � , 2H r� ) 

2 2 2 2 2 2 2 2d d d d d d ds r r z r s z��� � � � � �                          (A.1.42') 

and the element of volume is expressed in the form ( 2g r� ) 

d d d dV r r z�� .                                             (A.1.42'') 

As well, to have 0J r� � , it is necessary that 0r � . 
Differentiating the formula (A.1.38) with respect of the variable kq , we may write 

, , ,j ii k j k ij kg� � � �e e e e ,   , , 1,2, 3i j k � ,                          (A.1.43) 

where the index at the right to the comma indicates the differentiation with respect to 
the corresponding variable; we write again this relation by circular permutations 

, , ,j i jk k i jk ig� � � �e e e e ,   ,, ,i i jk j k ki jg� � � �e e e e ,   , , 1,2, 3i j k � .   (A.1.43') 

Summing the relations (A.1.43') and subtracting the relation (A.1.43), we may express 
Christoffel’s symbols of first species in the form 

" # � �
 

, , , ,

 1
,

2i jkij k ij k jk i ki j

i j
ij k g g g

k
	

$ %
� � � � � � � �* +
& '

e e , 

, , 1,2, 3i j k � ,               

 
 
 

 
(A.1.44) 
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where we have introduced the most used notations; to obtain this result, we have taken 
into consideration that , ,i j j i�e e , , 1,2, 3i j � , due to the relation of definition 
(A.1.38) and to the property of the mixed derivatives of second order of the position 
vectors 2 ( )C D�r  of not depending on the order of differentiation. The Christoffel 
symbols of second species are defined in the form 

" #
 

,
 

k kl
ij

k
g ij l

i j
	

� N� � � � O
� �! P

,   , , 1,2, 3i j k � ,                          (A.1.45) 

where ijg  is the normalized algebraic complement (the algebraic complement divided 
by g ) of the element ijg  of " #det ijg ; we have ij jig g�  because ij jig g� . We notice 
that the relations 

jkj
ik ig g 
� ,   ik i

jkjg g 
� ,   , 1,2, 3i j � ,   1
det ijg

g
�                (A.1.43'') 

take place. Christoffel’s symbols are symmetric with respect to the indices i  and j , so 
that 

" # " #, ,ij k ji k� ,   
 

 

k k

i j j i
� N � N� � � �� O  O
� � � �! P ! P

,   , , 1,2, 3i j k � ;                    (A.1.46) 

hence, there are 18 distinct symbols of each species. Multiplying the relation (A.1.45) 
by kmg  and taking into account (A.1.43''), we get 

" #, kl

l
ij k g

i j
� N� ��  O
� �! P

,   , , 1,2, 3i j k � .                              (A.1.45') 

Christoffel’s symbols are defined by the relations (A.1.44), (A.1.45) in the case of a 
linear space nL  too. 

1.2 Exterior differential calculus 

In what follows, we introduce the external product of vectors as well as differential 
forms of various orders; in connection with these forms, we put then in evidence the 
operator of exterior differentiation. 

1.2.1 External product of vectors 

A (free) n-dimensional vector is a mathematical entity characterized by an ordered 
set of n  numbers iV , 1,2,...,i n� ; using the way indicated in Chap. 1, Subsec. 1.1.2, 
we may set up an n-dimensional vector space (the linear space nL , which has the same 

properties as the linear space 3L ). There exist, in this space, at the most n independent 
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linear vectors; an ordered set of n independent linear vectors , -, 1,2,...,i i n�e  forms 
a basis, and an arbitrary vector V  may be written in the form 

1

n
i
i

i
V

�
� V e ,                                                (A.1.47) 

where iV  are the components of the vector in this basis (the contravariant components, 
but – as till now – we do not use the notions of contravariance and covariance). The 
external product or the bivector 1 2HV V  (it coincides with the vector product for 

3n � ; we replace the sign “3 ” by the sign “ H ”) of two vectors 1 2,V V  is defined by 
the properties ( 1 2, ,V V V  are vectors; 1 2,� �  are scalars): 

  i) 1 1 2 2 1 1 2 2( ) ( ) ( )� � � �� H � H � HV V V V V V V   
      1 1 2 2 1 1 2 2( ) ( ) ( )� � � �H � � H � HV V V V V V V  
       (distributivity with respect to addition of vectors); 
 ii) H �V V 0 ; 
iii) 1 2 2 1H � H �V V V V 0  (anticommutativity). 
We may write 

1 2 1 12 2
1 1 1 1

n n n n
j ji i

i j i j
i j i j
V V V V

� � � �
H � H � H  V V e e e e ;                  (A.1.48) 

inverting i  by j  and taking into account the property iii), it results 

� �1 2 1 22 1
1 1

1
2

n n
j ji i

i j
i j

V V V V
� �

H � � HV V e e .                       (A.1.48') 

The properties ii) and iii) lead to the relation 

� �1 2 1 22 1
1 1

n n
j ji i

i j
i j

V V V V
� �

H � � HV V e e ,   i j� .                    (A.1.48'') 

We denote by 2
nLH  the vector space of the bivectors defined on nL  (corresponding to 

this notation 1
n nL LH � ); noting that the set , -,1i j i j nH � � �e e  forms a basis 

in this space, its dimension is given by 

2 2( 1)
dim 1 2 ... ( 1)

2n n
n n

L n C
�

H � � � � � � � .                    (A.1.49) 

In general, a p-vector 1 2 ... pH H HV V V  in nL  is defined by the properties 
( 1 2 1 2, , , ,..., pW W V V V  are vectors; 1 2,� �  are scalars): 
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  i) 1 1 2 2 2 1 1 2( ) ... ( ... )p p� � �� H H H � H H HW W V V W V V  
   2 2 2( ... )p�� H H HW V V  

      (and analogous relations, obtained by replacing the other vectors iV , 

2,3,...,i p� , which form the p-vector by linear combinations); 
 ii) 1 2 ... pH H H �V V V 0  if and only if i j�V V , i j� ; 
iii) The external product 1 2 ... pH H HV V V  changes its sign if two factors of it 

permute. 
Let be p

nLH  the vector space formed by p-vectors defined on nL , 2 p n� � . The 
set , -1 2 1 2... ,1 ...p pi i i i i i nH H H � � � � �e e e  forms a basis in this space, so 
that 

dim pp
n nL CH � ,                                           (A.1.49') 

where we have introduced the combination symbol of n  things p  at a time; in 
particular, dim 1n n

n nL CH � � . 
In the case of a trivector 1 2 3H HV V V  we may write 

1 2 3 1 32
1 1 1

n n n
ji k

i j k
i j k

V V V
� � �

H H � H HV V V e e e ;                      (A.1.50) 

inverting two upper indices and taking into account the property iii), we find 3! 6�  
different representations of the external product (obtained by permuting the indices ,i j  
and k  and by introducing the sign minus in the case of an odd permutation). Summing 
these six representations, we obtain a representation of the form 

1 2 3
1 1 1

1
3!

n n n
ijk
i j k

i j k
V

� � �
H H � H HV V V e e e ,                       (A.1.50') 

where the scalar ijkV  is totally skew-symmetric with respect to the upper indices 
, ,i j k . In general, a p-vector 6  may be represented by 

1 2
1 2

...
1 2

1

1
... ...

!
p

p

k

n
i i i

p i i i
i
V

p �
� H H H � H H HV V V e e e6 ,            (A.1.51) 

where the scalar 1 2 ... pi i iV  is totally skew-symmetric with respect to the upper indices 
ki , 1,2,...,k p�  (the summation takes place for all upper indices). For 2p �  one 

obtains the representation (A.1.48'). 
One can define a p-vector 1 2 ... p� H H HV V V6  and a q-vector 

1� HWS 2 ... qH HW W  on nL ; their external product is a p+q-vector, p q n� � , 
defined in the form 
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1 2 1 2( ... ) ( ... )p qH � H H H H H H HV V V W W W6 S  

1 1... ...p q� H H H H HV V W W . 

 
 

(A.1.52) 

We mention following properties: 
  i) 1 1 2 2 1 1 2 2( )� � � �H � � H � H6 S S 6 S 6 S  (distributivity with respect to 

addition; 1 2,S S  are p-vectors, 1 2,� �  are scalars); 

 ii) ( ) ( )H H � H H6 S T 6 S T  (associativity; T  is r-vector; p q r n� � � ); 
iii) ( 1)pqH � � H6 S S 6 . 
If one of the numbers ,p q  is even, then the external product is commutative, 

otherwise it is anticommutative. 

1.2.2 Differential forms. Exterior derivative 

We call differential form of first degree in 1 2( , ,..., )n nx x x x E� �  the expression 

1
d

n

i i
i
a x�

�
�  ,   constia � .                                      (A.1.53) 

If between the basis , -ie  of the linear space nL  and , -d ix , 1,2,...,i n� , is 
established an isomorphism, then �  is an element of the space 1

nLH , introduced in the 
preceding subsection. Analogously, a form of pth degree in x  is an element of the 
space p

nLH , being expressed by 

1 2 1 2... d d ... dp pi i i i i ia x x x� � H H H ,   
1 2 ... constpi i ia � .             (A.1.53') 

In the case of a form of pth degree on nD E. , 1 2( , ,..., )ni ia a x x x�  may be smooth 
functions (differentiable as much as it is necessary) on D . We denote by ( )pF D  the 

set of the forms of pth degree on D ; in this case, 0 ( )F D  represents the set of smooth 
functions. 

Let be the forms of first degree 

1 1 2 3( , , )di ia x x x x� � ,   2 1 2 3( , , )dj jb x x x x� � ;                      (A.1.54) 

the external product introduced in the previous subsection is calculated in the form 
( d ix  play the rôle of vectors ie ) 

1 2 2 3 3 2 2 3 3 1 1 3 3 1( )d d ( )d da b a b x x a b a b x x� �H � � H � � H  

1 2 2 1 1 2( )d da b a b x x� � H . 

 
 

(A.1.54') 

One obtains thus a form of second degree. 
The operator 1d : ( ) ( )p pF D F D�� , called (after Cartan) operator of exterior 

differentiation, exists and is unique, being defined by the properties ( 1,� �  and 2�  are 

p-forms): 
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  i) 1 2 1 2d( ) d d� � � �� � � ; 
 ii) 1grad

1 2 1 2 1 2d( ) d ( 1) d�� � � � � �H � H � � H ; 
iii) d(d ) 0� �  (Poincaré’s lemma); 

iv) 
1

d d
n

j
jj

f
f x

x�

(
�

(  for any function f . 

These properties are independent of the system of co-ordinates. One may show that the 
exterior derivative of the form (A.1.53') is expressed by 

1 2

1 2

...d d d d ... dp

p

i i i
j i i i

j

a
x x x x

x
�

(
� H H H H

( .                     (A.1.55) 

In the particular case 3n �  one may introduce the gradient operator in the form 

1 2 3
1 2 3

d d d df f ff x x x
x x x
( ( (

� � �
( ( (

,                                 (A.1.56) 

where f  is a function defined on 3D E. . For a form of first degree on D  

1 1 2 3 1 2 1 2 3 2 3 1 2 3 3( , , )d ( , , )d ( , , )da x x x x a x x x x a x x x x� � � �            (A.1.57) 

the exterior derivative 

3 2
2 3

2 3
d d d d di

j i
j

a aa
x x x x

x x x
� ( (( � �� H � � H	 
( ( (� �  

1 3 2 1
3 1 1 2

3 1 1 2
d d d d

a a a a
x x x x

x x x x
( ( ( (� � � �� � H � � H	 
 	 
( ( ( (� � � �

           (A.1.57') 

allows to introduce the operator curl. As well, the exterior derivative 

1 2 3
1 2 3

1 2 3
d d d d

a a a
x x x

x x x
� ( ( (� �� � � H H	 
( ( (� �

,                         (A.1.58) 

corresponding to the form of second degree on D  

1 2 3 2 3 1 3 1 2d d d d d da x x a x x a x x� � H � H � H ,                    (A.1.58') 

introduces the operator divergence. 

2. Notions of field theory 
In what follows, we deal with conservative vectors, with the operator gradient, as 

well as with the introduction of the curl and the divergence of a vector; differential 
operators of second order are considered too and some integral formulae are given. We 
mention also the absolute and the relative derivatives. 
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2.1 Conservative vectors. Gradient 

Let be a point 3
1 2 3( , , )P x x x D� . 
 . In what follows, the vector mapping 

1 2 3 1 2 3( , , ) ( , , )x x x x x x� V  defines a vector field ( : D L�V ); the respective 
vectors are bound vectors, the points P  being their points of application. This field is a 
steady one; if 1 2 3( , , ; )x x x t�V V , then the vector field defined on " #0 1,D t t3  is 
non-stationary. We express the vector 1 2 3( , , ) ( )x x x� �V V V r  in the form 

1 2 3 1 2 3( , , ) ( , , )j jx x x V x x x�V i ,                                     (A.2.1) 

where 1 ( )jV C D� , 1,2, 3j � ;  let us introduce the vector fields 

, ,
j

i j j i j
i i

V
V

x x
((

� � �
( (

V V i i ,   1,2, 3i � ,                             (A.2.2) 

and the differential 

,d di ix�V V ,                                                 (A.2.3) 

where the index at the right of the comma specifies the derivative with respect to the 
corresponding variable. The curves for which the tangents at each point P  are directed 
along the vectors ( )�V V r  of the field are called vector lines (or field lines); the lines 
form a congruence of curves. Because the differential dr  is tangent to these lines, their 
vector equation is of the form 

( ) d3 �V r r 0 ;                                                (A.2.4) 

scalarly, these lines are given by a system of differential equations of first order 

1 2 3

1 2 3

d d dx x x
V V V

� � .                                           (A.2.4') 

Let be C  a curve which is not a field line; on the basis of the theorem of existence 
and uniqueness for a system of differential equations of the form (A.2.4'), through each 
point of the curve C  passes a field line (the integral curve of the system (A.2.4')). The 
surface generated by these curves is called field surface. 

In the case of a non-steady field, the differential is of the form 

,d d di ix t� � �V V V ,                                         (A.2.3') 

where /V V t� ( (� , and the total derivative is given by (we consider the mapping 
( )t t� r ) 

,
d
d i ixt

� � ��V V V ,                                           (A.2.3'') 
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being the sum of the space and time derivatives; in the case of a steady field remains 
only the space derivative. 

In what follows we introduce some particular fields of vectors. 

2.1.1 Conservative vectors. The nabla operator 

Let us consider a scalar function �1 2 3 1 2 3( , , ) ( , , )x x x U x x x , 1 2 3( , , )x x x D�  
3. 
 ; the function 1 ( )U C D�  defines a scalar field ( 3:U D � 
 ), because to each 

point P , which is of position vector 1 2 3( , , )x x xr  one can associate the scalar 
( )U U P� . This scalar field is steady; we may consider also non-steady fields of the 

form 1 2 3( , , ; )U x x x t , defined on " #0 1,D t t3 . If it is necessary, the function U  may 
have also continuous derivatives of higher order. Let be a vector field V , defined by 
the relations 

,i iV U� ,   1,2, 3i � .                                            (A.2.5) 

Considering a unit vector ( )inn , we notice that 

,i i
UU n
n

(
� � �

(
V n ;                                            (A.2.6) 

hence, the components of V  with respect to a new three-orthogonal trihedron of 
reference 1 2 3Ox x x� � �  are / iU x �( ( , 1,2, 3i � . Thus, the definition given to the vector 
field does not depend on the chosen co-ordinate system. Such a field is called a 
conservative field (which derives from the potential U ); the corresponding vectors are 
called conservative vectors and the field U  is called potential. Assuming that 

( ; )U U t� r , one obtains a vector field defined by the same formulae (A.2.5); this is a 
quasi-conservative field and the corresponding vectors are quasi-conservative vectors. 
Analogously, the function U  is called quasi-potential. 

We notice that one can formally write � �, /j j j jU x U� � ( (V i i ; applying the 
vector differential operator 

j j j
jx

(
� � (

(
/ i i ,                                              (A.2.7) 

which is called nabla (or del) and was introduced by Hamilton, we get 

U� //V .                                                    (A.2.8) 

In the case of a quasi-potential, the differential is of the form 

,d d d d dj jU U x U t U U t� � � � �� �/ r ,                                (A.2.9) 

where /U U t� ( (� , while the total (substantial) derivative is given by (we consider 
the mapping ( )t t� r ) 
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,
d
d j j
U U x U U U
t

� � � � �� ��� / r                                     (A.2.9') 

and is the sum of the space derivative and the time derivative; in the case of a potential 
remains only the space derivative. 

We observe also that, in the case of a conservative vector field, the elementary work 
of a conservative vector is given by 

d d dW U U� � �/ r ,                                        (A.2.10) 

so that it is a total differential; it results 


0 1

01( ) ( )
P P
W U P U P� � ,                                      (A.2.10') 

where we started from the formula (A.1.28). Hence, in the case of a conservative 
vector, the work between two points does not depend on the path, but only on the 
values of the potential at its extremities; analogously, using the formula (A.1.29'), we 
notice that the work of a conservative vector on a closed curve (circulation of a 
conservative vector) vanishes if the corresponding domain D  is simply connected. 

2.1.2 Equipotential surfaces. Gradient 
Let be 

1 2 3( , , )U x x x C� ,   constC �                                    (A.2.11) 

the equation of a surface, which is the locus of the points for which the scalar potential 
is constant; we assume that 1U C� . This surface is called an equipotential surface; if 

( )U r  defines an arbitrary scalar field, then the surface (A.2.11) is called also a level 
surface. If 1 2 3( , , ; )U U x x x t� , then we get an equiquasi-potential surface 

1 2 3( , , ; )U x x x t C� ,   constC � ,                                (A.2.11') 

which is a variable surface in time. Let us suppose that through the point � �0 0 0
1 2 3, ,x x x  

pass two equipotential surfaces, so that for that point we may write 
� �0 0 0

1 2 3 1, ,U x x x C� , � �0 0 0
1 2 3 2, ,U x x x C� , 1 2, constC C � ; it follows that 

1 20 C C� � . Hence, the two equipotential surfaces coincide, admitting that the 
function U  is uniform. If two equipotential surfaces do not coincide, then they have not 
common points. 

Applying the operator /  to a scalar function, one obtains a vector function which is 
called the gradient of the scalar function. Hence, 

gradU U� // ,                                              (A.2.12) 

so that the operator /  transforms the scalar field in a vector one. Thus, the gradient 
allows to appreciate the variation of a scalar function, obtaining also its derivatives of 
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first order. We observe thus that a field of conservative vectors is a field of gradients. 
We mention the properties: 

  i) 1 2 1 2grad( ) grad gradU U U U� � �  (distributivity with respect to addition of 
scalars); 

 ii) grad gradCU C U� ,   constC � ; 
iii) gradC � 0 ,   constC � . 

The relation (A.2.6) may be written in the form 

grad UU
n

(
� �

(
n ,                                              (A.2.6') 

so that the gradient forms a vector field, independent on the chosen system of co-
ordinate axes; /U n( (  is the derivative of the scalar field U  in the direction of the unit 
vector n . Because 

,grad j j j jU U U� � (i i ,                                       (A.2.12') 

it results that the gradient of the function U  is normal to the equipotential surface 
1 2 3( , , ) 0U x x x C� � . As well, if we take vers gradU�n  in the relation (A.2.12'), 

then the gradient of the scalar function U  is a vector directed in the same direction for 
which the value of the function is increasing. The congruence of gradient lines is thus 
normal to the family of corresponding equipotential surfaces, the direction of travelling 
through being that in which the value of the scalar function U  is increasing. These 
properties hold also for a quasi-conservative scalar field. If dr  is along the tangent to a 
curve C , which is travelled through by a point 1 2 3( , , )P x x x , then it results – by 
equating to zero the expression (A.2.9) – that, for a quasi-potential scalar field, the 
curve C  cannot stay on an equiquasi-potential surface; but – in exchange – for a 
potential scalar field, the curve C  may belong to a corresponding equipotential surface. 
We can verify the above mentioned properties, e.g., in the case of the scalar potential 

2 2 2
1 2 3 1 2 3( , , ) i iU x x x x x x x x� � � �                                 (A.2.13) 

and in the case of the quasi-potential scalar 

2 2 2 2 2
1 2 3 1 2 32 2

1 1
( , , ; ) i iU x x x t x x t x x x t

c c
� � � � � � ,   constc � .      (A.2.13') 

The necessary and sufficient conditions for the scalar functions 

1 2 3( , , ; )i iV V x x x t� ,   1,2, 3i �                                  (A.2.14) 

to be the components of a quasi-conservative vector are of the form 

, 0jijk k ijk k jV V� ( �� � ,   1,2, 3i � ;                             (A.2.15) 
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they result from the relation (A.2.5) and from the condition that the mixed derivatives 
of second order of the quasi-potential 1 2 3( , , ; )U U x x x t�  be immaterial on the order 
of differentiation (we assume that 2 ( )U C D� , 3

1 2 3( , , )x x x D� . 
 , with respect 
to the space variables). 

To a determined potential 1 2 3( , , )U U x x x�  one may add an arbitrary constant, 
without any change of its properties. We mention also the properties: 

 iv) 1 2 1 2 2 1grad( ) grad gradU U U U U U� � ; 
  v) grad ( ) ( )gradf U f U U�� ,   1f C� ; 
 vi) 

1 21 2 1 2grad ( , ) grad gradU Uf U U f U f U� �� � ; 

vii) ( )grad grad ( )df U U f U U� � , f  integrable. 
These properties hold for a quasi-potential field too. Concerning the position vector r , 
we may write 

1gradr
r

� r ,   
( )

grad ( )
f r

f r
r
�

� r ,   1f C� ,                       (A.2.16) 

grad( )� �C r C ,   const�
������

C .                                   (A.2.16') 

In the case of a potential 1 2 3( , , ) ( )U U x x x U� � r , the formula (A.2.9) allows to 
write the differential 

d grad dU U� � r .                                             (A.2.17) 

Introducing the mapping ( )s s� r , which defines a curve C , it results that 
( )U U s� , so that 

d dgrad grad
d d

U U U U
s s s

(
� � � � �

(
r

= ,                             (A.2.18) 

obtaining thus the derivative on the direction of the unit vector =  of the tangent to this 
curve; the partial derivative is, in this case, equal to the total derivative. By means of 
the above introduced operator / , one may conceive the symbol d  of the total 
differential as an operator, in the form of a scalar product 

d d d grad� � � �/r r .                                        (A.2.19) 

The formula (A.2.6') leads to the operator derivative in the direction of the unit vector 
n , which may be expressed in the form 

grad
n
(

� � � �
(

/n n ;                                         (A.2.20) 

if ( )s�r r  and �n = , then we get the operator 
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d ( ) grad
d

s
s s
( �� � � � �
(

/ =r .                                (A.2.20') 

Thus, one introduces the linear scalar differential operator 

grad i i i
i

A A
x
(

� � � � � (
(

/A A ,                               (A.2.21) 

where A  is a constant or variable given vector. Applying this operator to the scalar 
field U , one obtains the scalar 

,( grad) ( )i i i iU A U AU� � ( �A                                   (A.2.21') 

as well, but applying the operator to the vector field V , it results the vector 

,( grad) ( )( )j j jk k k j kA V AV� � ( �A V i i .                           (A.2.21'') 

In particular, we get the total differential of a vector field 1 2 3( , , )x x x�V V  in the 
form 

d (d grad)� �V r V ,                                           (A.2.22) 

and the derivative in the direction of the unit vector n  is given by 

( grad)
n

(
� �

(
V n V ;                                           (A.2.23) 

for ( )s�r r  and �n =  one obtains 

d ( grad)
ds s

(
� � �

(
V V V= .                                     (A.2.23') 

In the system of curvilinear co-ordinates 1 2 3( , , )q q q , introduced in Subsec. 1.1.5, 
the moduli of the gradients of the surfaces of co-ordinates constiq � , 1,2, 3i � , are 
given by the differential parameters of the first order 

grad ii
i iq g h� �  (!),   1,2, 3i � .                              (A.2.24) 

In orthogonal curvilinear co-ordinates, the gradient operator has the form 

1 2 3
1 1 2 2 3 3

1 1 1grad
H q H q H q

( ( (
� � �

( ( (
i i i .                          (A.2.25) 

In spherical co-ordinates, we obtain 
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1 1grad
sinr r

rs s s r r r� �� �
�� � � �

( ( ( ( ( (
� � � � � �

( ( ( ( ( (
i i i i i i ,       (A.2.25') 

while in cylindrical co-ordinates we may write 

1grad r z r z
r zs s s r r z� �

� �
( ( ( ( ( (

� � � � � �
( ( ( ( ( (

i i i i i i .             (A.2.25'') 

2.2 Differential operators of first and second order 

One may set up vector differential operators of first order and scalar differential 
operators of second order by means of the vector differential operator / ; such 
operators may appear in problems of mechanics. 

2.2.1 Vector differential operators of first order 

Besides the scalar differential operator � //A , we introduce also the vector 
differential operator 

j jjkl l k jkl l
k

A A
x
(

3 �� ( ��
(

/A i i ,                               (A.2.26) 

where A  is a constant or variable given vector; applying this operator to the scalar 
field U , one obtains the vector 

,( ) jjkl k lU AU3 ��A i/ .                                        (A.2.26') 

The differential operator “ �/ ” applied to a vector V  defines the divergence of the 
vector; we have thus 

,div i
i i i i

i

V
V V

x
(

� � � � ( �
(

/V V .                             (A.2.27) 

This is a scalar quantity, hence invariant to a change of co-ordinate axes. We mention 
the properties: 

  i) 1 2 1 2div( ) div div� � �V V V V ; 
 ii) div( ) div grad� � �� � �V V V ,   ( )� �� r  scalar. 

In orthogonal curvilinear co-ordinates, we obtain 

2 3 1 3 1 2 1 2 3
1 2 3 1 2 3

1div ( ) ( ) ( )H H V H H V H H V
H H H q q q

( ( ($ %� � �* +( ( (& '
V ;     (A.2.28) 

in particular, in spherical co-ordinates, we have 

� �2
2
1 1 1

div (sin )
sin sinr

V
r V V

r r rr
�

��
� � � �

(( (
� � �

( ( (
V ,              (A.2.28') 
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while in cylindrical co-ordinates we may write 

1 1div ( ) z
r

V VrV
r r r z

�
�

(( (
� � �

( ( (
V .                               (A.2.28'') 

The differential operator “ 3/ ” applied to a vector V  leads to the curl of this 
vector; we may write 

,curl k
jjkl l jkl k l jkl k j l

j

V
V V

x
(

� 3 �� �� ( ��
(

/V V i i i ,                 (A.2.29) 

this definition being immaterial of the co-ordinate axes too. We mention the properties: 
   i) 1 2 1 2curl( ) curl curl� � �V V V V ; 
 ii) curl( ) curl grad� � �� � 3V V V ,   ( )� �� r  scalar. 

In orthogonal curvilinear co-ordinates we have 

3 3 2 2 1 1 1 3 3 2
2 3 2 3 3 1 3 1

1 1curl ( ) ( ) ( ) ( )H V H V H V H V
H H q q H H q q

( ( ( ($ % $ %� � � �* + * +( ( ( (& ' & '
V i i

 

2 2 1 1 3
1 2 1 2

1 ( ) ( )H V H V
H H q q

( ($ %� �* +( (& '
i ;                        (A.2.30) 

in particular, in spherical co-ordinates we may write 

     1 1 1
curl (sin ) ( )

sin sin
r

r
V V

V rV
r r r

�
� � ��

� � � � �
(( ( ($ % $ %� � � �* + * +( ( ( (& ' & '

V i i  

1
( ) rVrV

r r �� �
( ($ %� �* +( (& '

i ,                                      (A.2.30') 

while in cylindrical co-ordinates we get 

� �1 1
curl ( )z r z r

r z
VV V V V

rV
r z z r r r

�
� �� �

(( ( ( ( (� � $ %� � � � � �	 
 * +( ( ( ( ( (& '� �
V i i i .  (A.2.30'') 

Concerning the operators grad, div and curl we mention the formulae 

1 2 2 1 1 2 1 2 2 1grad( ) ( ) ( ) curl curl� � � � � � 3 � 3/ /V V V V V V V V V V ,   (A.2.31) 

1 2 2 1 1 2div( ) curl curl3 � � � �V V V V V V ,                          (A.2.31') 

1 2 2 1 1 2 1 2 2 1curl( ) ( ) ( ) div div3 � � � � � �/ /V V V V V V V V V V .      (A.2.31'') 

In particular, the formula (A.2.31) leads to 

21 grad ( ) curl
2

� � � 3/V V V V V .                              (A.2.32) 
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These results have been obtained by the methods of vector algebra, effecting formal 
calculations by means of the vector operator / . 

A vector field for which 

curl � 3 �/V V 0                                             (A.2.33) 

is called irrotational. We notice that a field of gradients 

gradU U� � //V                                            (A.2.33') 

is irrotational ( curl gradU � 0 ); hence, the fields of quasi-conservative vectors (in 
particular, conservative) are irrotational, being the only ones which have the mentioned 
property. A vector field for which 

div 0� � �/V V                                             (A.2.34) 

is called solenoidal. It is easy to see that a field of curls 

curl� � 3/V W W                                         (A.2.34') 

is solenoidal ( div curl 0�W ); one may show that this is the only vector field which 
has the property (A.2.34). 

2.2.2 Absolute and relative derivatives 

Let V  be a vector expressed in the form j jV � �i  with respect to a fixed orthonormed 
frame of reference 1 2 3O x x x� � � �  and in the canonical form j jV i  with respect to a movable 
orthonormed frame 1 2 3Ox x x . The mobility of the latter frame is characterized by the 
mappings ( )jt t� i , " #0 1,t t t� , 1,2, 3i � ; as well the vector V  defines a vector 
field by the mapping ( )t t� V . The independent variable t  may be – eventually – the 
time. Differentiating with respect to t , one obtains 

d dd
d d d

j j
j j j j j j

V
V V V

t t t
� � � �� �iV i i i . 

We denote 

j jV
t

(
�

(
�V i ,                                                 (A.2.35) 

that is the relative derivative of the vector V  with respect to the movable frame. Let be 
the vector 

� �1
2 jjkl k l� � ��7 i i i ;                                         (A.2.36) 
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we notice that 

� � � �1
2m n m nj j j j jlmn l ljk lmn k k kV V V V�3 �� � � � � � � �� � �7 V i i i i i i i i , 

where we took into account a formula of the form (2.1.46') and the relation 
0j jk k� � � �� �i i i i  (consequence of the relation (2.1.14)). Finally, we obtain the 

relation 

d
dt t

(
� � 3

(
7

V V V ,                                            (A.2.37) 

where d /dtV  is the absolute derivative of the vector V  with respect to the fixed 
frame of reference. In particular, we obtain Poisson’s formulae (the unit vectors ki  are 
fixed with respect to the movable frame, so that /k t( ( �i 0 ) 

k k� 3� 7i i ,   1,2, 3k � .                                       (A.2.38) 

From the formula (A.2.37), which links the absolute derivative of a vector to its 
relative one, one sees that these derivatives are – in general – not equal. The two 
derivatives are equal only in the case in which 3 �7 V 0 , hence if the vectors V  and 
7  are collinear or if �7 0 ; this happens if j ��i 0 , 1,2, 3j � , hence if the movable 
frame moves without any rotation (the unit vectors ji , 1,2, 3j � , are of constant 
direction). We state also that d /d /t t� ( ( � �7 7 7 . 

2.2.3 Scalar differential operators of second order 

We introduce the scalar differential operator of second order 

2 2 2
2

2 2 2
1 2 3

div grad i i
i ix x x x x

 ( ( ( ( (
� � � ( ( � � � �

( ( ( ( (
/               (A.2.39) 

called the operator of Laplace (Laplacian). If it is applied to a scalar 
1 2 3( , , )U U x x x� , then one obtains 

2
,i i iiU U U U � � ( ( �/ ,                                      (A.2.39') 

while it is applied to a vector, then we get 

,j j jj kkV V � �V i i .                                        (A.2.39'') 

A scalar function 2 ( )U C D� , which verifies the equation 

0U �                                                       (A.2.40) 
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in the domain D , is called harmonic function in this domain; analogously, a scalar 
function 4 ( )U C D� , which verifies the equation 

2 4 0U U � �/                                              (A.2.41) 

in the domain D , is called biharmonic function in this domain. One may introduce – on 
this way – polyharmonic functions too. In orthogonal curvilinear co-ordinates it 
results 

  2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 H H H H H H
H H H q H q q H q q H q

 ( ( ( ( ( ($ � � � � � � %� � �	 
 	 
 	 
* +( ( ( ( ( (& � � � � � � '
;  

(A.2.42) 

in particular, in spherical co-ordinates, we get 

� � � � 2
2

2 2 2 2 2
1 1 1sin

sin sin
r

r rr r r
 �

� �� � �
( ( ( ( (

� � �
( ( ( ( (

,             (A.2.42') 

while, in cylindrical co-ordinates, one has 

� � 2 2

2 2 2
1 1r
r r r r z


�

( ( ( (
� � �

( ( ( (
.                                 (A.2.42'') 

The operator of Laplace is of elliptic type. Analogously, we introduce the operator of 
d’Alembert of hyperbolic type (d’Alembertian) in the form 

 

2

2 2
1

c
c t

 (
� �

(
� ,   constc � ;                                 (A.2.43) 

assuming that 1 2 3( , , ; )U U x x x t� , the equation 

 0cU �� ,                                                   (A.2.44) 

where 2 ( )U C D� , is called the wave equation, while c  is the propagation velocity of 
these waves. Analogously, the equation 

 c �� V 0 ,                                                  (A.2.44') 

where 1 2 3( , , ; )x x x t�V V , corresponds to three scalar equations of wave propagation. 
If 4 ( )U C D� , then we may introduce the double wave equation 

  1 2 0U �� �                                                 (A.2.45) 

too, where the operators 
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2

2 2
1

i
ic t

 (
� �

(
� ,   constic � ,   1,2i � ,                            (A.2.45') 

correspond to two simple wave equations. Analogously, one may introduce functions 
which verify a poly-wave equation. 

 We introduce also Nicolescu’s caloric operator of parabolic type 

1
a t

 (
� �

(
� ,   consta � ,                                      (A.2.46) 

where a  is the thermic diffusivity; assuming that 1 2 3( , , ; )U U x x x t� , the equation 

 0U �� ,                                                     (A.2.47) 

where 2 ( )U C D� , is called the caloric equation; analogously, one may introduce 
polycaloric functions. 

Between the differential operators grad, div, curl and   takes place the relation 

curl curl graddiv � �V V V .                                   (A.2.48) 

We notice the relations 

,( ) 2i i ix U U x U � � ,   1,2, 3i � ,                                (A.2.49) 

� �2 26 4 gradr U U U r U � � � �r ,                              (A.2.49') 

which, if U  is a harmonic function, become 

,( ) 2i ix U U � ,   1,2, 3i � ,                                        (A.2.50) 

� �2 6 4 gradr U U U � � �r ;                                      (A.2.50') 

we mention the formula 

( ) 2div � � � �r V V r V ,                                      (A.2.51) 

which, if the vector V  is harmonic, becomes 

� �r V V( ) 2div .                                             (A.2.51') 

Also, one verifies the relations 

� � � �r V V r V
  
( ) 2 divi i� � ,   1,2i � ,                            (A.2.52) 

analogous to the formula (A.2.51), which – in the case when the vector V  satisfies a 
simple wave equation – becomes 
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( ) 2divi � �� r V V ,   1,2i � .                                   (A.2.52') 

If 

curl�V W ,                                                  (A.2.53) 

then the formulae (A.2.51) and (A.2.52) take the form 

( curl ) curl curl  � � � � �r W r W r W ,                         (A.2.54) 

   
( curl ) curl curli i i� � � � �� � �r W r W r W ,   1,2i � .             (A.2.54') 

2.2.4 Theorems of Almansi and Boggio type 

Sometimes, the study of certain partial derivative equations may be reduced to the 
study of several equations of the same type but of a smaller order. We can thus state 
Theorem A.2.1 (of Almansi type). If D  is a differential operator with constant 
coefficients, of order m , in s  variables 1 2, ,..., sq q q , and if we assume that 

1 2( , ,..., )sU U q q q� , then the solution of the equation 

0nU �D ,                                                   (A.2.55) 

where ( )mnU C D� , may be written in the form 

2 1
0 1 1 1 2 1 1... n

nU U q U q U q U� �� � � � � ,                           (A.2.55') 

where 0 1 1, ,..., nU U U �  are functions of the same variables, which verify the equations 

0iU �D ,   0,1,2,..., 1i n� � ;                                  (A.2.55'') 

obviously, the variable 1q  may be replaced by anyone of the other 1n �  independent 
variables and the functions iU  can be of the class pC , p mn� . 

In particular, let be the biharmonic equation (A.2.41) and two harmonic functions 
1U  and 2U  in the domain D , which satisfy the equation (A.2.40). The biharmonic 

function U  may be expressed univocally by means of Almansi’s formula 

1 1 2U U x U� � ;                                               (A.2.56) 

hence, a biharmonic function is – in a certain manner – equivalent to two harmonic 
functions. We notice that one may replace the variable 1x  by one of the variables 2x  or 

3x ; as well, we may write 

2
1 2U U r U� � .                                              (A.2.56') 

Analogously, let  iD , 1,2,...,i p� , be differential operators of order im  in the 
variables 1 2, ,..., sq q q  and let be a function 1 2( , ,..., )sU U q q q� ; we may state 
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Theorem  A.2.2 (of Boggio type). If iD  are permutable differential operators, prime 
two by two, 

    i j j i�D D D D ,   , 1,2,...,i j p� ,                                 (A.2.57) 

then the solution of the equation 

�   1 2 ... 0pUD D D ,                                             (A.2.57') 

where 1 2 ... ( )pm m mU C D� � �� , may be written in the form 

1 2 ... pU U U U� � � � ,                                       (A.2.57'') 

1 2, ,..., pU U U  being functions of the same variables and the same class, which satisfy 
the equations 

 0i iU �D ,   1,2,...,i p� .                                    (A.2.57''') 

The condition (A.2.57) is fulfilled, for instance, in the case of operators with 
constant coefficients. In particular, observing that Laplace’s operator (A.2.39) can be 
written in the form 1 2 1 2( i )( i )x x x x � � � , i 1� � , in the two-dimensional case, 
a harmonic function can be written in the form 

1 2U U U� � , � �1 1 1 2( i )U U x x , � �2 2 1 2( i )U U x x ,             (A.2.40') 

obtained by a change of variable of the form � �1 2iz x x , � �1 2iz x x , so that one 
gets the equations ( ( �1 / 0U z  and 2 / 0U z( ( � , respectively. 

In the case of the double wave equation (A.2.45) we obtain 

1 2U U U� � ,                                                 (A.2.58) 

where 1U  and 2U  verify the equations 

 1 1 0U �� ,   
 2 2 0U �� ,                                      (A.2.58') 

d’Alembert’s operators being given by (A.2.45'). 

2.3 Integral formulae 

We have considered discrete systems of bound and sliding vectors in Chap. 2, Sec. 
2.2; in what follows, we will deal with continuous systems of such vectors. Besides, a 
continuous system of bound vectors is a field of vectors. We show thus the form taken 
in this case by the results in Chap. 2, Subsec. 2.2; we introduce also some integral 
formulae useful in practice. 
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2.3.1 Continuous systems of vectors 

Let be a continuous system of vectors , -V , which may be bound or sliding ones; 
assuming that at any point P , of position vector r , belonging to a domain D , is 
applied a vector d�V , we may consider the vector field ( )�V V r , proportional to the 
volume element d�  at any point of the domain. We introduce the resultant R  of the 
system of vectors in the form of a free vector, given by 

( )d
D

�� ���R V r                                              (A.2.59) 

and the resultant moment, as a bound vector, applied at the pole O  and given by 

( )dO D
�� 3���M r V r ;                                        (A.2.60) 

thus, we obtain the torsor , - , -,O O= �V R M  of the continuous system of vectors. 
The components of the resultant R  are given by 

( )di iD
R V �� ��� r ,   1,2, 3i � ,                                 (A.2.59') 

while the components of the resultant moment OM  are written in the form 

( )d
i jOx ijk kD

M x V ��� ��� r ,   1,2, 3i � .                          (A.2.60') 

A continuous system of sliding vectors , -V  is equivalent to zero if and only if its 
torsor with respect to an arbitrary pole is equal to zero (condition (2.2.25)); this 
condition is only necessary in the case of a continuous system of bound vectors. Taking 
into account (A.2.59') and (A.2.60'), it results that this condition is equivalent to six 
equations of projection on the three axes of co-ordinates. As well, two continuous 
systems of sliding vectors , -V  and , -�V  are equivalent if and only if their torsors 
with respect to the same arbitrary pole are equal (condition (2.2.26)); this condition is 
only necessary in the case of a continuous system of bound vectors. 

Analogous considerations can be made, in particular, for a continuous system of 
parallel or coplanar vectors. Let be, for instance, a continuous system of parallel 
vectors, the direction of which is specified by the unit vector u ; we may write 

( ) ( )V�V r r u ,                                               (A.2.61) 

where ( )V r  represents the component of the vector ( )V r  along the given direction. If 

( )d
D

V V �� ��� r ,                                             (A.2.62) 

then we obtain the resultant 
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V�R u ;                                                     (A.2.62') 

if 0V � , then we put in evidence the centre C  of the continuous system of parallel 
vectors, specified by the position vector 

� ��� r r1 ( ) d
D
V

V
�@ .                                          (A.2.63) 

The properties emphasized for the point C  remain valid for a continuous system of 
vectors too. 

2.3.2 Stokes’ formula 

Let be a closed curve C , situated on the sufficiently smooth surface � , limiting on 
it a simply connected domain S  (reducible – by continuous deformation – to a point, 
without leaving the surface � ) (Fig.A.4,a). The surface �  is oriented by means of the 
unit vector n  of the normal to it; as well, we assume a direction of travelling through 
the curve C . Let us consider the vector mapping 1 2 3 1 2 3( , , ) ( , , )x x x x x x� V , with 

1 ( )C D�V , where D  is a domain which includes S C� . One may prove Stokes’ 
formula 

Figure A.4.  The Stokes formula (a). The Gauss-Ostrogradski� formula (b). 

d curl d
C S

S� � �� ��� V r n V ;                                    (A.2.64) 

because the left member of the formula depends only on the curve C , we may replace 
the surface S  by any other surface 0S D. , which satisfies analogous conditions. 

As we have seen in Subsec. 1.1.4, the curvilinear integral is called circulation (it 
represents the work of a field of vectors), while the surface integral represents the flux 
of a field of curls; in the above mentioned conditions, it results that the circulation of a 
field of vectors along a closed curve is equal to the flux of the curl of the very same 
field of vectors through a sufficiently smooth arbitrary surface, bounded by the given 
curve. We also mention that the circulation of a field of irrotational vectors, hence of a 
field of conservative vectors, vanishes. With respect to the orthonormed frame of 
reference 1 2 3Ox x x , we may write 
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,d di i iijk k jC S
V x nV S��� ��� ;                                    (A.2.64') 

in particular, if 1
1 ( )V F C D� � , 2 3 0V V� � , then it results 

� �1 2 ,3 3 ,2d d
C S
F x n F n F S� �� ��� .                               (A.2.65) 

If in Stokes’ formula (A.2.64) we concentrate all the surface at a point of position 
vector r , then we get 

0

d
pr curl curl lim C

S S�

�
� � �

��
n

V r
V n V .                          (A.2.66) 

Hence, we may determine the projection of the vector curl V  on an arbitrary axis of 
unit vector n  (hence the very same vector), without any reference to a frame; thus, the 
definition given to the curl in Subsec. 2.2.1 has an intrinsic value, being immaterial on 
the frame. 

2.3.3 Gauss-Ostrogradski� formula 

Let be a sufficiently smooth closed surface S , limiting a domain D , and a field of 
vectors ( )�V V r  (Fig.A.4,b); we assume that 1 ( )C D S� �V . We may write the 
Gauss-Ostrogradski� formula in the form 

d div d
S D

S �� ��� ���V n V ,                                      (A.2.67) 

where n  is the unit vector of the external normal to the surface; the surface integral 
represents the flux of the field of vectors through the surface S , so that the formula is 
called the flux-divergence formula too. The flux of a solenoidal vector vanishes. In the 
orthonormed frame 1 2 3Ox x x  we obtain 

,d dj j j jS D
V n S V ���� ��� .                                       (A.2.67') 

In particular, if we consider the component 1 ( )jV F C D S� � � , the other 
components vanishing, we may write 

,d dj jS D
Fn S F ���� ��� ,   1,2, 3j � ;                                 (A.2.68) 

multiplying by the unit vector ji  and summing, we get 

d grad d
S D
F S F ���� ���n .                                     (A.2.68') 

If we take F  of the form jijk V�  in (A.2.68), we obtain 
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,d djijk k ijk k jS D
n V S V �� � ��� ��� , 

so that 

d curl d
S D

S �3 ��� ���n V V .                                (A.2.69) 

Let be a domain D D� . , reducible by continuous deformation to a point of 
position vector r  and S �  the surface (sufficiently smooth) which bounds it. Starting 
from the Gauss-Ostrogradski� formula (A.2.67), we may represent the divergence of the 
vector V  in the form 

0

d
div lim S

D

S

D
�

��

�
�

�
�� V n

V ;                                    (A.2.70) 

hence, the definition given in Subsec. 2.2.1 is immaterial of the frame and has an 
intrinsic value. 

2.3.4 Green’s formulae 

The formula (A.2.67) leads to 

d d
S D

U S U
n

 �(
�

(�� ���                                         (A.2.71) 

for a field of conservative vectors of the form (A.2.33'), where we took into account 
(A.2.6') and the definition of Laplace’s operator. If �V W� , 1 2 3( , , )x x x� ��  
scalar, then we may write 

d ( div grad )d
S D

S� � � �� � � ��� ���W n W W ,                    (A.2.72) 

where we used the property ii) of the divergence. If, after this, we take grad��W , 

1 2 3( , , )x x x� ��  scalar, then we get 

d ( grad grad )d
S D

S
n
�� �� � � �(

� � �
(�� ��� ;                     (A.2.73) 

inverting �  and �  and subtracting the relation thus obtained from (A.2.73), it results 

� �d ( )d
S D

S
n n
� �� � �� �� �( (

� � �
( (�� ��� .                    (A.2.74) 

The formulae (A.2.71), (A.2.73) and (A.2.74) are known as Green’s formulae. 
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2.3.5 The differentiation formula for integrals which depend on a parameter 

We consider, in what follows, integrals of functions which depend on a parameter t , 
very useful in applications. Let thus be the curvilinear integral on the curve C  

1 2 3( , , ; )di iC C
I F x x x t x� � ,                                       (A.2.75) 

where iF , 1,2, 3i � , are functions of class 1C  on the domain of definition, with 
respect both to the variables jx , 1,2, 3j � , and to the time t ; we have 

� � 1 2 3
d d ( , , ; )d
d d
C

i iC

I
F x x x t x

t t
.                                   (A.2.75') 

If � ( )j jx x t , 1,2, 3j � , then we may calculate the total derivative under the integral 
operator. 

Analogously, for the surface integral 

� �� 1 2 3( , , ; )dS S
I F x x x t S                                         (A.2.76) 

we may write 

1 2 3
d d ( , , ; )d
d d
S

S

I
F x x x t S

t t
� �� .                                   (A.2.76') 

We notice that both the curve C  and the surface S  may be open or closed. 
For the volume integral 

1 2 3( , , ; )dD D
I F x x x t �� ���                                       (A.2.77) 

we obtain, as well, 

1 2 3
d d ( , , ; )d
d d
D

D

I
F x x x t

t t
�� ��� .                                 (A.2.77') 

We obtain analogous results if SI  or DI  are vectors, the functions under the integral 
operator being vector functions. 

If the curve C , the surface S  or the volume D  depend on the parameter t  too, 
being variable quantities, then these formulae must be completed, taking into account 
the respective limits. Let thus be the volume integral 

1 2 3( ) ( )
( , , ; )dD t D t

I F x x x t �� ��� ,                                  (A.2.78) 

where ( )j jx x t� , 1,2, 3j �  and 1 2 3d d d dx x x� � . By a change of variable of the 

form � �0 0 0
1 2 3, , ;i ix x x x x t� , 1,2, 3i � , including the condition that the Jacobian of 

the transformation be non-zero ( " #0det d /d 0i jJ x x� � ), we obtain 



www.manaraa.com

Appendix 

 

729 

� �( )

( ) ( )

d d div d div( ) d
d d
D t

D t D t

I F FF F
t t t

� �($ %� � � �* +(& '��� ���v v ,       (A.2.79) 

where we have introduced the velocity d /dt�v r , we used the total derivative 
(A.2.9'), and we took into account the property ii) of the divergence. With the aid of the 
Gauss-Ostrogradski� formula (A.2.67), we may also write 

( )

( ) ( )

d
d ( ) d

d
D t

D t S t

I F
F S

t t
�(

� � �
(��� �� v n ,                       (A.2.79') 

n  being the external normal to the surface ( )S t . In the case of a vector field 

( ) ( )
( ; )dD t D t
t �� ���I V r ,                                      (A.2.80) 

we obtain, analogously, 

� �( )

( ) ( ) ( )

d d div d d ( ) d
d d
D t

D t D t S t
S

t t t
� �(

� � � � �
(��� ��� ��

I V VV v v n V .  (A.2.80') 

For the surface integral 

( ) ( )
( ; ) dS t S t

I t S� ��� V r n                                      (A.2.81) 

one may show that 

( )

( )

d
div curl( ) d

d
S t

S t

I
S

t t
($ %� � � 3 �* +(& '��
V v V V v n ;               (A.2.81') 

by means of Stokes’ formula (A.2.64), we can write 

� �( )

( ) ( )

d
div d ( ) d

d
S t

S t C t

I
S

t t
(

� � � � 3 �
(�� ��
V v V n V v r .          (A.2.81'') 

Let be the curvilinear integral 

( ) ( )
( ; )dC t C t

I F t s� ��� r                                        (A.2.82) 

too, where ( ; )t��r r , " #0 1,� � �� , is the parametric equation of the curve ( )C t ; we 
get 

� �
( )

2( )

d
grad d

d
C t

C t

I F
F s

t t
� �

�

$ %( (
�* +( ( (� � � �* +( (* +

* +(& '

�
r v

v
r

.                     (A.2.82') 
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2.3.6 Basic integral formula. Newtonian potentials 

The third formula of Green (A.2.74) allows a study of Poisson’s equation. To this 
goal, we write the respective formula for a function 2 ( )u C D�  and for a function 

1
4

v
R�

� ,   R � � Qr ,                                        (A.2.83) 

which satisfies the equation of Laplace (excepting the point � QQr , which is a singular 
one) and represents the basic solution in the sense of the theory of distributions of 
Poisson’s equation; the presence of the factor 1/4�  is due to the fact that – in 
distributions – we have 

( )v 
� � r ,                                                 (A.2.84) 

where 
  is Dirac’s distribution. To calculate the integrals in the formula (A.2.74), we 
isolate the singular point � QQr  by a sphere containing this point; the volume integral is 
calculated for the domain D  without the interior of this sphere, while the surface 
integral is calculated for the sphere too. If the radius of the sphere, centred at the 
singular point, tends to zero, then we obtain the basic integral formula 

� �1 1 1 1
( ) d d

4 4D S

u u
u u S

R R n n R
 �

� �
( ($ %� � � �* +( (& '��� ��r .              (A.2.85) 

This formula remains valid also for infinite domains if the function u  is regular at 
infinity. It puts in evidence properties of Laplace’s operator, to which it associates the 
identical operator and the normal derivative operator. 

The formula (A.2.85) introduces three Newtonian potentials, linked by the basic 
formula, i.e.: the volume potential 

1
1

( )
( ) d

D

f
F

R
�

�� ���r ,                                         (A.2.86) 

the potential of simple stratum 

2
2

( )
( ) d

S

f
F S

R
�

� ��r                                           (A.2.87) 

and the potential of double stratum 

� �3 3
1( ) ( ) d

S
F f S

n R
� (

� �
(��r ,                                   (A.2.87') 

1 2 3, ,f f f  being the respective densities. The study of those potentials allows to find the 
solution of Poisson’s equation if the value of the function or of its normal derivative is 
given on the frontier. 
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3. Elements of theory of distributions 
As it was shown in Chap. 1, Subsec. 1.1.7, in the study of discontinuous phenomena 

and for their representation in a unitary form, together with the continuous ones, it is 
necessary to use some notions of the theory of distributions. In what follows, we give 
some results concerning the composition of distributions and the integral transforms in 
distributions; as well, we introduce the notion of basic solution of a differential 
equation in the sense of the theory of distributions. These notions acquire thus a larger 
interest. 

3.1 Composition of distributions 

In general, the product of two distributions has no meaning; we have seen that the 
product by a function of class C �  has sense. That is why we will define products of a 
special type (composition of distributions). We introduce thus the direct (or tensor) 
product and the convolution product. 

3.1.1 Direct product of two distributions 

Let 1 2( , ,..., )nx x x x�  be a point of the n-dimensional Euclidean space nX  and 

1 2( , ,..., )my y y y�  a point of the m-dimensional Euclidean space mY ; by direct 
Cartesian product n mX Y3  of the two Euclidean spaces we mean a new n+m-
dimensional Euclidean space, built up of the points 1 2( , ) ( , ,..., ,nx y x x x�  

1 2, ,..., )my y y , where – obviously – we have put in evidence the co-ordinates of a point 
of this space, in the order in which they have been written. 

The direct product ( ) ( )f x g y3  of two distributions ( )f x  and ( )g y , defined on 
the basic spaces ( )nxK x X�  and ( )myK y Y� , respectively, is given by the 
relation 

( ( ) ( ), ( , )) ( ( ),( ( ), ( , )))f x g y x y f x g y x y� �3 � ,                       (A.3.1) 

where ( , )x y�  is a basic function defined on n mX Y3 ; this product is a distribution 
defined on the basic space x yK K3 . In the case of usual functions, this product 
coincides with their usual product. We mention the properties: 

 i) ( ) ( ) ( ) ( )f x g y g y f x3 � 3  (commutativity); 
ii) " # " #( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x g y h z f x g y h z f x g y h z3 3 � 3 3 � 3 3  

(associativity). 
The first of these properties allows to write the definition relation (A.3.1) also in the 

form 

( ( ) ( ), ( , )) ( ( ),( ( ), ( , )))f x g y x y g y f x x y� �3 � .                       (A.3.1') 

The second property takes into account the fact that the direct product may be defined 
for an arbitrary finite number of distributions. 
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Let 1xD  and 2xD  be two differential operators with respect to the variables 1x  and 

2x , respectively; we may write the relation 

" #1 2 1 21 2 1 2( ) ( ) ( ) ( )x x x xD D f x g x D f x D g x3 � 3 .                       (A.3.2) 

In particular, we get 

" #
2

1 2
1 2 1 2 1 2

1 2 1 2

d ( ) d ( )
( ) ( ) ( ) ( ) ( , )

d d
x x

x x x x x x
x x x x

� �
� � 
 
 
(

3 � 3 � 3 �
( (

.    (A.3.3) 

3.1.2 The convolution product of two distributions 

Let ( )f x  and ( )g x  be locally integrable functions of x ; their convolution product 
is the function defined by 

( ) ( ) ( ) ( )df x g x f g x� � �
�

��
D � �� ;                                 (A.3.4) 

obviously, the definition remains valid for nx � 
 . If the functions ( )f x  and ( )g x  
are continuous, then their convolution product is a continuous function too. In order 
that the convolution product may exist, it is necessary that the functions ( )f x  and 

( )g x  should satisfy certain conditions; thus, a sufficient condition in this respect is that 
the supports of the two functions ( )f x  and ( )g x  be compact. 

If ( )f x  and ( )g x  are two distributions on n
 , then their convolution product 
( ) ( )f x g xD  represents a new distribution on n
 , defined by the formula 

                         ( ( ) ( ), ( )) ( ( ) ( ), ( ))f x g x x f x g y x y� �D � 3 �   
  ( ( ),( ( ), ( ))) ( ( ),( ( ), ( )))f x g y x y g y f x x y� �� � � � ;                 (A.3.5) 

this definition is reduced to the first one in case of usual functions. We may show that 
the convolution product has a meaning if one of the following conditions is satisfied: 

 i) one of the distributions ( )f x , ( )g x  has a compact support; 
ii) the distributions ( )f x  and ( )g x  have the supports bounded on the same side. 

Thus, if ( ) 0f x �  for x a�  and ( ) 0g x �  for x b� , then the supports of the two 
distributions are bounded at the left. 

We remark that the convolution product may be defined for an arbitrary finite 
number of distributions. 

Under the conditions required for the existence of the convolution product one may 
prove the properties: 

  i) ( ) ( ) ( ) ( )f x g x g x f xD � D  (commutativity); 
ii) " # " #( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x g x h x f x g x h x f x g x h xD D � D D � D D  

(associativity). 
We notice that 
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( ) ( ) ( ) ( ) ( )x f x f x x f x
 
D � D � ;                                 (A.3.6) 

hence, Dirac’s distribution is a unit element for the product of convolution. We have, as 
well, 

( ) ( ) ( ) ( ) ( )x a f x f x x a f x a
 
� D � D � � � .                       (A.3.6') 

If D  is an arbitrary differential operator, then we may write 

" #( ) ( ) ( ) ( ) ( ) ( )D f x g x Df x g x f x Dg xD � D � D .                      (A.3.7) 

3.2 Integral transforms in distributions 

A strong tool for the integration of differential equations is the method of integral 
transforms. We give, in the following, some general results concerning Fourier and 
Laplace transforms. 

3.2.1 Fourier transform of a distribution 

If ( )f x  is a real or complex function of the real variable x � 
 , which satisfies 
Dirichlet’s conditions (it is bounded, piecewise monotone and has at the most a finite 
number of points of discontinuity of the first species) and is absolutely integrable, then 
the function 

iF( ) ( )e duxu f x x
�

��
� � ,   i 1� � ,                                 (A.3.8) 

exists and is called the Fourier transform of the function ( )f x ; we shall write 

" #F ( ) F( ) ( )f x u f u� � � ,                                         (A.3.8') 

noting that the variable u  is real. In general, the image function F( )u  is complex, 
although the function ( )f x  may be a real function. Assuming that the function F( )u  is 
given, the equality (A.3.8) may be considered as an integral equation with respect to the 
unknown function ( )f x  under the integral symbol; the solution of this integral 
equation is written in the form 

i1( ) F( )e d
2

uxf x u u
�

� �
��

� � .                                       (A.3.9) 

The function ( )f x  is called the inverse Fourier transform of the function F( )u ; we 
have 

" #" # " #1 1( ) F F ( ) F F( )f x f x u� �� � .                               (A.3.9') 
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Let ( )x�  be a basic complex function of a real variable x ; hence, ( )x C� ��  and 
has a compact support (e.g., x a� ). By the formula (A.3.8), the Fourier transform of 
the basic function is 

" # iF ( ) ( ) ( )e duxx u x x� � �
�

��
� � � .                              (A.3.10) 

The function ( )u�  may be defined also for complex values is u v� � , namely 

i i( ) ( )e d ( )e e dsx vx uxs x x x x� � �
� � �
�� ��

� �� � .                       (A.3.10') 

The set of functions " #( ) F ( )s x� �� , where the support of the basic functions is 
included in the segment " #,a a� , forms the vector space ( )Z a . We denote by 

( )
a

Z Z a� � ,   ( )
a

K K a� �                                        (A.3.11) 

the new complex linear space; then, Z �  is the set of linear and continuous functionals 
defined on Z  (ultradistributions). 

If F( )s  is a distribution defined on Z  and ( )f x  is a distribution defined on K , 
then the functional F( )s Z �� , specified by the equality of the Parseval type 

(F( ), ( )) 2 ( ( ), ( ))s s f x x� � �� ,                                     (A.3.12) 

is called the Fourier transform of the distribution ( )f x  and is denoted by 

" #F( ) F ( )s f x� .                                               (A.3.13) 

We can also write 

" # " #� �F ( ) ,F ( ) 2 ( ( ), ( ))f x x f x x� � �� .                           (A.3.12') 

Analogously, one may introduce the Fourier transform of a distribution of several 
variables. 

The classical properties of the Fourier transform are maintained in the form: 

  i) � � � � " # " #d dF( ) F ( ) F (i ) ( )
d d

P s P f x P x f x
s s

� � ,   P  polynomial; 

 ii) � � " #d
F ( ) ( i )F ( ) ( i )F( )

d
P f x P s f x P s s

x
$ % � � � �* +& '

; 

iii) " #" #1F F ( ) ( )f x f x� � ; 
iv) " #" #F F ( ) 2 ( )f x f x�� � . 

We denote by 1F�  the inverse operator defined on Z � . 
We can prove the relation 
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" # " # " #F ( ) ( ) F ( ) F ( )f x g y f x g y3 � 3                               (A.3.14) 

for the direct product of two distributions. As well, in connection with the convolution 
product, one may show the relations 

" # " # " #F ( ) ( ) F ( ) F ( )f x g x f x g xD � ,                                (A.3.15) 
" # " # " #F ( ) ( ) F ( ) F ( )f x g x f x g x� D .                               (A.3.15') 

The first relation is valid if ( )f x S ��  and ( )g x  is a distribution with bounded 
support; the second relation is valid if ( )f x S ��  and the function ( )g x C ��  is such 
that ( ) ( )f x g x S ��  and the support of its Fourier transform is bounded. 

We mention the Fourier transforms: 

" #F ( ) 1x
 � ,                                                (A.3.16) 
" #1 2F ( , ,..., ) 1nx x x
 � ,                                      (A.3.16') 
" # iF ( ) e uax a
 � � ,                                         (A.3.16'') 

" # iF ( ) ( )x u
u

� �
� � ,                                        (A.3.17) 

" #
2
1

F i ( )x u
u

�
� �� � � ,                                     (A.3.17') 

" #F 1( ) 2 ( )x u�
� .                                          (A.3.17'') 

3.2.2 Laplace transform of a distribution 

Let ( )f x  be a complex function of a real variable, which satisfies the conditions: 
  i) ( ) 0f x �  for 0x � ; 
 ii) ( )f x  is piecewise differentiable; 
iii) ( ) eaxf x M� , where M  is a positive constant, while the non-negative constant 
a  represents the incremental ratio of the function. 

Then the function L( )p  of the complex variable ip u v� � , defined by the expression 

0
L( ) ( )e dpxp f x x

� �� �                                          (A.3.18) 

is called the Laplace transform of the function ( )f x  and is denoted by 

" #L ( ) L( )f x p� .                                            (A.3.18') 

The function ( )f x  is also called the original function and the function L( )p  the image 
function. To the Laplace transform thus defined there corresponds an inverse Laplace 
transform, given by 
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" #
i1
i

1L L( ) ( ) L( )e d
2 i

u px
u

p f x p p
�

� ��
� �

� � � ,   u a� .                  (A.3.19) 

If ( )f x  is a distribution having its support on the half-line 0x �  and is such that 
the distribution ( )e pxf x �  is a temperate distribution, then 

" # � �L ( ) ( ), e pxf x f x ��                                          (A.3.20) 

represents the Laplace transform of that distribution. It is obvious that the relation 
(A.3.20) generalizes the relation (A.3.18). 

We mention the properties: 
  i) " # " #L ( ) e L ( )paf x a f x�� �  (the delay theorem); 

 ii) " # � �1L ( ) L pf kx
k k

� ,   0k �  (the theorem of similitude); 

iii) " #L ( )e L( )qxf x p q� �  (the theorem of translation; the damping theorem). 
One may give analogous results for the distributions of several variables. 

In the case of a derivative of a distribution one may write 

" # " #L ( ) L ( )f x p f x� � .                                          (A.3.21) 

For a convolution product it results 

" # " # " #L ( ) ( ) L ( ) L ( )f x g x f x g xD � .                                 (A.3.22) 

We may write the Laplace transforms: 

" #L ( ) 1x
 � ,                                                  (A.3.23) 
" #1 2L ( , ,..., ) 1nx x x
 � ,                                         (A.3.23') 

( )L ( )m mx p
$ % �& ' ,   0,1,2,...m � .                                (A.3.23'') 

3.3 Applications to the study of differential equations. Basic solutions 

The theory of distributions is particularly useful in the study of ordinary or partial 
differential equations, as well as in the case of various boundary value problems. We 
shall give first some general results concerning the basic solutions and then we shall 
deal with the problem of obtaining them for some particular differential equations. 

3.3.1 Ordinary differential equations 

Let be the linear ordinary differential equation with constant coefficients 

( ) ( 1)
1D ( ) ( ) ( ) ... ( ) ( )n n

ny x y x a y x a y x f x�� � � � � ,                 (A.3.24) 

where ( )f x  is a distribution. The distribution ( )E x  which satisfies the equation 
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D ( ) ( )E x x
�                                                (A.3.25) 

is called the basic solution of the equation (A.3.24) and is of the form 

( ) ( ) ( )E x Y x E x�� � ,                                        (A.3.26) 

where ( )Y x  is the general solution of the homogeneous equation 

D ( ) 0Y x � ,                                                (A.3.27) 

while ( )E x�  is a particular basic solution (corresponding to the non-homogeneous 
equation (A.3.25)). We shall give a simple method for determining this solution; to this 
end, we determine first the solution ( )Y x  which satisfies the initial conditions 

( 2)(0) (0) (0) ... (0) 0nY Y Y Y �� ��� � � � � ,   ( 1) (0) 1nY � � ;         (A.3.28) 

one can prove that a basic particular solution is, in this case, given by 

( ) ( ) ( )E x Y x x�� � .                                           (A.3.28') 

The basic solution of a differential equation is useful to determine its general 
solution; thus, the general solution of the equation (A.3.24) is given by 

( ) ( ) ( )y x E x f x� D .                                           (A.3.29) 

Let now be again the equation (A.3.24) with 0x � , ( )f x  being a continuous 
function having the support in [0, )� ; in the case of initial conditions of Cauchy type 

( ) (0)k
ky y� ,   0,1,2,..., 1k n� � ,                                 (A.3.30) 

the solution of the equation (A.3.24) is expressed in the form 

1

0

d( ) ( ) ( ) ( ) ( )
d

kn

k k
k

y x E x f x x h E x
x

�
�

� �
�

� D � 
�

,                      (A.3.30') 

where the coefficients kh , 0,1,2,..., 1k n� � , are given by 

011 2 1...k n k n k n kh y a y a y� � � � � �� � � � .                           (A.3.30'') 

The solution of the homogeneous equation 

D ( ) 0y x �                                                    (A.3.31) 

for 0x � , with the initial conditions of Cauchy type (A.3.30), is given by 
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1

0

d( ) ( )
d

kn

k k
k

y x h E x
x

�

�
�

� 
�

.                                       (A.3.31') 

In particular, in the case of the differential equation 

( ) ( ) ( )ny x f x� ,                                                (A.3.32) 

with initial conditions of the form (A.3.30), we obtain the basic particular solution 

1
11( ) ( )

( 1)! ( 1)!

n
nxE x x x

n n
�

�
�

� �� �
� �

,   x � 
 ;                      (A.3.33) 

the solution of the boundary value problem is given by 

2 1
1

0 1 2 1 0

1( ) ... ( ) ( )d
2! ( 1)! ( 1)!

n x n
n

x xy x y y x y y x f
n n

� � �
�

�
�� � � � � � �

� � � , 

             (A.3.32') 

where the latter integral, which represents the convolution product, is known as the 
Cauchy formula; for 2n � , we get 

( )E x x� �� .                                                (A.3.33') 

The above ideas may be extended to systems of ordinary differential equations with 
constant coefficients. 

3.3.2 General considerations on partial differential equations 

Problems similar to those in the preceding subsection may be put in the case of 
partial differential equations. Let thus be 

1 2
1 2
, ,..., ; ( , ,..., ; ) 0m

m
P u x x x t

x x x t
( ( ( (� � �	 
( ( ( (� �

                     (A.3.34) 

a homogeneous linear partial differential equation of nth order with respect to the 
variable t , with constant coefficients. For example, the Cauchy problem for this 
equation consists in the determination of the function 1 2( , ,..., ; )mu x x x t  which 
satisfies the equation (A.3.34) and the initial conditions 

0 01 2 1 2( , ,..., ; ) ( , ,..., )m mu x x x t u x x x� , 

01 2 1 1 2( , ,..., ; ) ( , ,..., )m mu x x x t u x x x
t
(

�
(

, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1

01 2 1 1 21 ( , ,..., ; ) ( , ,..., )
n

m mnn u x x x t u x x x
t

�

��
(

�
(

.                

 
 
 

(A.3.34') 
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To solve this problem, we consider the function 

01 2 1 2( , ,..., ; ) ( , ,..., ; ) ( )m mu x x x t u x x x t t t�� � ,                 (A.3.35) 

as well as the corresponding regular distribution; taking into account the formula which 
links the derivative in the sense of the theory of distributions to its derivative in the 
usual sense and using the initial conditions (A.3.34'), it results 

0 01 2 1 2 1 2( , ,..., ; ) ( , ,..., ; ) ( , ,..., ) ( )m m mu x x x t u x x x t u x x x t t
t t


( (
� � �

( (

�
, 

22

01 2 1 2 1 1 22 2( , ,..., ; ) ( , ,..., ; ) ( , ,..., ) ( )m m mu x x x t u x x x t u x x x t t
t t


( (
� � �

( (

�
 

0 01 2( , ,..., ) ( )mu x x x t t
� �� ,                                 (A.3.36) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

01 2 1 2 1 1 2( , ,..., ; ) ( , ,..., ; ) ( , ,..., ) ( )
nn

m m mnn nu x x x t u x x x t u x x x t t
t t


�
( (

� � �
( (

�
 

( 1)
0 0 02 1 2 1 2( , ,..., ) ( ) ... ( , ,..., ) ( )n

m mnu x x x t t u x x x t t
 
 �
�� � � � �� . 

Noting that the derivatives in the usual sense with respect to the variable t  of the 
function 1 2( , ,..., ; )mu x x x t  are equal to the corresponding derivatives of the function 

1 2( , ,..., ; )mu x x x t  for 0t t� , the equation (A.3.34) takes the form 

1 2 1 2
1 2
, ,..., ; ( , ,..., ; ) ( , ,..., ; )m m

m
P u x x x t f x x x t

x x x t
( ( ( (� � �	 
( ( ( (� �

        (A.3.37) 

in distributions, where 1 2( , ,..., ; )mf x x x t  is a given distribution, which contains the 
initial conditions considered above. 

Thus, we call basic solution of the equation (A.3.37) the distribution 
1 2( , ,..., ; )mE x x x t  which satisfies the equation 

1 2 1 2
1 2
, ,..., ; ( , ,..., ; ) ( , ,..., ; )m m

m
P E x x x t x x x t

x x x t

( ( ( (� � �	 
( ( ( (� �

.        (A.3.38) 

The solution of the above Cauchy problem is given by (A.3.35), where 

1 2 1 2 1 2( , ,..., ; ) ( , ,..., ; ) ( , ,..., ; )m m mu x x x t E x x x t f x x x t� D ,           (A.3.37') 

the convolution product corresponding to all 1m �  variables. 
It should be noted that some equations of mathematical physics cannot be always 

deduced directly in the space of distribution, owing to the difficulties encountered in 
modelling physical phenomena. In general, the equations which describe such 
phenomena are obtained first by classical methods. Next, an extension is effected, 
where the unknown functions take zero values, so that they be defined on the whole 
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space; the derivatives, considered in the usual sense, are expressed by relations which 
connect derivatives in the sense of the theory of distributions to the derivatives in the 
usual sense of a distribution corresponding to an almost everywhere continuous 
function, having a finite number of discontinuities of the first species. In this way, the 
unknowns of the problem will be regular distributions; then it will be assumed that 
these unknowns may be arbitrary distributions. Another possibility, which is frequently 
used is to suppose, from the very beginning, that the unknowns of the problem are 
arbitrary distributions, assuming the same form in distributions for the differential 
equation obtained by classical methods (obviously, these ones are no longer valid for 
the whole space). However, there are not general methods for passing to differential 
equations in distributions. 

3.3.3 Equations of elliptic type 

Let be Poisson’s equation 

1 2 3 1 2 3( , , ) ( , , )u x x x f x x x � ,                                    (A.3.39) 

where 1 2 3( , , )f x x x  is a given distribution; the basic solution is of the form 

1 2 3
1( , , )

4
E x x x

r�
� � ,   2 2 2

1 2 3r x x x� � � .                       (A.3.39') 

Analogously, for the equation 

1 2 3 1 2 3( , , ) ( , , )u x x x f x x x �                                   (A.3.40) 

we have 

1 2 3
1( , , )

8
E x x x r

�
� � .                                         (A.3.40') 

In case of the equation 

2
1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )u x x x k u x x x f x x x � �                        (A.3.41) 

we may use the basic solution 

1 2 3
1( , , ) cos

4
E x x x kr

r�
� � ;                                      (A.3.41') 

we also notice that an integral of the homogeneous Helmholtz equation 

2
1 2 3 1 2 3( , , ) ( , , ) 0u x x x k u x x x � �                                 (A.3.42) 

is given by 
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1 2 3
1( , , ) sinu x x x kr
r

� .                                         (A.3.42') 

Replacing k  by ik2 , i 1� � , we find the basic solution 

1 2 3
1( , , ) cosh

4
E x x x kr

r�
� �                                       (A.3.43) 

for the equation 

2
1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )u x x x k u x x x f x x x � � ;                     (A.3.43') 

analogously, we notice that 

1 2 3
1( , , ) sinhu x x x kr
r

�                                          (A.3.44) 

is an integral of the homogeneous equation 

2
1 2 3 1 2 3( , , ) ( , , ) 0u x x x k u x x x � � .                               (A.3.44') 

In case of Poisson’s equation in two variables 

1 2 1 2( , ) ( , )u x x f x x � ,                                          (A.3.45) 

where 1 2( , )f x x  is a given distribution, a basic solution is 

1 2
1 1( , ) ln

2
E x x

r�
� � ,   2 2

1 2r x x� � .                          (A.3.45') 

As well, we get the basic solution 

2
1 2

1 1( , ) ln
8

E x x r
r

� �                                          (A.3.46) 

for the equation 

1 2 1 2( , ) ( , )u x x f x x � .                                      (A.3.46') 

3.3.4 Equations of hyperbolic type 

We consider the wave equations 

 1 2 3 1 2 3( , , ; ) ( , , ; )i iu x x x t f x x x t�� ,   1,2i � ,                        (A.3.47) 

where 1 2 3( , , ; )if x x x t  are given distributions; a basic solution of these equations is of 
the form 
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1 2 3
1( , , ; )

4i
i

rE x x x t t
r c



�
� �� � �	 

� �

,   1,2i � .                       (A.3.47') 

Analogously, for the equations 

 1 2 3 1 2 3( , , ; ) 4 ( ) ( , , ) 0i u x x x t t x x x� 
� 3 �� � ,   1,2i � ,               (A.3.48) 

where ( )t�  is a distribution, one obtains 

1 2 3
1( , , ; )

i

ru x x x t t
r c

� �� �	 

� �

� ,   1,2i � .                           (A.3.48') 

The solution of the equation 

  1 2 1 2 3 1 2 3( , , ; ) 4 ( ) ( , , ) 0u x x x t t x x x� 
� 3 �� � �                     (A.3.49) 

reads 

2 2
1 2

1 2 3 2 2 ( )1 21 2
( , , ; ) ( )

t

c c r r
u x x x t t t t

c cc c � �

$ %� � � �� � � � � D	 
 	 
* +� � � � �& '
� ,          (A.3.49') 

where the convolution product concerns only the time variable. The basic solution of 
the equation 

  1 2 1 2 3 1 2 3( , , ; ) ( , , )u x x x t f x x x�� �                               (A.3.50) 

is of the form 

� �
2 2
1 2

1 2 3 2 2
1 21 2

( , , ; )
4
c c r rE x x x t t t

c cc c� � �

$ %� � � �� � � �	 
 	 
* +� � � � �& '
.              (A.3.50') 

In the case of only two space variables, we consider the equations 

 1 2 1 2( , ; ) ( , ; )i iu x x t f x x t�� ,   1,2i � ,                             (A.3.51) 

  1 2 1 2 1 2( , ; ) ( , ; )u x x t f x x t�� � ,                                   (A.3.52) 

where 1 2( , ; )if x x t  and 1 2( , ; )f x x t  are given distributions. Introducing the 
distribution defined by the function 

1
0 0 2

2
2

; L i

i i

i

rt
cr r

f t K p
c c rt

c

�
�

� ��	 

� �� � $ � � %� �	 
 	 
* +� � & � � '

�

,   0t � ,   1,2i � ,          (A.3.53) 
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where 0K  is the modified Bessel function of order zero, we obtain the basic solutions 

01 2
1( , ; ) ;

2 i

rE x x t f t
c�

� �� � 	 

� �

,   1,2i � ,                          (A.3.51') 

for the equations (A.3.51). As well, if we introduce the distribution defined by the 
function 

           
2

1 2
02 2 2

1
; L ln
i i i i

r r r r
f t K p t t t t

c c cp c
��

�
$ � �$ %� � � � � �� � � � �	 
	 
 	 
 	 
 ** +� � � � � �& ' & � �

 

2
2

2
i

r
t

c
%

� � +
'

,   0t � ,   1,2i � ,                            (A.3.54) 

then we get the basic solution 

� �
2 2
1 2

1 2 2 22 2
1 21 2

( , ; ) ; ;
2
c c r rE x x t f t f t

c cc c� � �
$ � � � � %� �	 
 	 
* +� & � � � � '

,                 (A.3.52') 

corresponding to the equation (A.3.52). 

3.3.5 Equations of parabolic type 

Let be the caloric equation 

 1 2 3 1 2 3( , , ; ) ( , , ; )u x x x t f x x x t�� ,                                (A.3.55) 

where 1 2 3( , , ; )f x x x t  is a given distribution; a basic solution is of the form 

2

41 2 3
1( , , ; ) ( )e

8

r
atE x x x t t

at at
�

� �
�� ,   ( , )t � �� � ,                  (A.3.55') 

or of the form 

2

41 2 3
1( , , ; ) e

8

r
atE x x x t

at at� �
�� ,   0t � .                        (A.3.55'') 

In case of two space variables, let be the equation 

 1 2 1 2( , ; ) ( , ; )u x x t f x x t�� ,                                      (A.3.56) 

where 1 2( , ; )f x x t  is a given distribution; a basic solution is of the form 

2

41 2
1( , ; ) ( )e

4

r
atE x x t t

at
�

�
�� ,   ( , )t � �� � ,                        (A.3.56') 
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which can be expressed also in the form 

2

41 2
1( , ; ) e

4

r
atE x x t

at�
�� ,   0t � .                                (A.3.56'') 

Analogously, we can consider also other equations which occur in the study of 
mechanical phenomena. 
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